
Deformation-Aware Log-Linear Models

Tobias Gass, Thomas Deselaers1 and Hermann Ney

Human Language Technology and Pattern Recognition Group,
RWTH Aachen University, Aachen, Germany
<last name>@i6.informatik.rwth-aachen.de

1 now with the Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract. In this paper, we present a novel deformation-aware dis-
criminative model for handwritten digit recognition. Unlike previous ap-
proaches our model directly considers image deformations and allows
discriminative training of all parameters, including those accounting for
non-linear transformations of the image. This is achieved by extending
a log-linear framework to incorporate a latent deformation variable. The
resulting model has an order of magnitude less parameters than compet-
ing approaches to handling image deformations. We tune and evaluate
our approach on the USPS task and show its generalization capabilities
by applying the tuned model to the MNIST task. We gain interesting
insights and achieve highly competitive results on both tasks.

1 Introduction

One of the major problems in pattern recognition tasks is to model intra-class
variability without washing away the inter-class differences. One typical appli-
cation where many transformations have to be considered is the recognition of
handwritten characters. In the past, many approaches towards modeling differ-
ent writing styles have been proposed and investigated [1–5].

In this work, we propose a novel model that directly incorporates and trains
deformation parameters in a log-linear classification framework.

The conventional approaches can be split into two groups: Approaches that
directly incorporate certain invariances into their classification framework, e.g.
incorporate the tangent distance into support vector machines [2], use kernel-
jittering to obtain translated support vectors in a two-step training approach [1]
and use transformation-invariant distance measures in nearest neighbor frame-
works [4, 5]. Another approach is not to incorporate the deformation-invariance
into the model but use a huge amount of synthetically deformed data during
training of a convolutional neural network [3]. The first approach has the dis-
advantage that during testing a large amount of, potentially computationally
expensive, image comparisons have to be performed whereas in the second ap-
proach the training procedure becomes potentially very expensive. None of the
approaches presented above explicitly learns the parameters of the allowed defor-
mations but the deformation model was hand-coded by the system developers.

In contrast to these approaches to transformation-invariant classification,
Memisevic and Hinton [6] proposed an approach to learn image transforma-
tions from corresponding image pairs using conditional restricted Boltzmann
machines.

In our approach, we aim at training a small (in the number of parameters)
model that directly models deformations, automatically learns which deforma-
tions are allowed (and desired), is efficient to train and apply, and leads to good
results. We build our approach around the image distortion model (IDM) [4],
a zero-order, non-linear deformation model, which we shortly describe in the
following section. The developed model can also be considered a grid-shaped
hidden-conditional random field (HCRF) [7, 8] where the latent variables ac-
count for the deformations.

In section 3, we present our model which incorporates the IDM into log-linear
models. In section 4, we present an experimental evaluation on the USPS and
on the MNIST dataset and compare to several published state-of-the-art results
as well as to an SVM with an IDM-distance kernel.

2 Image Distortion Model

The IDM has been proposed by several works independently under different
names. For example, it has been described as “local pertubations” [9] and as
“shift similarity” [10]. Here, we follow the formulation of [4]. The IDM is a zero
order image deformation method that accounts for image transformations by
pixel-wise aligning a test image to a prototype image without considering the
alignments of its neighboring pixels, which allows for efficient calculation. An
image alignment maps each pixel ij from an image A of size I × J to a pixel
(xy)ij in the prototype image B. We denote an image alignment by (xy)IJ11 :
(ij) → (xy)ij . To restrict the possible alignments, commonly a maximal warp-
range W , i.e. the maximal displacement between ij and (xy)ij , is defined.

In [4], the IDM has been mainly used to obtain distances between pairs of im-
ages for nearest neighbor classification. It was noted that the use of local features
extracted from small neighborhoods of the pixels, such as sub-windows of So-
bel features, which are smoothed directed derivatives, lead to strongly improved
alignments and directly to better classification results.

3 Integrating the IDM into Log-linear Models

Log-linear models are well-understood discriminative classifiers for which effi-
cient training methods exist. Commonly, the class-posterior p(c|X) for an obser-
vation X is directly modeled as

p(c|X) =
p(c,X)∑C

c′=1 p(c′, X)
=

exp(gθ(X, c))∑C
c′=1 exp(gθ(X, c′))

, (1)

where commonly gθ(X, c) = αc + λTc X is chosen.

To incorporate deformation-invariance into log-linear models, we treat the
image alignment as a latent variable which is marginalized out:

p(c,X) =
∑

(xy)IJ
11

p(c, (xy)IJ11 , X). (2)

To account for image deformations in the discriminant function we extend
gθ(X, c) to

gθ(X, (xy)IJ11 , c) = αc +
∑
ij

(
αcij(xy)ij

+ λTc(xy)ij
Xij

)
, (3)

where θ = {αc, αcij(xy)ij
, λc(xy)ij

} and αc is a class-bias, αcij(xy)ij
corresponding

to class-, position, and alignment depending deformation priors; λc(xy)ij
is a

class-dependent weight-vector. Note that each pixel ij of image X is represented
by a D-dimensional vector to allow for additional features. Thus, the λc(xy)ij

are
of the same dimensionality.

3.1 Relationship to Gaussian Models

An interesting aspect of this model is that it can be rewritten as a discriminative
Gaussian classifier analogously to [11]. We rewrite

p(c, (xy)IJ11 |X) =
p(c) p(X, (xy)IJ11 |c)∑
c′ p(c′) p(X, (xy)IJ11 |c′)

(4)

and decompose
p(X, (xy)IJ11 |c) = p((xy)IJ11 |c) p(X|c, (xy)IJ11) (5)

where p((xy)IJ11 |c) can be considered as a deformation prior and p(X|c, (xy)IJ11)
is an emission probability for a given class and alignment.

Then, p((xy)IJ11 |c) can be rewritten as p((xy)IJ11 |c) =
∏
ij p((xy)ij |ij, c) and

p(X|c, (xy)IJ11) =
1∏

ij

√
2πσ2

exp
(
−1

2

∑
ij

(Xij − µc(xy)ij
)2

σ2

)
(6)

assuming a globally pooled diagonal covariance matrix.
The direct correspondence to the above model can be seen by setting

αc = log (p(c))− D
2 log

(
2πσ2

)
, λc(xy)ij

= 1
σµc(xy)ij

(7)

αcij(xy)ij
= log (p((xy)ij |ij, c))− 1

2σµ
T
c(xy)ij

µc(xy)ij
. (8)

This equivalence also shows that the αcij(xy)ij
model deformation penalties.

Furthermore, the transformations in eq. (7)(8) allow to start from a generative,
deformation-aware model such as the one discussed in [4] to initialize our model.

3.2 Maximum Approximation

In order to avoid the evaluation of sums over latent variables, a common approach
is to use the maximizing configuration of the latent variable, which allows us to
rewrite eq. (2) as

p(c|X) ≈ 1
Z(X)

max
(xy)IJ

11

{
p(c, (xy)IJ11 , X)

}
(9)

with unchanged Z(X).

In addition to applying the maximum approximation in the numerator, it is
possible to also apply it in the denominator Z(X) ≈

∑
c′ max(xy)IJ

11
p(c′, (xy)IJ11 , X).

We performed experiments with the three different variants and found that
the results differ only slightly. In particular, we found that the method with max-
imum approximation in numerator and denominator despite being the fastest
has the tendency to perform best. Therefore, we perform the experiments in this
paper using this method.

3.3 Training Method

The training of conventional log-linear models is a convex optimization problem
and can be done efficiently. Here, we aim at maximizing the log-likelihood of the
posteriors

F (θ) =
∑
n

log pθ(cn|Xn), (10)

where θ are the parameters of the class posterior distribution (cp. Eq (3)). For
our proposed model, the training problem is not convex anymore. However, given
a fixed alignment, the training can be performed normally, and therefore, for the
model with maximum approximation an algorithm that is guaranteed to converge
(to a local optimum) exists. This can be seen by considering a class/alignment
pair as a pseudo-class leading to a log-linear model with an enormous number
of classes. For the two other variants (no maximum approximation/maximum
approximation in numerator and denominator) this cannot be guaranteed, how-
ever, as we found in our experiments, the training converges well.

An extension of the GIS algorithm to allow for training of log-linear models
with hidden variables has been presented in [12]. However the authors observed
that although the algorithm is guaranteed to converge, convergence can be slow.
Similarly to their approach, we also use an alternating optimization method:

Step 1: Train model parameters θ while keeping the alignment (xy)IJ11 fixed.
Step 2: Determine new alignments (xy)IJ11 with fixed model parameters θ.

These two steps are then repeated until convergence is reached. To train the pa-
rameters of the model with maximum approximation in numerator and denom-
inator, the same procedure can be used, but here for each training observation,
an alignment for each class has to be determined.

We train our model using the RProp-algorithm [13], which has the advantage
that it is robust w.r.t. varying scales of the derivatives because it only takes into
account the sign of the partial derivatives to determine the parameter updates.

3.4 Pooling of Deformation Priors

In our initial formulation, the αcij(xy)ij
model the deformation priors separately

for each class, pixel position and corresponding alignments leading to a large
number of parameters partly sharing information. To reduce the number of pa-
rameters and allow for sharing deformation information we propose several pool-
ing strategies over classes, positions, and deformations, respectively. An overview
over these is given in table 1.

Table 1: Deformation Priors. The different variants of sharing α-parameters. We
show the dependency of the deformation parameters αcij(xy)ij

in functional form, where
each of these functions is a table which is indexed by the parameters given in column
2. In the last column, we give the number of parameters in dependency of the number
of classes C, the size of the image IJ , and the size of the allowed warp-range W .

Pooling method αcij(xy)ij
number of parameters

full alphas (no pooling) α(c, i, j, i− x, j − y) C(IJ)(2W + 1)2

class pooling α(i, j, i− x, y − j) (IJ)(2W + 1)2

deformation independent α(c, i, j, δ(x, i) · δ(y, j)) 2C(IJ)
position independent α(c, i− x, j − y) C(2W + 1)2

position and deformation independent α(c, δ(x, i) · δ(y, j)) 2C

Fig. 1: Example images for the USPS (top)
and the MNIST (bottom) tasks.

 3.9
 4

 4.1
 4.2
 4.3
 4.4
 4.5
 4.6

 1 2 3 4 5 6 7 8

E
R

 [
%

]

warprange

Fig. 2: The effect of different warp ranges
on the error rate on the USPS test data.

4 Experimental Evaluation

We evaluate our methods on two datasets, the rather small, but well-known
USPS dataset [14], which we use to evaluate and tune all parameters of our
method, and on the MNIST dataset [15], on which we only repeat those ex-
periments which performed best on the USPS dataset. In figure 1, we give an
example image for each of the classes for these two datasets.

Both datasets consist of images from ten classes of handwritten digits, which
are scaled between 0 and 1. The USPS dataset consists of 7291 training images
and 2007 test images, and the MNIST dataset consists of 60 000 training images
and 10 000 test images.

In the following, we first investigate the warp range and which features are
best for finding the best alignments and for classification. Then we investigate
the effect of the different deformation-sharing parameters. We also compare three
different initializations and compare our results to the state-of-the-art and to an
SVM with an IDM-distance kernel.

Warp range. One crucial parameter in the IDM is the warp range W , which
controls the maximal horizontal and vertical displacement for each pixel. We

Table 2: Features. The impact of differ-
ent local features and local context on the
classification error [%]

local context used: no yes

Features train test train test

gray values 2.63 7.62 0.47 7.57
Sobel 0.01 4.04 0.01 4.04
abs(Sobel) 0.78 4.88 0.18 4.78
Sobel + abs(Sobel) 0.01 3.84 0.14 3.64

Table 3: Error rates[%] obtained using the
different initializations with and without
alternating optimization.

fixed align. altern. opt.

Init. initial train test train test

Gaussian 6.52 0.69 4.63 0.69 4.63
log-linear 8.27 0.05 5.93 0.01 4.04
zero init - 1.87 8.27 0.01 4.04

allow to map the pixel ij to every pixel (xy)ij , where i−W ≤ xi ≤ i+W and
j −W ≤ yj ≤ j +W . In figure 2 the effect of different warp ranges on the error
rate on the USPS dataset is shown. In these experiments we use simple Sobel
features.

Features. It was already observed by Keysers et al. [4] that local context is
essential to determine good alignments and they found that sub-windows of
Sobel features performed best. Here, we investigate the impact of different local
descriptors and sub-windows on the classification performance. The results of
these experiments are shown in table 2.

We compare eight different setups: simple gray values, Sobel features, abso-
lute values of Sobel features, and a combination of Sobel and absolute Sobel.
Each feature setup is evaluated with and without 3×3 sub-windows. It can be
observed that using Sobel features, scaled from -1 to 1, leads to a significant
improvement over using just gray values and there is hardly a difference in the
test error rate whether local context is used or not. Absolute Sobel values do
not reach the performance of full Sobel features as they lose the direction of the
edge information, although it can be observed that the model improves when
combining the two. This is due to the fact that the feature combination contains
both improved features for alignment as well as non-linear combinations of the
original features which improve parameter estimation of the log-linear model.
It can be observed that the use of sub-windows leads to a better performance
when using the combined Sobel descriptors. Due to the minor improvements
using the feature combination but nonetheless greatly increased training effort,
we will use simple Sobel features for further investigations and re-combine the
best approaches in section 4.1 for the MNIST dataset.

Alpha pooling. Table 4 shows the results obtained using the different strategies
for deformation parameter sharing described in section 3.4.

It can be observed that, although the number of parameters is significantly
reduced, the error rates on the test data are only slightly affected. This shows
that it is not necessary to have position- and deformation-specific deformation
priors but that most of the relevant deformation information can be stored in

Table 4: Deformation prior sharing. Error rates[%] on the training and test data of
the USPS dataset using the different deformation prior sharing methods along with the
number of deformation parameters and the number of parameters of the entire model.

Pooling method train ER test ER def. param total param

full alphas (no pooling) 0.01 4.04 64000 69130
class pooling 0.08 3.84 6400 11530
deformation independent 0.05 3.94 5120 10250
position independent 0.03 4.09 250 5380
position and deformation independent 0.51 3.89 20 5150
class pooling/pos. & deform. indep. 0.04 3.94 2 5132

the λ-parameters. The biggest difference is again observed on the training data,
which makes us believe that the models with fewer parameters have better gen-
eralization capabilities.

Initialization and alternating optimization. As described in section 3.1, the
presented model can be rewritten as a Gaussian model and can be initialized
from a Gaussian model. Since we cannot guarantee convergence to the global
optimum of the parameters, in this section, we consider three different ways to
initialize the model: initialization from a non-deformation invariant log-linear
model, initialization from a deformation-aware generative Gaussian model and
initialization of all parameters with zeros.

For these alternatives, we compare the results using different training schemes.
In the scheme “fixed alignment”, we initialize the model, determine an alignment
of the training data to the init-model and keep this alignment fixed until con-
vergence. In the scheme “alternating optimization”, we perform analogously to
the previous experiments. That is, we initialize the model and alternate between
re-aligning and parameter updates until convergence. The results of these exper-
iments are given in table 3.

Interestingly, the final result is nearly independent of the initialization, which
indicates that the alternating optimization is able to find a good set of param-
eters independent of the starting point. Only for the model initialised from the
deformation aware Gaussian model, the alternating optimization has no effect.
We believe that this model is stuck in a strong local optimum. However, if alter-
nating optimization is not used, the other two models are clearly worse, which
again highlights the importance of the alternating optimization. The training
time for the different initialisations is similar where generally the model ini-
tialised with a log-linear model needs fewer iterations than the other two.

4.1 Transfer to MNIST & Comparison to the state-of-the-art

In table 5, we show how the model, with parameters (warprange, deformation
sharing method, feature setup) tuned on the USPS dataset, performs on the

Table 5: Comparison of error rates[%], number of parameters and runtime of our
deformation-aware log-linear model to state-of-the-art models.

USPS MNIST

Model # param. ER # param. ER run-time factor

log-lin. model+IDM using Sobel 69 130 4.04 211 690 1.63 50
+ abs(SobelHV) 74 250 3.84 227 370 1.32 100

+ deform. param. sharing 10 340 3.59 31 390 1.36 100
+ local context 92 190 3.69 282 270 1.50 900

log-linear model 2 570 8.2 7 850 7.4 1
+ abs(SobelHV) 5 130 5.5 15 690 3.0 2

single Gaussians 2 560 18.5 7 840 18.0 1
single Gaussians + IDM [4] 2 560 6.5 7 840 5.8 50

nearest neighbor [4] 1 866 496 5.6 47 040 000 3.1 729/6 000
nearest neighbor + IDM [4] 1 866 496 2.4 47 040 000 0.6 36 455/300 000

SVM 658 177 4.4 15 411 905 1.5 256/1 963
SVM + IDM [16]/[this work] 530 705 2.8 - 0.7 10 300/100 000

DBN [17] 640 610 - 1 665 010 1.3 210/ 220
conv. network [3] - - 180 580 0.4 -/25

MNIST dataset and compare the results for both datasets with several state-of-
the-art results from the literature.

Additionally to the error rates, we give the total number of parameters that
are necessary in the models to classify a test observation and the run-times of the
different methods estimated from the number of basic mathematical operations
relative to the fastest method. Note that sharing the deformation parameters
has no noticeable impact on computation time, while each additional feature
layer increases the run-time.

The results in the first block of table 5 are obtained using the deformation-
invariant log-linear model. It can be seen that a combination of Sobel and ab-
solute Sobel with position and deformation independent α-pooling improves the
results. Additionally using local context does not lead to an improvement but
rather to overfitting. All improvements using parameters optimized on the USPS
dataset consistently transfer to improvements on the MNIST database, showing
the good generalization capabilities of our model.

The first comparison result we give is that of a simple log-linear model, which
due to the lack of deformation invariance performs significantly worse for both
datasets, but is (along with the single Gaussian model) the fastest model. Both
models only require to compare a test-observation to one prototype per class.
The generative single Gaussian model with IDM, already performs much better
but an IDM comparison is about 50 times as expensive as a simple component-
wise comparison (due to the use of Sobel features and a deformation window of

5×5 pixels). For comparison, we additionally present results using a log-linear
model using absolute Sobel features.

The nearest neighbor method needs as many comparison operations as there
are training samples but the cost is independent of the number of classes, there-
fore the method is about 800 (resp. 6000) times slower than the simple log-linear
model for the USPS dataset and for the MNIST dataset respectively. However,
the nearest neighbor method with IDM obtains results among the best published
results for both datasets.

The number of operations in the SVM depends on the number of support
vectors. On both datasets, the number of support vectors is typically about
30% of all trainings samples and thus the method requires about a third of the
run-time of the nearest neighbor classifier. For SVMs to include the IDM, we
use radial basis kernel with a symmetric variant of the IDM-distance defined as
KIDM(X,V) = exp

(
−γ2 (didm(X,V) + didm(V,X))

)
, since non-symmetric kernels

cause problems in training SVMs. Although this kernel is not necessarily positive
definite, it was observed by Haasdonk [16] that in practice the training converges
to a good result. We note that the symmetric IDM-distance is known to perform
worse than the asymmetric one in nearest-neighbor experiments (3.4% instead
of 2.4%). Nonetheless, the support vector machines obtain excellent results on
both datasets, where the results on the MNIST database have been reported
by [16] and the results on the USPS database have been obtained using our own
implementation.

For further comparison we give two state-of-the-art results on the MNIST
database using deep belief networks and convolutional neural networks. Both are
based on neural networks where the deep belief network is proposed as a general
learning technique [17] and no prior knowledge such as deformations is incorpo-
rated. The convolutional neural networks were designed with digit recognition
in mind and are trained from a huge amount of automatically deformed training
data [3]. The convolutional neural network obtains one of the best published re-
sults on the MNIST dataset despite its small size and efficient classification stage.
However, the training phase for this network is computationally very expensive
because the training data is automatically deformed and used for training several
thousand times.

As an overview, it can be seen that our method compares favorably well to
other methods. In particular in comparison with the other fast methods, only
the convolutional neural networks, which are difficult to create and optimize,
outperform our method with a comparable computation time. Furthermore, the
small number of parameters in our model is a good indicator for its generalization
performance which is underlined by the successful transfer of the parameters
from the USPS dataset to the MNIST dataset.

5 Conclusion

We presented a new model that directly incorporates image deformations into
a log-linear framework which achieves highly competitive results on well-known

handwritten character recognition tasks. It is possible to fine-tune the amount
of deformation priors by sharing and it is shown that using fewer deformation
prior parameters the model generalizes better. We also showed that the choice
of the features is crucial to find good alignments and to obtain good results.

In the future we plan to investigate whether it is possible to extend the
deformation-aware log-linear model toward log-linear mixture models analo-
gously to the experiments reported in [12].

Acknowledgement. This work was partially funded by the DFG (Deutsche
Forschungsgemeinschaft) under contract NE-572/6 and partly realized as part
of the Quaero Programme, funded by OSEO, French State agency for innovation.

References

1. DeCoste, D., Schölkopf, B.: Training invariant support vector machines. Machine
Learning 46 (2002) 161–190

2. Haasdonk, B., Keysers, D.: Tangent distance kernels for support vector machines.
In: ICPR, Quebec City, Canada (2002) 864–868

3. Simard, P.: Best practices for convolutional neural networks applied to visual
document analysis. In: ICDAR, Edinburgh, Scotland (2003) 958–962

4. Keysers, D., Deselaers, T., Gollan, C., Ney, H.: Deformation models for image
recognition. PAMI 29 (2007) 1422–1435

5. Keysers, D., Macherey, W., Ney, H., Dahmen, J.: Adaptation in statistical pattern
recognition using tangent vectors. PAMI 26 (2004) 269–274

6. Memisevic, R., Hinton, G.: Unsupervised learning of image transformations. In:
CVPR, Minneapolis, MN, USA (2007)

7. Lafferty, J., McCallum, A., Pereira., F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: ICML. (2001)

8. Quattoni, A., Wang, S., Morency, L.P., Collins, M., Darrell, T.: Hidden conditional
random fields. PAMI 29 (2007) 1848–1852

9. Uchida, S., Sakoe, H.: A survey of elastic matching techniques for handwritten
character recognition. Trans. Information and Systems E88-D (2005) 1781–1790

10. Mori, S., Yamamoto, K., Yasuda, M.: Research on machine recognition of hand-
printed characters. PAMI 6 (1984) 386–405

11. Keysers, D., Och, F.J., Ney, H.: Maximum entropy and Gaussian models for image
object recognition. In: DAGM Zürich, Switzerland (2002) 498–506

12. Heigold, G., Deselaers, T., Schlüter, R., Ney, H.: GIS-like estimation of log-linear
models with hidden variables. In: ICASSP, Las Vegas, NV, USA (2008) 4045–4048

13. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In: ICNN, San Francisco, CA, USA (1993)

14. ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/
15. http://yann.lecun.com/exdb/mnist/
16. Haasdonk, B.: Transformation Knowledge in Pattern Analysis with Kernel Meth-

ods. PhD thesis, Albert-Ludwigs-Universität Freiburg (2005)
17. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief

nets. Neural Computation 18 (2006) 1527–1554

