
Proceedings of the 13th Annual Conference of the EAMT, pages 242–249,
Barcelona, May 2009

On LM Heuristics for the Cube Growing Algorithm

David Vilar and Hermann Ney

Lehrstuhl für Informatik 6

RWTH Aachen University

52056 Aachen, Germany

{vilar,ney}@informatik.rwth-aachen.de

Abstract

Current approaches to statistical machine

translation try to incorporate more struc-

ture into the translation process by includ-

ing explicit syntactic information in form

of a formal grammar (with a possible, but

not necessary, correspondence to a linguis-

tic motivated grammar). These more struc-

tured models incur into an increased gener-

ation cost, and efficient algorithms must be

developed. In this paper we concentrate on

the cube growing algorithm, a lazy version

of the cube grow algorithm. The efficiency

of this algorithm depends on a heuristic

for language model computation, which is

only scarcely discussed in the original pa-

per. In this paper we investigate the effect

of this heuristic on translation performance

and efficiency and propose a new heuris-

tic which efficiently decreases memory re-

quirements and computation time, while

maintaining translation performance.

1 Introduction

In the last decade, the phrase-based approach to

machine translation has been the de-facto standard

for statistical machine translation (SMT) systems.

The main reason was that it offered a great im-

provement in translation quality over its predeces-

sors, the single-word based models. The model

itself is also relatively simple and allows for effi-

cient generation algorithms like for example beam

search (see e.g. (Koehn, 2004)). This allowed the

approach to scale to bigger tasks and it is still one

of the most widely used models nowadays. The

current trend in SMT, however, is to bring more

c© 2009 European Association for Machine Translation.

information in the form of grammatical structures.

There are mainly two possibilities, in the form of

linguistically motivated grammars (e.g. (Marcu et

al., 2006)) or just formal grammars, which do not

need to have a linguistic equivalent (e.g. (Chiang,

2005)).

These more expressive models have associated

a more difficult search problem, which normally

involves a parsing process (usually a variation of

the CYK algorithm) while incorporating the trans-

lation information. The inclusion of language

model (LM) information replicates nodes in the

parsing tree, which increases the cost of the gen-

eration process. And not to be underestimated, the

number of rules the system has to deal with can be

of one order of magnitude bigger than the standard

phrase-based approach, depending on the model1.

Therefore, new, efficient algorithms for trans-

lation with these richer models had to be devel-

oped. In this paper we will concentrate on the cube

growing algorithm (Huang and Chiang, 2007), a

lazy version of the cube pruning algorithm (Chi-

ang, 2007). These algorithms represent the search

space as an hypergraph and add language model

scores as necessary.

The most time-consuming operation in the

translation process is the LM score computation,

especially when huge LMs are used. The cube

growing algorithm follows an on-demand com-

putation strategy and tries to minimize the num-

ber of LM scores that need to be computed. In

order to minimize the number of search errors,

while still maintaining computational efficiency,

the algorithm depends on an (efficient) heuristic

for these LM costs, which is only scarcely dis-

1Note that most of these models do not discard the (majority
of) standard phrases, instead they add new rules to the phrase
inventory.

242

cussed in the original paper.

In this work we investigate the originally pro-

posed heuristic in terms of translation quality and

computational cost and propose a new heuristic,

which maintains translation performance while re-

ducing memory requirements at no computation

time expense. The main idea is to cluster the words

in the target language into a reduced number of

classes and to compute an optimistic LM score

on these classes, a concept similar to the one pre-

sented in (Petrov et al., 2008). We focus our atten-

tion on the hierarchical phrase-based model pro-

posed in (Chiang, 2007), but our findings may as

well be applicable to other translation models.

This paper is structured as follows. Section 2

reviews the hierarchical phrase-based approach to

SMT and Section 3 the cube growing algorithm.

In Section 4 we present the requirements for the

heuristics to be used in this algorithm. Section 5

presents our new heuristic. Experimental results

are presented in Section 6 and discussed in Sec-

tion 7. The paper concludes in Section 8.

2 The Hierarchical Phrase Based

Approach

The hierarchical phrase-based approach can be

considered as an extension of the standard phrase-

based model. In this model we allow the phrases to

have “gaps”, i.e. we allow non-contiguous parts of

the source sentence to be translated into possibly

non-contiguous parts of the target sentence. The

model can be formalized as a synchronous context-

free grammar (Chiang, 2007). The bilingual rules

are of the form

X → 〈γ, α,∼〉 , (1)

where X is a non-terminal, γ and α are strings

of terminals and non-terminals, and ∼ is a one-to-

one correspondence between the non-terminals of

α and γ.

Two examples of this kind of rules for the

German-to-English translation direction are

X → 〈ich habe X∼0 gesehen, I have seen X∼0〉

X → 〈im X∼0 zu X∼1, in order to X∼1X∼0〉

where the indices in the non-terminals represent

the correspondence between source and target

“gaps”. This model has the additional advantage

that reordering is integrated as part of the model

itself, as can be seen in the above examples.

A

B C

u v w

S → AB

A→ u

B → vw

Figure 1: Example of an hypergraph correspond-

ing to a grammar derivation. The hypergraph cor-

responds to the derivation of the string uvw using

the grammar shown on the right.

The first step in the hierarchical phrase extrac-

tion is the same as for the phrased-based model.

Having a set of initial phrases, we search for

phrases which contain other smaller sub-phrases

and produce a new phrase with gaps. In our sys-

tem, we restricted the number of non-terminals for

each hierarchical phrase to a maximum of two,

which were also not allowed to be adjacent in the

source side, and the gaps were allowed to have

a maximum size of 10 words. The scores of the

phrases are computed as relative frequencies.

3 The Cube Growing Algorithm

Starting point for the cube growing algorithm is a

representation of the parsing space by means of an

hypergraph. An hypergraph is an extension of the

standard graph concept, where each (hyper-)node

can have more than one predecessor. The hyper-

edges have thus an arity, which indicates the num-

ber of predecessors of the goal node. An exam-

ple visualization of a simple derivation is shown in

Figure 3. In our case the hypergraph is generated

applying the CYK+ algorithm (Chappelier and Ra-

jman, 1998) on the source sentence.

In the following, an informal description of the

cube growing algorithm will be given, stressing the

usage of heuristic function for the LM score com-

putation. For a full detailed description, the reader

is advised to consult (Huang and Chiang, 2007).

In our description we will use the terms deriva-

tion and translation interchangeably. Remember

that the hierarchical model is represented as a par-

allel grammar. Therefore, given a derivation of the

source sentence, we can construct a corresponding

derivation in the target language and thus obtain

a translation. It is true that the same translation

243

(considered only at the word level) may arise from

different source derivations. However, a strict dis-

tinction is not necessary in this context and would

only clutter the text.

We will consider cost minimization in the fol-

lowing exposition, i.e. the best derivation is the

one with a minimum cost, and costs are combined

by adding them. The main procedure of the cube

growing algorithm finds the n-th best derivation

of a given node in an hypergraph. In order to do

this, it recursively calls itself on the predecessor

nodes, computing the necessary subderivations on

demand. E.g. assume that the 10-th best deriva-

tion of an hypernode is formed by combining the

2nd-best and the 4-th best derivation of two prede-

cessor hypernodes. In this case, only those 2 and

4 derivations of the predecessor nodes would have

been computed2.

If no LM score is taken into account, this com-

putation can be carried out in an exact way. The

different translation alternatives for one hyper-

edge can be sorted according to their costs. The

derivations in the hypernodes with no predecessors

(purely lexical rules), can thus be generated in a

monotonic way. This allows, with a proper combi-

nation strategy, to generate the derivations in every

hypernode in a cost-increasing order.

When including the LM score, however, the sit-

uation is different. The costs of the derivation are

no longer simply the sum of the corresponding

derivations in the predecessor hypernodes plus the

cost of the grammar rule. Now we have to add the

cost of the language model computed on the asso-

ciated target language parts. The language model

score is called a combination cost, as it is a cost

that affects the combination of hypernodes. This

score is costly to compute and dependent on all

elements participating in the combination (prede-

cessor hypernodes and translation rule). The ef-

fect of this is that the sorting strategy referred to

above cannot longer guarantee that the generation

of the derivations in an hypernode will proceed in

a monotonic order.

In order to overcome this problem, we store the

generated derivations in an intermediate buffer and

we will only extract them from this buffer when we

are confident that no better derivation can be found

for the given hypernode. In the original paper it is

shown that, if one can define an heuristic for the

2By comparison, the cube pruning algorithm computes a fixed
number of derivations at each hypernode.

LM costs along an hyperedge, this technique will

generate an exact n-best list of derivations.

The original paper proposes to compute an n-

best list of translations without taking into account

the LM scores, a so-called “-LM” parse (possi-

bly taking into account recombination of hypothe-

ses). Afterwards they compute the LM scores of

these n-best derivations, and use these scores as

the heuristic for the hyperedges involved in these

derivations. The motivation behind this approach

is that in the -LM pass, we will compute a hope-

fully representative portion of the needed deriva-

tions and thus, the best of these scores should act

as an heuristic for the hyperedge. Note however,

that there is no guarantee that the explored space

will be big enough. If when taking the LM into ac-

count (the “+LM” parse) we need the heuristic for

a hyperedge which was not computed in the -LM

pass, we just take the LM score of the first-best

derivation for this hyperedge.

Note that there is also an additional parameter

for controlling the computational cost by limiting

the number of derivation to be taken into account,

i.e. the size of the intermediate buffer. This pa-

rameter can also have an effect when counteracting

ill-formed heuristics.

4 Heuristic requirements

In order for the algorithm not to produce search

errors, the heuristic must be optimistic (also called

“acceptable”), that is, the costs given by the heuris-

tic must be less than the actual cost. If this can be

guaranteed, it can be shown that the search algo-

rithm does not produce any search errors.

Another key issue for practical application is the

necessity that the heuristic computation must be

efficient. If too much time is spent on comput-

ing the heuristic, the gains of the lazy evaluation

can be overcome by this computation time. In the

extreme case, we could compute the LM cost of

all possible combination at each hypernode, which

will lead to an optimal heuristic. Of course this

computation would be much more costly than the

actual search using the cube growing algorithm.

In the case of the -LM heuristic, we can not

guarantee its acceptability, as we cannot show that

the hyperedges used in the -LM n-best computa-

tion will be reused in the +LM parse. In fact, the

translations produced without language model dif-

fer much from the ones when the language model

is taken into account, therefore it is not clear the

244

adequacy of this heuristic. The efficiency can be

controlled by varying the size of the n-best list,

however small values of n can increase the risk of

inappropriate heuristic values.

5 Coarse LM Heuristic

In this section we propose a new heuristic for the

score computation of the members of the interme-

diate buffer. We first recall that, given an n-gram

language model, the score of a word w given its

context h (also called history) is given by the ex-

pression (Kneser and Ney, 1995)

p(w|h) =

{

α(w|h) if N(h,w) > 0

γ(h)α(w|h) if N(h,w) = 0
(2)

where N(h,w) corresponds to the word-history

count in the training corpus, α(w|h) is the (dis-

counted) relative frequency of the word-history

pair, γ(h) is a back-off weight, which also ensures

a proper normalization of the probability distribu-

tion and h is a generalized history, that is, h with

the last word dropped.

Now assume we have a mapping C from our

target vocabulary V into a set of classes K,

with |K| ≪ |V |

C : V → K

w $→ Cw
(3)

We can extend the mapping to a sequence of

words wN
1

just by concatenating the mappings of

the individual words, i.e. C
wN
1

= Cw1 . . . CwN .

Given this mapping we now define our heuristic

by taking the maximum LM probability associated

with the words that get mapped to the same class.

More formally, define the following functions cor-

responding to the quantities α and γ of equation 2

αH(w|h) = max
w

′
:C
w′=Cw

h
′
:C
h′=Ch

{

α(w′|h′)
}

(4)

γH(h) = max
h′:C

h′=Ch

{

γ(h′)
}

(5)

and the resulting heuristic

H(w|h) =

{

αH(w|h) if N(Cw|Ch) > 0

γH(h)αH(w|h) if N(Cw|Ch) = 0
(6)

The parameters of this heuristic function can be

computed offline before the actual translation pro-

cess and are stored in ARPA-format, like a nor-

mal LM. This allows the reuse of the existing code

for handling language models.

Note that H(w|h) does not define a probability

distribution any more, as it is not normalized. This

poses no problem, as we are looking for an up-

per bound of the language model probabilities, and

these do not need to form a probability distribution

themselves.

This heuristic value is computed for the deriva-

tions as they are being produced, and it gets up-

dated in the corresponding hyperedge. The moti-

vation for this heuristic is that the expected simi-

larity of the words which can be produced by the

translation rules associated with an hyperedge and

the contexts in this hyperedge can be captured with

the given classes, and thus this optimistic language

model score is able to predict future LM scores.

One could also think of a, at least at first glance,

more straightforward approach. Given the map-

ping of words into classes, we could compute the

mapping of the data used for training the language

model, and then train a new language model on

this data. This approach, however, has a big draw-

back for the usage as an heuristic. If a new lan-

guage model is trained, the probabilities associated

with it are in a completely different range, due to

the reduced vocabulary size. Therefore the newly

trained language model does not give enough in-

formation about the original language model.

5.1 Acceptability

Is this heuristic optimistic (and thus acceptable)?

Taking into account the derivations for which we

compute the heuristic, in most of the cases it is.

This is because we take the maximum of every

term involved in Equation 2. Note however, that

the conditions in the case distinction have changed.

In particular we move from testing the presence

of a word-history pair to the presence of the cor-

responding classes. As the classes are more gen-

eral than the words it can be the case that for some

combination we use the event-seen case (first line

in the case distinction of Equations 2 and 6) in-

stead of the backoff case used when considering

the words themselves. In practice, the probability

of the event-seen case is expected to be higher, but

we can not guarantee it.

Another source of discrepancy arises from the

term γ(h) (and the corresponding γH(h)) and un-

seen histories h. Again, it can happen that in con-

sidering Ch we shift from an unseen to a seen event.

Depending on the definition of the γ function this

can have issues on the acceptability of the heuristic

245

function. In our concrete case, we train our mod-

els using Kneser-Ney smoothing (Kneser and Ney,

1995) and use the SRI toolkit (Stolcke, 2002) for

our implementation. Under this conditions, for un-

seen histories, γ(h) = 1 (or gets a cost of 0, in the

negative log-probability space). That means that

when Ch has been seen, our heuristic will again

not be acceptable. This, however, does not seem to

have a big negative effect on the results.

The generalization on other hypotheses along

the same hyperedge cannot be guaranteed, but ex-

periments on this respect are presented on Sec-

tion 7.

With respect to efficiency, this heuristic intro-

duces a new language model into the translation

process. However, the size of this language model

is quite small, especially when compared with the

full language model used in search, and thus the

overhead of the additional LM computations is

small. On the other side, when compared with

the original heuristic, we eliminate the need of the

-LM pass altogether.

5.2 Choosing the Classes

There is still the open question of how to choose

the word-to-class mapping C. In our case we inves-

tigated two alternatives. The first one is to use au-

tomatically generated classes. We used the mkcls

tool (Och, 1999), which uses a maximum likeli-

hood approach on a corpus by using a class bigram

decomposition. This tool is widely used as part

of the preprocessing steps when training statistical

alignments using the GIZA++ tool (Och and Ney,

2003). This criterion seems to be adequate for our

task, as both the words themselves and the context

are taken into account.

Another possibility would be to use Part-of-

Speech tags as word classes. The tagging itself

can, however, be an expensive process, involving

a new search in itself. We applied a simplifying

assumption, in which we remove the ambiguity of

the tagging. We applied a full POS-tagger (Brants,

2000) to the training corpora and then we simply

selected the most frequent POS tag for each word.

In this way we defined our mapping C.

6 Experimental Results

Experiments are reported using the 2008 WMT

evaluation data (Callison-Burch et al., 2008), for

the German-to-English translation direction. This

corpus consists of the speeches held in the plenary

session of the European Parliament. The test data

was the in-domain data used in the evaluation. The

statistics of the corpus can be seen in Table 1.

Figure 2 shows the results for the -LM heuris-

tic3. The BLEU score is shown in Figure 2(a). The

best results are achieved with a -LM n-best size

of 200. The difference in performance, however

is not too big and nearly optimal results can al-

ready be achieved with a -LM n-best size of 50.

When looking into the computational resources

the difference, however, becomes critical. Fig-

ure 2(b) shows the memory usage dependent on

the -LM n-best size. We can see that the mem-

ory requirements grow nearly linearly with the size

of the n-best list (which is to be expected). The

memory requirements using a -LM 50-best list is

around 1.6GB. When using the 200-best list for op-

timal performance the memory requirements grow

up to 6.5GB. For n-best sizes greater then 400, the

memory requirements become prohibitive for the

majority of current computers.

Computation time requirements are shown in

Figure 2(c), as the average time needed for trans-

lating a sentence. The time requirements also grow

with increasing -LM n-best size, but they stay

quite reasonable, with a maximum of 6.5s per sen-

tence. For optimum performance (200-best list),

5.2s per sentence are needed, for a 50-best heuris-

tic, 4.3s. All time measures were taken on ma-

chines equipped with Quad-Core AMD Opteron

processors, with a clock speed of 2.2GHz.

The results for the coarse LM heuristic are show

in Figure 3. It can be seen that the performance

of the system using this heuristic is comparable

or even slightly superior in the best case, however

only marginally so. The behaviour of this heuris-

tic is somewhat more erratic than in -LM case.

Memory requirements are shown in Figure 3(b).

The memory requirements using the coarse LM

heuristic are much lower than when using the -LM

heuristic (note the different scale on the y-axis be-

tween Figures 2(b) and 3(b)), and they get less as

the number of classes increases.

Time requirements are shown in Figure 3(c)

and are in general lower than for the case of -

LM heuristics, except for very small values of n,

where the translation performance suffers severely.

The time requirements also show an erratic be-

haviour. However, different workloads of the ma-

3Note that in our implementation we used hypothesis recom-
bination also in the -LM pass

246

Training set Test set

German English German English

Sentences 1,266,520 2,000

Words 33 404 503 35 259 758 56 624 60 185

Distinct words 301 006 96 802 8 844 6 050

Table 1: Corpora statistics

 25

 25.2

 25.4

 25.6

 25.8

 26

 26.2

 0 50 100 150 200 250 300 350 400

B
LE

U

-LM n-best size

(a) BLEU score

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

M
em

or
y

(G
B

)

-LM n-best size

(b) Memory

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 50 100 150 200 250 300 350 400

T
im

e
(s

)

-LM n-best size

(c) Time per sentence

Figure 2: Results using the -LM heuristic

 25

 25.2

 25.4

 25.6

 25.8

 26

 26.2

 0 50 100 150 200 250 300 350 400

B
LE

U

Classes

(a) BLEU score

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0 50 100 150 200 250 300 350 400

M
em

or
y

(G
B

)

Classes

(b) Memory

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 50 100 150 200 250 300 350 400

T
im

e
(s

)

Classes

(c) Time per sentence

Figure 3: Results using the coarse LM heuristic

247

chines at experimentation time probably had a

non-negligible effect on these measurements.

Using POS as classes does not seem to improve

performance. It achieves a BLEU score of 25.9%,

and the memory and time requirements are com-

parable with those of the equivalent number of au-

tomatic classes (we work with 41 POS classes).

7 Discussion

The behaviour of the -LM heuristic was expected.

The increase in memory and time requirements is

due to the increase effort in generating the -LM n-

best lists. This does not imply an increase in trans-

lation quality, as, probably, the new hyperedges

that get considered in the heuristic computation do

not get used in the actual translation process.

Figure 4 shows how many times the -LM heuris-

tic was not acceptable, computed for the first 100

sentences of the test corpus. As expected, this

number decreases as the size of the n-best list in-

creases, but starting from a value of around 100

the rate of decrease of failed heuristics is much

lower. This explains the behaviour of the BLEU

score shown in Figure 2(a).

The coarse-LM heuristic already achieves a

good performance even for a small number of

classes. This heuristic is able to simplify the LM

computation scores and guide the parsing process

in an efficient manner. This is consistent with the

findings of (Petrov et al., 2008), albeit in a slightly

different context (Petrov et al. used the coarse LM

for pruning purposes).

This observation can be confirmed in Figure 5,

where the coarse heuristic produces much less

heuristic failures as the -LM heuristic. Some-

what counter-intuitively, however, the number of

LM heuristic fails increases with the number of

classes. This can be explained by the fact, that,

in spite of the chances of incurring into one of the

failure cases exposed in Section 5.1 grow when

considering a small amount of classes, the maxi-

mum probability induced by the mapping C also is

greater as the number of classes diminishes. This

can be clearly seen by considering only one class.

In spite of certainly incurring in one of the “fail”

cases, we certainly will get an optimistic estima-

tion of the LM score. In this way, a small number

of classes does not provide so good information

to accurately discriminate between the candidate

derivations, which explains the higher cost with a

small number of classes. In this case, the abso-

 70000

 75000

 80000

 85000

 90000

 95000

 0 20 40 60 80 100 120 140 160 180 200

F
ai

ls

-LM n-best size

Figure 4: -LM heuristic fails.

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400

F
ai

ls

Classes

Figure 5: Coarse LM heuristic fails.

lute bound on the number of candidates pointed to

at the end of Section 3 has a higher probability of

coming into effect.

An increase in the number of classes reduces

the memory and time requirements, which is an

indication that the search effort gets more fo-

cused. This is not reflected in an increase in BLEU

score. The behaviour of the BLEU curve is how-

ever somewhat erratic and, nevertheless stays on a

range of 0.2%, so no clear conclusion can be drawn

from that. Of course, an increase in the number

of classes also implies an increase in the lookup

time (but with sizes up to 400, as we have done in

this paper, this is negligible). This also involves an

increase in (offline) computation time for cluster-

ing the words. In our experiments we selected the

maximum number of classes that we could com-

pute in 24 hours4.

4However on some less powerful computers as the ones the
translation experiments were carried on

248

8 Conclusions

In this paper we have studied the language model

heuristic proposed by (Huang and Chiang, 2007)

where they describe the cube growing algorithm.

We have analysed the performance and efficiency

when varying the size of the n-best list required

for the heuristic computation. We have proposed

a new heuristic, based on taking the maximum

of the LM scores which achieves the same (or

marginally better) performance but using signifi-

cant less memory and with improvements in run-

ning time.

We just tried two approaches to word cluster-

ing, the automatic one implemented by the well-

known tool mkcls and the one based on POS

classes. Although no big difference in perfor-

mance or efficiency could be found between these

two word clusterings, perhaps a smarter and more

task-directed clustering criterion can further im-

prove the results. Specially, a bilingual word clus-

tering algorithm, where both the source and target

language words are taken into account, will prob-

ably provide better performance, as the similarity

between the words that may occur as translations

along an hyperedge may be better modelled.

Acknowledgements

This work was realised as part of the Quaero Pro-

gramme, funded by OSEO, French State agency

for innovation.

This material is based upon work supported by

the Defense Advanced Research Projects Agency

(DARPA) under Contract No. HR0011-06-C-

0023. Any opinions, findings and conclusions or

recommendations expressed in this material are

those of the authors and do not necessarily re-

flect the views of the Defense Advanced Research

Projects Agency (DARPA).

References

Brants, Thorsten. 2000. Tnt – a statistical part-of-
speech tagger. In Proceedings of the 6th Applied
Natural Language Processing Conference (ANLP),
pages 224–231, Seattle, WA.

Callison-Burch, Chris, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2008.
Further meta-evaluation of machine translation. In
Proceedings of the Third Workshop on Statisti-
cal Machine Translation, pages 70–106, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Chappelier, JC and M. Rajman. 1998. A generalized
CYK algorithm for parsing stochastic CFG. In First
Workshop on Tabulation in Parsing and Deduction
(TAPD98), pages 133–137.

Chiang, D. 2005. A Hierarchical Phrase-Based Model
for Statistical Machine Translation. Ann Arbor, 100.

Chiang, D. 2007. Hierarchical Phrase-Based Transla-
tion. Computational Linguistics, 33(2):201–228.

Huang, L. and D. Chiang. 2007. Forest Rescoring:
Faster Decoding with Integrated Language Models.
In ANNUAL MEETING-ASSOCIATION FOR COM-
PUTATIONAL LINGUISTICS, volume 45, page 144.

Kneser, R. and H. Ney. 1995. Improved backing-off for
M-gram language modeling. In Acoustics, Speech,
and Signal Processing, 1995. ICASSP-95., 1995 In-
ternational Conference on, volume 1.

Koehn, P. 2004. Pharaoh: a beam search decoder for
phrase-based statistical machine translation models.
Washington DC.

Marcu, D., W. Wang, A. Echihabi, and K. Knight.
2006. SPMT: Statistical machine translation with
syntactified target language phrases. Proceedings of
EMNLP, pages 44–52.

Och, Franz Josef and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Och, F.J. 1999. An efficient method for determining
bilingual word classes. In EACL99: Ninth Conf. of
the Europ. Chapter of the Association for Computa-
tional Linguistics, pages 71–76.

Petrov, Slav, Aria Haghighi, and Dan Klein. 2008.
Coarse-to-fine syntactic machine translation us-
ing language projections. In Proceedings of the
2008 Conference on Empirical Methods in Nat-
ural Language Processing, pages 108–116, Hon-
olulu, Hawaii, October. Association for Computa-
tional Linguistics.

Stolcke, A. 2002. SRILM-an Extensible Language
Modeling Toolkit. In Seventh International Confer-
ence on Spoken Language Processing. ISCA.

249

