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Abstract

We announce the public availability of the RWTH Aachen Uni-
versity speech recognition toolkit. The toolkit includes state of
the art speech recognition technology for acoustic model train-
ing and decoding. Speaker adaptation, speaker adaptive train-
ing, unsupervised training, a finite state automata library, and an
efficient tree search decoder are notable components. Compre-
hensive documentation, example setups for training and recog-
nition, and a tutorial are provided to support newcomers.
Index Terms: speech recognition, LVCSR, software

1. Introduction
The interest in speech recognition technology has grown over
the last years. For researchers it requires a lot of effort to de-
velop a speech recognition system from scratch, which impedes
innovations. Publicly available toolkits, often published under
an open source license, facilitate the introduction to research
in this area. A couple of open source system are available, for
example the HTK Toolkit [1], Sphinx-4 [2], and Julius [3].

Our speech recognition system has been designed for the
special requirements of research applications. On the one hand
it should be very flexible, to allow for rapid integration of new
methods, and on the other hand it has to be efficient, so that new
methods can be studied on real-life tasks in reasonable time and
system tuning is feasible. The flexibility is achieved by a mod-
ular design, where most components are decoupled from each
other and can be replaced at runtime. The API is subdivided
into several modules and allows for an integration of (high and
low level) methods in external applications.

The applicability of our toolkit to real-life tasks has been
proven by building several large vocabulary systems in re-
cent international research projects. The European English and
Spanish recognition systems developed during the TC-STAR
Project are based on our RWTH ASR toolkit [4]. These two
systems achieved the best results in the 2007 TC-STAR Evalu-
ation Campaign. Other challenging tasks, like building compet-
itive recognition systems in the GALE project with very large
vocabulary for Arabic [5] or acoustic model training with thou-
sands of hours of speech data for a Chinese recognizer [6], have
been fulfilled successfully.

A good example for the flexibility of our toolkit is the ex-
peditious development of systems for continuous sign language
recognition using video input [7] and for handwriting recogni-
tion [8]. Only the feature extraction had to be replaced to adapt
the system to these tasks.

An important aspect for developing a system for a large vo-
cabulary task is the support for grid-computing. Nearly all pro-
cessing steps for acoustic model training and decoding can be
distributed in a cluster computer environment. The paralleliza-
tion scales very well, because we divide the computations on
the segment level, which requires synchronization only at the
end of the computation.

The toolkit is available for download on our website1. We
publish our toolkit under an open source license, called “RWTH
ASR License”, which is derived from the Q Public License
v1.0 This license grants free usage including re-distribution and
modification for non-commercial use. Publications of results
obtained through the use of original or modified versions of the
software have to cite this paper.

In the remainder of this paper we describe the individual
parts of the framework. First we depict the acoustic front-end
and the used models. Then we present the decoder and the
finite-state automata library and finally the documentation and
supplementary materials.

2. Signal Analysis
Methods for signal analysis are implemented in a generic frame-
work, called Flow, which is described in the next section. The
predefined acoustic features computed using this framework are
defined in the following section.

2.1. Flow Networks

The Flow module offers a generic framework for data process-
ing. The data flow is modeled by links connecting several nodes
to a network. Each node performs some type of data manipula-
tion including loading, storing, and caching of data.

The networks are created at runtime based on a network
definition in XML documents, which makes it possible to im-
plement or modify data processing tasks without modifying and
re-compiling the software.

Flow networks are used to compute acoustic features as
well as to generate and process dynamic time alignments, i.e.
mappings from acoustic features to HMM states. Using a
caching mechanism, which is also implemented as a node,
acoustic features and alignments can be re-used in processing
steps requiring multiple iterations.

2.2. Acoustic Features

The basic nodes in a Flow network implement the reading of
waveforms from audio files, computing an FFT, miscellaneous
vector operations, and different types of signal normalization.
The networks included in the toolkit compute MFCC features
and a voicing feature. The voicing feature expresses the voiced-
ness of a time frame by detecting the quasi periodic oscillation
of the vocal chords [9].

Temporal context can be incorporated by using derivatives
of the acoustic features. Another method, commonly used in
our systems, is to use a linear discriminant analysis for this pur-
pose. Therefore, consecutive feature vectors in a sliding win-
dow are concatenated and projected to a lower dimension [10].

The flexibility of the Flow module allows for an easy im-
plementation of other acoustic features and for the integration
of externally computed features.
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Figure 1: Example setups for acoustic model training (from scratch) and recognition.

3. Acoustic Modeling

The acoustic model consists of the transition, the emission, and
the pronunciation model. The pronunciation model gives for
each word in the vocabulary a list of pronunciations together
with a probability of the occurrence. A pronunciation is mod-
elled by a sequence of context dependent phonemes. In the
current version, the context is limited to triphones, including
context across words.

The toolkit supports strict left-to-right HMM topologies,
each representing a context dependent phoneme. Except for si-
lence, which is modeled by a single state, all HMMs consist of
the same number of states. The transition model implements
loop, forward, and skip transitions. The existing toolkit sup-
ports a global transition model which distinguishes only the si-
lence state. Transitions leaving a word are penalized with an
extra cost, the word penalty.

The emission probability of an HMM state is represented by
a Gaussian mixture model (GMM). By default, globally pooled
variances are used. However, several other tying schemes, in-
cluding density-specific diagonal covariance matrices are sup-
ported. Figure 1 provides an overview on the estimation of
GMMs and the interaction with the training of the other acoustic
components like LDA or CART.

3.1. State Tying: Phonetic Decision Trees

The toolkit supports three methods for state tying. The mono-
phone tying assigns all triphones which share the same central
phoneme to the same Gaussian mixture. This is usually used for
initializing the acoustic model training. The look-up table mode
allows to define a state tying using external tools which is stored
in a simple text format. Alternatively, the built-in classification
and regression tree (CART) training can be used to estimate a
phonetic decision tree [11].

The configuration of the CART training is flexible and sup-
ports a variety of phonetic decision tree based tyings. For ex-
ample, English systems usually perform best when estimating
a separate tree for each combination of central phoneme and
HMM state. On the other hand, languages like Mandarin bene-
fit from applying a less strict separation. Both and more config-
urations are supported by the CART estimation tool.

3.2. Confidence Scores

In the speech decoding process different dynamic pruning meth-
ods are applied to restrict the set of competing word sequences.
This set can be efficiently represented by a lattice (c.f. Sec-
tion 5). Using the forward-backward algorithm, we efficiently
compute the relation between the competing hypotheses by es-
timating the lattice link posterior probabilities [12]. Depending
on the lattice link labels and the structure of the lattice it is pos-
sible to compute confidence scores for different units, e.g. word,
pronunciation, or HMM state confidence scores.

For the unsupervised refinement or re-estimation of the
acoustic model parameters (unsupervised training) the toolkit
supports the generation and processing of confidence weighted
state alignments. Confidence thresholding on state level is sup-
ported for unsupervised training as well as for unsupervised
adaptation methods. The toolkit supports different types of state
confidence scores, all described in [13]. The emission model
can be re-estimated based on the automatically annotated ob-
servations and their assigned confidence weights, as presented
in [14].

3.3. Speaker Normalization and Adaptation

For state of the art performance in large vocabulary continuous
speech recognition, speaker normalization and adaptation are
required. The toolkit supports three different methods: Vocal
tract length normalization (VTLN) [15, 16], maximum likeli-
hood linear regression (MLLR) [17], and feature space MLLR
(fMLLR) (also known as constrained MLLR, CMLLR) [18].

VTLN is a speaker normalization technique aimed at com-
pensating for systematic differences in formant position be-
tween different speakers, due to different vocal tract length. For
the toolkit, a VTLN is implemented as a parametric linear warp-
ing of the MFCC filter bank, as described in [15]. The param-
eter is estimated using maximum likelihood. Support for one
pass, or so called fast VTLN [16], is also included, in the form
of support for choosing the warping factor using a Gaussian
mixture model classifier.

The fMLLR consists of normalizing the acoustic features
by the use of a maximum likelihood estimated affine transform,
as described in [18]. As an extension, the estimation of dimen-
sion reducing affine transforms, as described in [19], is sup-
ported.



Both VTLN and fMLLR are implemented in the feature ex-
traction front-end, allowing for use in both recognition and in
training, thus supporting speaker adaptive training.

Finally, Maximum Likelihood Linear Regression (MLLR)
[17] is supported, which is applying affine transforms to the
means of the acoustic model. A regression class tree approach
[20] is used to adjust the number of regression classes to the
amount of adaptation data available. As a variation, it is pos-
sible to do adaptation using only the offset part (and not the
matrix part) of the affine transform.

All the adaptation methods can be utilized both for unsu-
pervised and supervised adaptation. Both fMLLR and MLLR
estimation can make use of weighted observations, as produced
by the confidence measures described in the previous section,
allowing for confidence based unsupervised adaptation.

4. Language Modeling

The toolkit does not include tools for the estimation of language
models. However, the decoder supports N-gram language mod-
els in the ARPA format, produced e.g. by the SRI Language
Modeling Toolkit [21]. The order of the language model is not
limited by the decoder. Class language models, defined on word
classes instead of words, are supported as well. Alternatively, a
weighted finite state automaton representing a (weighted) gram-
mar can be used.

5. Decoder

The decoder included in our toolkit is based on the word con-
ditioned tree search [22]. Word conditioned tree search is a
one-pass dynamic programming algorithm which uses a pre-
compiled lexical prefix tree as representation of the pronuncia-
tion dictionary. When using a tree lexicon, the word identity is
not known until a leaf node is reached. Therefore, the language
model (LM) probability can only be applied at the word end, al-
though an early incorporation of the LM can be achieved using
LM look-ahead. To make the application of the dynamic pro-
gramming principle possible, the search space has to be struc-
tured by introducing separate copies of the lexical tree for each
preceding word sequence. The length of this word sequence de-
pends on the order of the language model used, e.g. for a bigram
language model only the direct predecessor word is required.

The search space would be too large to be constructed as a
whole, instead only the active portions are constructed dynam-
ically in combination with a beam search. The beam search
strategy retains for every time step only the most promising hy-
potheses. Hypotheses with a too low score compared to the best
state hypothesis are eliminated by acoustic pruning. The beam
width, i.e. the number of surviving hypotheses, is defined by a
threshold. Language model pruning is applied to the word start
hypotheses after applying the language model, which limits the
number of active tree copies. In addition, histogram pruning
restricts the absolute number of active hypotheses.

The acoustic pruning can be refined by incorporating the
language model probabilities as early as possible using a lan-
guage model look-ahead [23]. The anticipated language model
probability for a certain state in the tree is approximated by the
best word end reachable. This probability is incorporated in the
pruning process by combining it with the probability of the state
hypothesis.

The tree lexicon is constructed using the HMM-state se-
quences of the pronunciations of the words in the vocabulary.
By using the tied states of the (context dependent) phoneme
models, the tree size can be further reduced. For across-word
context dependent phoneme models the word beginnings and
ends have to be expanded to allow for all possible successor
phonemes [24].
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Figure 2: Recognition quality (word error rate, WER) and run-
time (real-time factor, RTF) for the EPPS English task

The decoder can also generate a word graph (also called
lattice) which is a compact representation of the set of alterna-
tive word sequences with corresponding word boundaries [25].
This word graph can be used in later processing steps. Our sys-
tem produces word graphs as finite state automata with attached
word boundaries or alternatively in the HTK standard lattice
format.

The computation of acoustic likelihoods can be optionally
accelerated by the use of SIMD instructions provided by mod-
ern processors [26]. The acoustic feature vectors as well as the
means of the Gaussian mixture models are transformed to in-
tegers using a scalar quantization. The following computations
on these quantized vectors are performed using MMX or SSE2
instructions.

5.1. Experimental Results

Using a baseline 1-pass 60k-words recognition system for the
automatic transcription of European Parliament Plenary Ses-
sions (EPPS) in English as described in [4], a recognition qual-
ity of about 15% word error rate is achievable with a real-time
factor of∼4 (see Figure 2) on the evaluation corpus of the 2007
TC-STAR Evaluation Campaign. This corpus consists of 2.9h
of speech with an out-of-vocabulary rate of 1.1%. Using further
optimization steps, including speaker adaptive training, MPE-
training (not yet included), and speaker adaptation, the word
error rate can be decreased to 10.6%.

6. Finite-state Automata

Finite-state automata are used in various applications in the field
of natural language processing, including speech recognition.
In the RWTH ASR toolkit finite-state automata are used for
several tasks. The computation of dynamic time alignments, re-
quired for acoustic model training and speaker adaptation, uses
automata for the construction and representation of the search
space. Furthermore, the word lattices generated by the speech
recognizer are represented by finite-state automata. Therefore,
the lattices generated can easily be post-processed by algo-
rithms defined on weighted finite state transducers.

Finite-state automata are handled by the included RWTH
FSA Toolkit [27], which is also available separately under an
open source license. The FSA toolkit consists of efficient im-
plementations of data structures and a wide range of well known
algorithms for creating and manipulating weighted finite-state
automata. On-demand computations can be used for increased
memory efficiency.

7. Documentation

The documentation of RWTH ASR is divided into two parts:
usage documentation and source code documentation. While
the source code documentation is helpful for extending the
software, the usage documentation is more comprehensive and
more relevant for the normal user.

The usage documentation is organized in a wiki and covers
all steps of the acoustic model training, multi-pass recognition,
and describes the common concepts of the software and the used



file formats. Emerging questions can be asked in a support fo-
rum.

For a quick introduction, we created a step-by-step recipe
for the development of a small (100 words) recognizer based on
the CMU Census Database (freely available) by the Carnegie
Mellon University. The acoustic model training includes esti-
mation of mixture models for triphones, LDA, and CART. All
needed configuration files and scripts are publicly available and
can be used for research purposes.

To demonstrate a large vocabulary system we offer the
acoustic model (triphones, 900K densities), the 4-gram lan-
guage model (7.5M multi-grams), and the pronunciation dic-
tionary (60K words) developed for our EPPS English system
together with a ready-to-use one-pass recognition setup.

8. Conclusion

We announced the release of a new open source speech recog-
nition toolkit. Using this toolkit it is possible to develop state of
the art speech recognizers. The various methods and technolo-
gies implemented can be used, exchanged, and expanded in a
very flexible way. A comprehensive documentation facilitates
the usage for novices and users of other systems.
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[19] J. Lööf, R. Schlüter, and H. Ney, “Efficient estimation of speaker-
specific projecting feature transforms,” in Proc. Int. Conf. on Spo-

ken Language Processing, Antwerp, Belgium, Aug. 2007, pp.
1557 – 1560.

[20] C. Leggetter and P. Woodland, “Flexible speaker adaptation us-
ing maximum likelihood linear regression,” in Proc. ARPA Spoken

Language Technology Workshop, Austin, TX, USA, Jan. 1995, pp.
104 – 109.

[21] A. Stolcke, “SRILM - an extensible language modeling toolkit,”
in Proc. Int. Conf. on Spoken Language Processing, Denver, CA,
USA, Sep. 2002.

[22] H. Ney and S. Ortmanns, “Progress in dynamic programming
search for LVCSR,” Proceedings of the IEEE, vol. 88, no. 8, pp.
1224–1240, Aug. 2000.

[23] S. Ortmanns and H. Ney, “Look-ahead techniques for fast beam
search,” Computer Speech and Language, vol. 14, no. 1, pp. 15–
32, Jan. 2000.

[24] A. Sixtus and H. Ney, “From within-word model search to across-
word model search in large vocabulary continuous speech recog-
nition,” Computer Speech and Language, vol. 16, no. 2, pp. 245–
271, May 2002.

[25] S. Ortmanns, H. Ney, and X. Aubert, “A word graph algorithm
for large vocabulary continuous speech recognition,” Computer

Speech and Language, vol. 11, no. 1, pp. 43–72, Jan. 1997.
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