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Abstract

In this work a script independent handwriting recognition system is proposed which is
derived from the RWTH-ASR hidden Markov model (HMM) based speech recognizer.

Most problems occurring in handwriting recognition (HWR) are induced by large
variations within the written text. In particular, different handwriting styles such as
cursive writing or long drawn-out strokes are difficult to model.

Common handwriting recognition systems use various preprocessing and feature
extraction methods to compensate for the variations in handwriting. Additional ap-
proaches have been made using writer adaptive training for writer dependent model-
ing of the variations.

This work uses another approach by dealing with these variations using explicit
background modeling, improving the visual models of the handwriting and exploiting
the character context within the script. Therefore, only simple appearance based fea-
tures and only few preprocessing steps have to be used. Instead, methods known
from handwriting recognition, such as model length estimation and discriminative
training for writer independent modeling as well as common methods from speech
recognition are applied. In addition, several approaches for improvement of continu-
ous text line recognition are made by using lexica and language models accounting
for the specialties in line recognition.

The script independence of the proposed system is demonstrated on Arabic and
Latin recognition tasks. The performance is evaluated on the IFN/ENIT database
which provides an Arabic single word recognition task. In addition, the IAM database
is chosen, providing a Latin text line recognition task. The results obtained on both
databases outperform the currently known best error rates achieved with a single
recognition system.
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Chapter 1

Introduction

HWR - as part of the optical character recognition (OCR) - is a relatively new field
of computer vision. Modern OCR had its beginnings in the year 1951 with the inven-
tion of GISMO, an optical reader which was able to read typewritten text, Morse and
musical notes by David H. Shepard. Two years later, he registered his “apparatus for
reading” as US-patent (see [Shepard 53]). HWR first appeared in the late 1960s with
the recognition of zip codes on letters or account and amount information on checks.
The computer capacity of those days was not sufficient for large scale HWR. Even
the recognition of printed text was only adequate on simplified fonts, for example the
font used on credit cards ever since.

According to [Verma & Blumenstein+ 98], today’s OCR systems are capable of rec-
ognizing typewritings in several fonts. Yet the offline HWR itself is an open topic in
research, whereas online HWR is commonly used in PDAs, tabletop PCs and even
game consoles. Online HWR uses a sorted stream of positions of the pen during the
writing (see [Tappert & Suen+ 90, Plamondon & Srihari 00, Koerich & Sabourin+ 03]),
which offers more informations than the image of the written text used in offline HWR.
Corresponding to [Bunke & Roth+ 95, Bertolami & Bunke 08], high recognition accu-
racy is still difficult to achieve in offline continuous HWR. The reason for this devel-
opment has to be seen in the high variability such as individual writing styles, the
number of different word classes and the word segmentation problem, which comes
with handwriting.

On the other hand the need fore a large scale recognition system allowing for con-
tinuous HWR is growing, since most texts and information nowadays are required to
be in digital form rather than paper based. Nonetheless, handwriting is still one of the
main approaches for people to collect and store data. Additionally, a huge amount of
text is only available in handwriting, for example, almost all historical documents or all
information gathered by forms (e.g. in surveys, administrative forms, etc).

Hence, the aim of this work is the development and evaluation of a script and writer
independent HWR system using the HMM based speech recognizer RWTH-ASR
(see [Rybach & Gollan+ 09, Lööf & Gollan+ 07]). In difference to most state of the art
HWR systems, which devote a lot of effort on the preprocessing and feature extraction
(cf. Chapter 2), only little preprocessing and simple appearance based features are
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used. The main focus of the thesis is set to context-, character-, word- and visual mod-
eling. The impact of methods derived from current literature in HWR and automatic
speech recognition will be evaluated and combined. For context modeling, classifi-
cation and regression tree (CART) is used which is well known from speech recogni-
tion (see [Beulen & Bransch+ 97]). Character and word models are improved using
model length estimation (MLE) and white space modeling which have been published
recently by [Dreuw & Jonas+ 08, Schambach 03]. Various authors have identified
the creation of statistical language models (LMs) to be a very important step in con-
tinuous HWR (e.g., see [Bunke & Bengio+ 04, Pitrelly & Roy 03, Marti & Bunke 02b,
Plamondon & Srihari 00]). Therefore, this matter is also discussed in details in this
work.

In Chapter 1 a short overview of HWR and the handwriting systems used for eval-
uation of the proposed methods is given. The remainder of this work is organized as
follows: Previous work and current achievements in HWR are presented in Chapter 2.
In Chapter 3 the theoretical background of the used system and the proposed meth-
ods for preprocessing, feature extraction and modeling are described. The databases
and corpora used for the evaluation of the methods are listed in Chapter 4. The re-
sults obtained are discussed in Chapter 5. Finally, a summarization and conclusion
of this work is given in Chapter 6.

This thesis deals with the recognition of Latin and Arabic handwriting. Since the
handwritings for both languages differ substantially and accordingly require different
approaches of HWR, a short overview of both languages and notations will be given.

1.1 Latin Handwriting

The Latin handwriting is used for Western languages and is one of the most common
handwritings worldwide. It makes use of the modern Latin alphabet, the so-called
“Arabic” or “Indian” digits, and letterpress punctuation. English handwriting, which will
be used in this work, uses the alphabet’s 26 basic characters and does not make
use of additional symbols like other European languages. Each letter can be written
in lower- and uppercase. Additionally, two styles are used, the block or capitalized
writing and the cursive writing. Therefore, four writing variants are known for each
letter. The concatenation of at last two letters, so-called “ligatures”, are theoretically
possible but seldom used in handwriting. For example, the character “&” is histori-
cally a ligature. Other ligatures, more commonly used in typewriting are displayed in
Figure 1.1. For more details on ligatures see [Neubauer 96].
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(a) ff ligature (b) fl ligature (c) fi ligature

Figure 1.1: Example ligatures used in Latin typewriting

1.2 Arabic Handwriting

Arabic handwriting differs from Latin handwriting in several ways. In contrast to En-
glish handwriting, Arabic is written from right-to-left and does not distinct between
upper- or lowercase characters. 28 basic characters with 18 different basic shapes
are used, but the appearance of a character can vary depending on its position in
a word. According to [Majidi 06] four positions are possible for most characters (for
example images see Table 1.1):

Isolated (or Alone)
The character is not connected on either side.

Initial (or Beginning)
The character starts a contiguous group of characters and is connected to the
other characters from the left.

Medial (or Middle)
The character stands within a group of contiguous characters and is connected
to other characters on both sides.

Final (or End)
The character is the last character of a contiguous group of characters and is
thus connected from the right side.

Excepted from this circumstance are six characters which cannot be connected from
the left side. Hence, a single Arabic word does not have to be a completely connected
string of characters. In contrary, most words consist of several unconnected “pieces
of Arabic word” (PAWs).

Similar to Latin handwriting it is possible to contract two or three defined characters
into a ligature (e.g., see Figure 1.2(a)). In Arabic, ligatures are more commonly used
than in Latin handwriting and they are handled as single characters. Thereby, their
appearance can also vary depending on their position within the word. Again, some
exceptions exist depending on the characters that are contracted.

Different from these normal ligatures are so-called “Chadda ligatures”. The Chadda
symbol looks like a lowercase “w” and is placed above a consonant to accentuate it.
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(a) (b)

Figure 1.2: Example ligatures used in Arabic handwriting: a) regular ligature (upper
with ligature, lower without); b) chadda ligature (upper with chadda, lower
without)

@

(a)

�
@

(b)



@

(c)

@



(d)

Figure 1.3: Examples diacritics used in Arabic handwriting: a) Alif without diacritic; b)
Alif with Hamza; c) Alif with Madda above; d) Alif with Madda below

This usually is an indicator of diacritics, optional symbols associated to one character.
But Chadda is defined to form ligatures with its corresponding character (e.g., see
Figure 1.2(b)).

Another difference between Arabic and English handwriting is the use of diacritics.
Most diacritics do not matter for the written word and are thus optional, but they are
used for the articulation of the word. Two different diacritics are commonly used (and
annotated within the database that is used for the Arabic recognition task):

Hamza A “c”-like symbol which is used to mark an unvoiced glottal sound. Hamza
can be placed above or below the character (e.g., see Figure 1.3(c) and Fig-
ure 1.3(d))

Madda A tilde, which can only be associated to the character “Alif” (except when
used in the Koran), which marks the spoken concatenation with a second, long-
spoken vocal (e.g., see Figure 1.3(b)).

An overview of the basic Arabic characters without the optional diacritics or ligatures
is given in Table 1.1.
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Table 1.1: Overview of Arabic characters (Char) and their annotation (Anno) in the
IFN/ENIT database (see Chapter 4

Name Isolated (A) Initial (B) Middle (M) Final (E)

Char Anno Char Anno Char Anno Char Anno

Alif/Alef @ aaA A� aaE
Baa H. baA �K. baB �J. � baM I. � baE
Taa �

H taA �
�
K taB �

�
J� taM �

I� taE
Thaa �

H thA �
�
K thB �

�
J� thM �

I� thE
Jiim/Jeem h. jaA �k. jaB �j. � jaM i. � jaE

Haa h haA �k haB �j� haM i� haE

Khaa p khA �
	

k khB �
	

j� khM q� khE

Daal X daA Y� dae
Dhaal/Thaal 	

X dhA
	
Y� dhE

Raa P raA Q� raE
Zaay 	P zaA 	Q� zaE
Siin/Seen � seA �� seB ��� seM �� seE
Shiin/Sheen �

� shA �
�

� shB �
�

�� shM �
�� shE

Saad � saA �� saB ��� saM �� saE
Daad/Shaad 	

� deA �
	

� deB �
	

�� deM 	
�� deE

Taa/Tta   toA �£ toB �¢� toM ¡� toE
Dhaa/Dthaa 	

  zaA �
	

£ zaB �
	

¢� zaM 	
¡� zaE

Ayn/Ain ¨ ayA �« ayB �ª� ayM ©� ayE

Ayn/Ain
	

¨ ghA �
	
« ghB �

	
ª� ghM 	

©� ghE

Faa
	

¬ faA �
	
¯ faB �

	
®� faM 	

­� faE
Qaaf/Qaf �

� kaA �
�
¯ kaB �

�
®� kaM �

�� kaE
Kaaf/Kaf ¼ keA �» keB �º� keM ½� keE
Laam/Lam È laA �Ë laB �Ê� laM É� laE
Miim/Mem Ð maA �Ó maB �Ò� maM Ñ� maE
Nuun/Noon 	

à naA �
	
K naB �

	
J� naM 	á� naE

Haa è heA �ë heB �ê� heM é� heE
Waaw/Wow ð waA ñ� waE
Yaa/Yeh ø eeA ù� eeE
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Chapter 2

State of the Art in Handwriting
Recognition

Current research in HWR mainly follows two different basic approaches which will be
discussed in this chapter. The first approach recognizes isolated characters or digits.
Therefore, when dealing with non-isolated characters, for example in words or text,
the data has to be segmented beforehand. The origin of this method has to be seen
in the beginning of HWR when the input images contained only one single symbol.

The second approach uses a continuous recognition, meaning that beginning or
ending of each character can be hypothesized at every position. This approach is
widely used by HMM based recognizers, one of which is described in detail in Chap-
ter 3.

The remainder of this chapter is organized as follows: Section 2.1 gives a brief
overview of techniques used for isolated character or digit recognition, while Sec-
tion 2.2 describes methods on preprocessing, feature extraction, modeling and de-
coding currently used in HMM based HWR systems.

2.1 Isolated Character or Digit Recognition

The task to be performed when dealing with isolated character or digit recognition
is the classification of one input date as a character or digit. The recognition is per-
formed, using one or several classifiers. A naive approach to the recognition of an im-
age containing a single symbol is the nearest neighbour (NN) or k-NN approach (see
[Keysers & Dahmen+ 00, Keysers & Deselaers+ 07]). More sophisticated algorithms
which achieve better results than the naive NN are artificial neural networks (NNs)
and support vector machines (SVMs) (for details on both see [Duda & Hart+ 01]) as
introduced by [Lee 96], and [Srihari 93]. A more comprehensive comparison of cur-
rent techniques is, for example, given by [Keysers 07], and [Aburas & Gumah 08].

The recognition of isolated characters can be extended to text recognition by first
segmenting the input image into characters or pieces of a character. Thereafter, an
isolated character recognition is performed on these segments. The difficulty of this
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approach is the segmentation step, as it is essential for the recognition results (see
[Koerich & Sabourin+ 03]).

The recognition of isolated characters or digits is not part of this thesis. Hence, this
brief overview of such recognition methods shall suffice.

2.2 Continuous Word Recognition

Contrary to the isolated recognition, the continuous recognition does not require a
segmented input image. Most of the common recognition systems are HMM based
allowing for an hypothesization of the character and word boundaries at every po-
sition in the input image (see [Pechwitz & Märgner 03, Alma’adeed & Higgens+ 02,
Lorigo & Govindaraju 06, Märgner & Abed 07]). The most likely hypothesis is chosen
in an optimization step together with the recognized characters. This process is de-
scribed in more detail in Chapter 3. The task of continuous word recognition is to
recognize an unknown number of words within one input sample.

According to [Bertolami & Bunke 08], current systems are able to achieve recog-
nition rates between 50% and 80% depending on the recognition setup. Possible
setups are, for example, line or sentence recognition. The former setup deals with
the recognition of one text line as within a handwritten page. Thereby the difficulty is
the recognition of hyphenated words at a line ending or beginning which increases
the number of possible words. Moreover, the number of sentences within one line
is irregular. Since sentences may not begin with the first and end with the last word
in a line, most text corpora cannot be used to create LMs without further processing.
The sentence recognition setup is a special case of line recognition, where one line
contains exactly one sentence. The sentence recognition is easier than general line
recognition since no hyphenation is expected and the punctuation marks always ap-
pear at the last position within a line. A third possible setup is single word recognition
which can also be seen as a special case of line recognition, with each line contain-
ing one word. With this setup, recognition rates above 90% have been achieved (see
[Märgner & Abed 07]).

When taking a look at current state of the art systems, the most important for the
context of this work is the system presented by [Natarajan & Saleem+ 08] at BBN
Technologies. It is one of the few systems explicitly designed for script indepen-
dent recognition. The presented system has been tested on a variety of databases,
amongst others the IAM and the IFN/ENIT databases which are also used for this
work and are described in more detail in Chapter 4. The respective system is able to
achieve good results in both databases, the best word error rate (WER) on the IAM
database is 40.1% and 10.6% on the IFN/ENIT database. Though the results are not
obtained on the original evaluation folds of the databases these error rates can be
seen as a generic benchmark.
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Other systems focusing on western handwriting can achieve similar results. For
example, the system described by [Juan & Toselli+ 01] can achieve about 40% WER
on the IAM database. The system focuses on integrated recognition and interpreta-
tion of the handwritten text. The system best performing on the IAM database by
[Bunke & Bengio+ 04] achieves about 35% WER with a recognition setup focusing
on geometric feature extraction.

Another state of the art system being only evaluated on the IFN/ENIT database,
was constructed by [Caesar & Gloger+ 93, Schambach & Rottland+ 08] . It is the
best performing system of the ICDAR 2007 competition on the IFN/ENIT database,
gaining about 13% WER. This commercial system makes use of different HMM topolo-
gies for the modeling of variants in handwriting.

Additional possibilities to improve these recognition results have been introduced
in several papers. For example, [Bertolami & Bunke 08] use system combination to
improve the WER achieved on the IAM database up to 3% absolute. A multi pass
recognition technique for writer adaptation to improve the results on the IFN/ENIT
database is proposed by [Dreuw & Rybach+ 09].

The systems outlined above are described in more detail in the following subsec-
tions following the order of the processing steps which are preprocessing, feature
extraction, modeling and decoding. In addition, a short overview of multi pass and
adaptation methods is given.

2.2.1 Preprocessing

Most data for offline handwriting recognition is extracted from the scans of pages of
handwritten text. The quality of these scanned pages is often poor due to scanning
artifacts, noise or low resolution. From these text pages, text lines or single words
have to be extracted for recognition, non-text background like figures and charts need
to be ignored. Since the data used in this thesis is already provided as text lines or
single words (see chapter 4), the subject of line extraction from scanned images is not
discussed here. Possible approaches and recent discussions of line extraction from
scanned images can be found in [Juan & Toselli+ 01], [Shafait & van Beusekom+ 08]
and [Gupta & Niranjan+ 06].

Depending on the image quality, the extracted text lines or words have to be prepro-
cessed for further usage, for example, using deslanting for the correction of cursive
writing or writing line estimations for the correction of skewed text and height normal-
ization. Other examples are binarization and components analysis for estimation of
partial words. These techniques will be described in this subsection.
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Deslanting

In order to remove cursive writing resulting from handwriting, a slant correction or
deslanting can be applied. The slant correction usually uses a shear operation along
the x-axis of a given image. Deslanting is needed if the character modeling cannot
compensate for variety in writing style.

A method introduced by [Sun & Si 97] uses histograms of gradients over the cur-
rent image. By identifying a peak in the histogram, an angle for the shear trans-
formation is found. A similar method using the sobel edge operator is introduced
by [Yanikoglu & Sandon 98]. A second approach introduced by [Sun & Si 97] uses
parallelograms that are fitted to each connected component within an image. Each
component is then corrected for the angle between both main axes of the parallelo-
gram.

A method used by [Bertolami & Bunke 08, Vinciarelli & Luettin 01] projects all gray
scale intensities to the baseline, given a projection angle. The baseline is separated
into regular non-overlapping windows. The angle of projection is than optimized for
each window by minimizing the variance of the projected data within the windows.
Once determined, the optimal angle for each image is used for the shear operation.

[Caesar & Gloger+ 93] and [Pechwitz & Märgner 03] use only the contour of the
text to calculate a contour polygon and further calculate on the angles of the polygon
segments. A shear histogram is extracted on the angles using a modified Hough
transform. The histogram is weighted according to the length of the corresponding
angles’ segments. The mean of the weighted histogram is used as shear angle. The
shear angle is removed by applying this algorithm iteratively.

Baseline and Top-Minuscule Line Estimation

As most state of the art systems use a linear HMM topology, they are able to com-
pensate for variations in writing direction. The variations in writing height are not be
compensated by a linear HMM itself. Therefore, a preprocessing step can be used
to normalize the height and position of the writing and its ascenders and descenders.
Ascenders and descenders are those parts of a character that are drawn above the
top-minuscule line (e.g., uppercase letters, “b” or “d”) or below the baseline (e.g., “p”
or “y”). The two lines frame most lowercase characters and thus are the most impor-
tant of the so-called writing lines.

One approach is the estimation of the writer’s baseline and top-minuscule line to
normalize the position of both lines. The two lines can also be used for rotation of
the text passage, vertical scale normalization and the detection of ascenders and
descenders.

A method proposed by [Caesar & Gloger+ 93] uses the local minima of the lower
margin for each word to find the baseline. Every minimum is weighted regarding the
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local context such that peeks are weighted lower than flat local minima. Based on
these local minima, a linear regression line is calculated and used as baseline. The
top-minuscule line is calculated in a similar manner taking into account that more
ascenders than descenders exist.

Another method introduced by [Vinciarelli & Luettin 01] makes use of horizontal
density histograms on desloped images. Desloping equals deslanting but uses a
rotation instead of a shear transformation to orient the writing horizontally. By us-
ing a threshold, the core region of a text line is identified and the baseline and top-
minuscule lines are set below respectively above this core region. This technique is
used by [Bertolami & Bunke 08], and [Bunke & Bengio+ 04].

An alternative approach to the estimation of baseline and top-minuscule line is the
height reduction of ascenders and descenders as proposed in [Juan & Toselli+ 01].
This height reduction of ascenders and descenders additionally compensates for dif-
ferent heights of ascenders and descenders due to writing style. Two different styles
and their height reduction can be seen in Figure 3.3 where the writer of the left text
draws a shorter ascender of the “p” than the writer of the right text.

Binarization

Several preprocessing and feature extraction methods, as for example, the binary
connected components analysis (BCC), need the data to be in binary form. Therefore,
a common step in preprocessing is the binarization of images used, for example, by
[Aburas & Gumah 08], and [Bertolami & Bunke 08]. The binarization can be achieved
by applying an intensity threshold to the image.

In addition to the binarization, a thinning or skeletonization step can be applied.
Both reduce the diameter but not the length of each binary component. The latter
reduces the diameter to a minimum of one pixel. For examples of these techniques
see [Aburas & Gumah 08], [Lorigo & Govindaraju 06], or [Caesar & Gloger+ 93].

[Caesar & Gloger+ 93] and [Mozaffari & Faez+ 07] apply a BCC as proposed by
[Mandler & Oberländer 89] to binary images. This method reduces the amount of
data, but not of information, by representing all connected components in hierarchical
order. This analysis is especially useful for the extraction of connected sub-words as
introduced by [Mozaffari & Faez+ 07].

For the analysis, the outermost components are extracted first, for example, the
black contour of all words. Within each existing component all subcomponents are
extracted recursively. For example, the lowercase character “b” consists of two com-
ponents, the outermost “b” contour and the white filling of the loop. A single binary
connected component consists of a contour polygon, color, the coordinates of the sur-
rounding rectangle in the image, and a reference to their enclosed subcomponents,
so that the complete image can be restored from the components.
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Since the aim of this work is the improvement of modeling, only few preprocessing
steps of the former mentioned will be applied. Deslanting as well as the size nor-
malization will be used to compensate for variations in writing style as proposed by
[Juan & Toselli+ 01].

2.2.2 Feature Extraction

Based on the preprocessed input images, the feature extraction is performed. In most
current systems this is done by shifting a window in writing direction over the image
and extracting so-called frames at each window position with the window’s content.
The shift step is most commonly chosen so that these frames have an overlap. The
window width varies depending on the scaling of the image and features that are to
be extracted. All local features are extracted within the frames. Some systems divide
the sliding window itself into several sub-windows and extract different features within
each of the sub-windows (e.g., [Schambach & Rottland+ 08, Bazzi & Schwartz+ 99,
Caesar & Gloger+ 93, El-Hajj & Likforman-Sulem+ 05, Juan & Toselli+ 01]). The fea-
tures themselves can be of various types and used in combination. The most com-
monly baseline features are listed below.

Appearance-based Features

The most basic type is the appearance-based feature which consist of the gray values
of the input images’ pixels either directly or after applying a filter method. Appearance-
based features are used by [Dreuw & Jonas+ 08], and [Juan & Toselli+ 01].

Geometric Features

In contrast to appearance-based features, geometric features make no use of the
pixel intensities or color values, but of their relationships to each other. A possible fea-
ture set, introduced by [Marti & Bunke 02b], makes use of nine geometrical features,
extracted on binarized images with a one pixel wide window:

1. Number of foreground pixels

2. First order moment of the foreground pixels

3. Second order moment of the foreground pixels

4. Position of the upper contour

5. Position of the lower contour

6. First order derivative of the upper contour

12



7. First order derivative of the lower contour

8. Number of foreground-background transitions

9. Number of black pixels between the upper and lower contour

Structural Features

Another type of features that can be extracted are structural features. These features
are not directly related to the geometry of the written text, but to the structure that
forms a character. Possible features, as introduced by [Lorigo & Govindaraju 06], and
[Caesar & Gloger+ 93] are, for example, end-points of a stroke, dots or the strokes
themselves.

The aim of this work is improved modeling for a script independent HWR system.
Therefore, only appearance based features will be used since they are the most basic
features and independent of the script used. Most of the other feature extraction
methods are specialized and evaluated only on one script.

2.2.3 Modeling

Current HWR systems use a linear HMM for the modeling of characters, using time
respectively writing direction as independent variable. Each state is associated with
a Gaussian mixture density as state model (for more details on HMM system architec-
ture see Chapter 3). The number of states differs depending on the resolution used
for the feature extraction, and the topology of the HMM.

A non-linear HMM model is proposed by [Schambach & Rottland+ 08], allowing for
several writing variants within one model, for example, four variants for Latin handwrit-
ing: large or small, and block or cursive writing.

Model Length Estimation

Contrary to the most commonly used HMMs with a fixed number of states for all
characters (e.g., by [Zimmermann & Bunke 02, Bazzi & Schwartz+ 99]), a second ap-
proach uses MLE which models each character with a different number of states.
MLE is implemented to gain a higher spatial resolution, as longer characters are mod-
eled with more states than shorter characters.

[Schambach 03] describes a MLE method that iteratively changes the length of
each character by +/-1 state per iteration by using an HMM with three linear sub-
models. One having the estimated number of states, one having a state more and
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one a state less. At the end of an iteration, the sub model with the highest emission
probability is chosen.

Two methods created for the use with HMM topology without skips are described by
[Zimmermann & Bunke 02]. By using a topology without skips, the calculated number
of states represents the minimum width of a character, shorter characters are not be
modeled adequately. The first method extracts the mean length of all characters in a
two pass step. The length of all character is then calculated by choosing a fraction and
multiplying it with the mean length. The fraction is optimized regarding the WER. The
second approach is similar to the first one but uses quantiles instead of calculating
a fraction. [Dreuw & Jonas+ 08] use the mean length of the characters directly for
the length estimation but use an HMM topology with skips to allow the modeling of
shorter characters.

Sub-words and Optional Characters in Arabic Handwriting

The recognition of Arabic handwriting needs special modeling due to the properties
of the handwriting.

According to [Mozaffari & Faez+ 07] and [Dreuw & Jonas+ 08], the sub-word lay-
out of Arabic handwriting (PAWs, see Section 1.2), and the difficult extraction of these
sub-words, respectively the white spaces between them, requires a special treatment.
[Mozaffari & Faez+ 07] use a BCC to differ between PAWs, while [Dreuw & Jonas+ 08]
introduce an explicit whitespace modeling between PAWs and partial words (see Sec-
tion 3.6.1 for examples).

Other specialties of Arabic writing are ligatures and diacritics (see Section 1.2).
[Schambach & Rottland+ 08] describes a special treatment for these optional sym-
bols by adding special models for frequent ligatures or combinations of characters
and diacritics.

Discriminative Training

Discriminative training can be used to model different writing styles writer indepen-
dent. It is commonly used in speech recognition (see [Heigold & Deselaers+ 08])
and has been applied with success to Thai HWR by [Nopsuwanchai & Povey 03]. An
similar approach for discriminative training in Arabic HWR using the maximum mu-
tual information (MMI) criterion was introduced by [Dreuw & Heigold+ 09]. For further
details on discriminative training see Section 3.4.3.

This works’ focus is set on the improvement of modeling, therefore all of the men-
tioned methods are evaluated.
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2.2.4 Decoding

Decoding in continuous recognition is generally divided into single and multi pass
recognition. Single pass recognition uses one decoding step while multi pass recog-
nition uses an iterative decoding to improve the results of each step based on infor-
mation gained in a previous step.

Single Pass Recognition

Continuous text recognition often deals with the problem of unknown words in the
test data. This is a realistic case since new words may occur at any time. Names, hy-
phenated, misspelled and crossed out words are most commonly unknown but likely
in HWR. Additionally, a comprehensive lexicon increases the recognition complexity.
Therefore, the recognition lexicon as well as the recognition LM have to be treated
with special care. For example, so-called open lexica usually contain only a small
number of most frequent words but are able to cover most of the testing data. A brief
overview of the construction of open lexica is given in [Bunke & Bengio+ 04].

Several methods for the generation and improvement of LMs for HWR are de-
scribed in [Bunke & Bengio+ 04], and [Pitrelly & Roy 03]. [Pitrelly & Roy 03] espe-
cially deal with hyphens within words and separations of a word at the end of a line.

Multi Pass Recognition

Multi pass recognition is usually used to improve the results iteratively, using informa-
tion gained in a former recognition step to improve or modify a subsequent recognition
step.

Hybrid Systems. Since handwriting has several syntactic levels (in descending or-
der regarding their information content: words, hyphens, characters), recognition can
be applied on any of these levels and can be refined on a higher level of information. A
hybrid character- and word-level recognition is illustrated in [Bazzi & Schwartz+ 99].
The system uses character recognition and then applies a word based LM for the
recombination of the words from the recognized characters.

Writer Adaptation. Writer adaptation can be used to improve the recognition re-
sults by using writer dependent models (e.g., see [Chellapilla & Simard+ 06] and
[Dreuw & Rybach+ 09]). These models can compensate for different writing styles,
stroke thickness and other varieties resulting from different writers. The system pro-
posed by [Dreuw & Rybach+ 09] consists of a writer adaptive training process, while
the decoding is done by two subsystems, each using differently trained models. In a
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multi pass recognition, first a writer independent recognition is applied. In a second
pass, the writer information are estimated by clustering the segments to be recog-
nized. Writer adapted models are chosen using these writer information and then
used for the second recognition pass.

System Combination. A method which is commonly used to improve results is sys-
tem combination (see [Buck & Gass+ 08]). This method makes use of the fact that dif-
ferent recognition systems make different errors. When using several recognition sys-
tems, the errors of each system can be compensated by the other systems. Various
methods for the combination of HWR systems are given by [Bertolami & Bunke 05],
[Bertolami & Bunke 08], and [Abed & Märgner 09].

This work uses only single pass recognition, thus, the main focus lies on the im-
provement of lexica and LMs.
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Chapter 3

System Overview

In this chapter the system and methods used in this work are described.
This chapter is organized as follows: Section 3.1 gives a brief overview of the

theoretical foundation of recognition and training setup. The subsequent sections
describe the methods used for preprocessing (Section 3.2) and feature extraction
(Section 3.3). The description of the applied modeling is divided into different sec-
tions on visual modeling (Section 3.4), language modeling (Section 3.5) and lexica
(Section 3.6).

3.1 Theoretical Background

Current HWR systems use a statistical approach based on HMMs and Gaussian
mixture models (GMMs). The input data is described by a sequence of features
xT1 = x1, ..., xT . By using the Bayes’ decision rule introduced by [Bayes 63] which
maximizes the a-posteriori probability, the best sequence of words wN1 = w1, ..., wN
with unknown number of words N is optimized given xT1 = x1, ..., xT :

[wN1 ]opt = arg max
wN1

{
p(wN1 |xT1 )

}
(3.1)

= arg max
wN1

{
pα(wN1 )· pβ(xT1 |wN1 )

}
(3.2)

In Equation 3.2, the model is represented as p(wN1 )· p(xT1 |wN1 ). The term p(wN1 ) is
the LM which provides an a-priori probability for wN1 . The term p(xT1 |wN1 ) is the visual
model providing the probability of observing a sequence of features xT1 given the word
sequence wN1 . Scaling factors for both models are applied with α being the LM scale
and β being the visual model scale.

Figure 3.1 depicts the basic architecture of the used HWR system. The visual
modeling, language models and the recognition are discussed in the following sub-
sections.
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Figure 3.1: Recognition architecture of the proposed system

3.1.1 Visual Modeling

Visual models in HWR are used to provide stochastic models of text units. Usually,
sub-word units such as characters are used and shared among all words in the vocab-
ulary, allowing for the recognition of words not observed during the training. To create
the model for a whole word the sub-word models are combined using a lexicon.

Hidden Markov Models

In the presented system the text units are modeled using linear HMMs which are
able to compensate for variations in writing direction such as long drawn-out strokes.
HMMs represent a text unit as a chain of ordered states. A probability distribution
(mixture) is assigned to each state. The states perform as a stochastic finite state
automata with different transitions from one state to another. In this work, the topology
presented by [Bakis 76] is used. The Bakis topology has three transitions per state,
a loop transition to stay in the current state, a forward transition to the next state in
the chain and a skip transition to the next but one state. All regular character models
use the Bakis topology except for the white space model that uses a similar topology
without a skip transition and a single state only. An example of both topologies is given
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Figure 3.2: The HMM topologies used in this work: a) regular character models; b)
white space model; c) character models with one repetition per state

in Figure 3.2. All states are associated with a unique mixture except when using state
repetitions. Character models with state repetitions use the same transition topology
but each state is repeated according to the number of repetitions. All repetition states
share one mixture.

To estimate the probability p(xT1 |w) of observing the feature sequence xT1 given a
word w the sum over all possible state sequences sT1 for this word has to be calcu-
lated.

p(xT1 |w) =
∑
[sT1 ]

p(xT1 , s
T
1 |w) (3.3)

(3.4)

with

p(xT1 , s
T
1 |w) =

T∏
t=1

p(xt , st |x t−11 , st−11 , w) (3.5)

If sub-word units are used, the HMMs for the sub-word units are connected to a whole
word model. The word models are then concatenated to model a word sequence.
Using Equation 3.3 and Equation 3.5, the probability of observing xT1 given wN1 can
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be calculated. It is assumed that the probability of observing xt depends only on
st which only depends on the preceding state st−1 (first order Markov assumption).
When applying a so-called Viterbi approximation as proposed by [Ney 90], the term
can be rewritten as follows (see [Rybach 06] for the detailed equation):

p(xT1 |wN1 ) =
∑
sT1

T∏
t=1

p(xt , st |x t−11 , st−11 , wN1 ) (3.6)

≈ max
sT1

{
T∏
t=1

p(xt |st , wN1 )· p(st |st−1, wN1 )

}
(3.7)

In Equation 3.7, p(xt |st , wN1 ) is called emission probability. The term calculates the
probability of observing the features xt in state st , while p(st |st−1, wN1 ) is the transition
probability of moving from state st−1 to state st .

In this work, the transition probability is assumed to be independent of the word
model containing the transition, thus, the transition probability is replaced by fixed
values depending on the transition length st − st−1. These values are called time
distortion penaltys (TDPs).

Mixture Densities

The emission probability is modeled using GMMs. The mixture models consist of a
weighted sum of Gaussian probability densities:

p(x |s, wN1 ) =

Ls∑
l=1

p(l |s, wNq )· p(x |s, l , wN1 ) (3.8)

=

Ls∑
l=1

csl · N (x |µsl ,Σsl , w
N
1 ) (3.9)

with
Ls∑
l=1

csl = 1 and Ls is the number of densities in state s, csl the mixture weight

and N (x |µ,Σ) the normal distribution with mean µ and covariance Σ. For efficiency
reasons, statistical independence of the features is assumed and thus, a diagonal
covariance matrix is used. In addition, a pooled covariance matrix is used to avoid
problems with covariance estimation, hence Σsl = Σ. Since the mixture probability
is usually dominated by one density, a maximum approximation can be applied. The
emission probability for a state of a single word w is:

p(x |s, w) = max
l
{csl ·N(x |µsl ,Σ, w)} (3.10)
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3.1.2 Training of the Visual Models

During the training of the mixtures, the parameters mean µlsw , mixture weight clsw
and variance σ have to be estimated. To estimate the parameters, the maximum
likelihood principle is applied using an expectation maximization (EM) algorithm. The
training is performed using the following algorithm iteratively:

1. Estimate the best path, i.e. the best sequence of HMM states. This mapping of
feature vectors to HMM states is called time alignment.

2. Collect the observations (feature vectors) for each state.

3. Estimate the model parameters for the emission probabilities

The algorithm terminates if the parameters are stable or a fixed number of iterations
is reached. A linear segmentation is used as initial best path. In a second step
the mixtures are optimized by splitting and merging the densities repeatedly. Further
details are described in [Rybach 06].

3.1.3 Language Models

LMs are used to model text properties like syntax and semantic independently from
the visual models. They provide an a-priori probability p(wN1 ) of a word sequence
wN1 . Since the number of word sequences is unlimited, so-called m-grams are used
according to the assumption that a word sequence follows a (m− 1)-th order Markov
process. This means a word wn depends only on its (m − 1) predecessors hn :=

wn−1n−m+1 called its history. The probability of a word sequence is calculated as follows:

p(wN1 ) =

N∏
n=1

p(wn|wn−11 ) (3.11)

=

N∏
n=1

p(wn|hn) (3.12)

To evaluate an LM the perplexity is commonly used. It can be interpreted as the
average number of possible words at each position in the text regarding the context.

An LM is trained using word counts of the transcripted training data or text corpora.
Since not all possible m-grams can necessarily been seen in training and can there-
fore not be recognized, a smoothing is used to allow for unseen m-grams as proposed
by [Kneser & Ney 95].
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3.1.4 Recognition

The problem of finding the best word sequence wN1 for a feature sequence xT1 using
the models described in the previous sections can be solved using Viterbi-search.
All possible word sequences and their paths of states are hypothesized at all time
steps. The HMM states of all hypotheses are expanded by calculating the set of
successors for each state. The so-called pruning discards unlikely hypotheses during
the calculation.

3.2 Preprocessing

This section describes the preprocessing applied in this work. The same preprocess-
ing as proposed by [Juan & Toselli+ 01] is used and can be divided into three main
steps:

1. Color normalization: In the first step, the colors of the input images are nor-
malized for a better image quality. Since the input image is supposed to be in
gray scale format, only a remapping of the intensity values has to be applied.
First, a gray scale spread is applied, mapping most of the intensity values to
white to compensate for noise and background color in the image. Next, the
image is filtered using a median filter. The median filter is a non-linear hierarchy
filter replacing a pixel with the median value of its neighborhood.

2. Deslanting: In a second step the images are deslanted to remove cursive writ-
ing. The image is segmented into text segments at separating white spaces. On
each segment, the deslanting proposed by [Yanikoglu & Sandon 98] is applied.
It calculates the slant angle by computing slant histograms using Sobel edge
operators. Therefore, the image is convolved with the Sobel edge operators to
receive the horizontally h(x, y) and vertically v(x, y) filtered images. Then, the
magnitude mag and phase phase of the image are calculated according to the
following equations:

mag(x, y) =
√
v(x, y)2 + h(x, y)2 (3.13)

phase(x, y) = arctan

(
v(x, y)

h(x, y)

)
(3.14)

The slant histogram is computed by summing the magnitude of each slant angle
phase across the segment. The histogram is finally smoothed with a Gaussian
filter and the maximum angle of the smoothed histogram between -40 and +40
degree to the vertical is chosen as slant angle. The restriction of the slant angle
is used to prevent unlikely deformations.
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Figure 3.3: Preprocessing for two different example images, each in one column, from
the IAM database: a) Original images; b) color normalized images; c)
deslanted images; d) size normalized images. The red lines indicate the
writing baseline.

3. Size Normalization: In a third step, ascenders and descenders are eliminated
since they often vary in height or position and a linear HMM is not able to com-
pensate for these variations. The main text body without ascenders or descen-
ders is extracted from the image using reference lines extracted from the upper
and lower contour. The image zones containing ascenders are scaled linear
to a height of 30% of the text body respectively 15% for the zone containing
descenders. The rescaled zones are then reattached to the main text body.

In Figure 3.3 the preprocessing on example images taken from the IFN/ENIT database
is illustrated.

3.3 Feature Extraction

Since the main focus of this work is set on modeling, only appearance based features
are used. The features are extracted using a sliding window which is shifted over the
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Figure 3.4: The horizontal (a) and vertical (b) Sobel filter

image in writing direction. Since the number of appearance based features depends
on the height of the sliding window, all images are scaled to the same height. The shift
width of the sliding window is one pixel, thus, the extracted frames are overlapping.
The features are reduced using either principal components analysis (PCA) or linear
discriminant analysis (LDA). Further explanations of the feature reduction methods
are given in [Duda & Hart+ 01].

Two feature sets are evaluated:

Motion
The motion feature set contains the original intensity values within the sliding
window and the spatial derivatives in horizontal direction ∆ = xt − xt−1.

Sobel
The Sobel feature set contains the original and Sobel filtered intensity values.
The Sobel filters are two filters that expose horizontal or vertical borders. The
filters are depicted in Figure 3.4 Both the horizontal and vertical Sobel filtered
values and the absolute values of the filtered image are used for the feature set.
The absolute values are used to add values that are not linear independent of
the original intensity values.

The feature extraction of both feature sets is illustrated in Figure 3.5.

Sobel filtered images have successfully been used for isolated handwritten digit
recognition by [Keysers & Deselaers+ 07]. Therefore, the transferability of Sobel fil-
ters to continuous HWR is evaluated in this work. The Motion feature set was intro-
duced by [Dreuw & Jonas+ 08] and has proven to achieve good results in single word
recognition on Arabic handwriting.
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Figure 3.5: Example feature extraction for Motion feature set (left) and Sobel feature
set (right) on an example image taken from the IAM database. Motion
filter is the first derivative in writing direction; Sobel-h and Sobel-v the
horizontal and vertical Sobel filters; Sobel-h-abs and Sobel-v-abs are the
horizontal and vertical absolute values of the sobel filter.
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3.4 Visual Modeling

The main focus of this work is the improvement of visual models. Therefore, several
techniques known from HWR and speech recognition are evaluated. The MLE of
visual models is described in Section 3.4.1. Section 3.4.2 describes an approach for
context dependent parameter reduction known from speech recognition. For further
improvement of the visual models discriminative training is applied as explained in
Section 3.4.3.

3.4.1 MLE

MLE describes the adjustment of the model length, in order to improve the models’
spatial resolution. For example, the handwritten character “M” is commonly much
longer than the character “i”. The visual models for these characters should represent
these differences in length to obtain a similar spatial resolution for both characters.
When using MLE, the number of HMM states used for each character is chosen with
respect to the character length in a way that long characters have more HMM states.

Since the lengths of the characters are usually unknown, they have to be estimated.
In this work, the method proposed by [Dreuw & Jonas+ 08] is used which uses a two-
pass training. In the first training pass, an alignment on the training data is estimated.
This alignment is used to calculate the average length of each character seen in
training. The estimated number of states Sc for a character c is calculated using the
following equation:

Sc =
Nx,c
Nc
· fP (3.15)

where Nx,c is the number of observations aligned to character c , Nc is the count of
character c seen in training and fP is a scaling factor. Since the RWTH-ASR software1

used for this work only allows for models with a fixed number of states, additional
states are applied by substituting each character by pseudo-characters whose states
sum up to the desired number.

3.4.2 CART

Experiments in speech recognition showed that the reduction of model parameters,
so-called state tying, using context dependent models can improve the results ob-
tained (see [Beulen & Bransch+ 96]). Yet, current HWR systems do not use con-
text dependent models or other context depending parameter reduction techniques.
Therefore, this work evaluates the usage of CART for context based model parame-
ter reduction in handwriting recognition as proposed by [Beulen & Bransch+ 97] for

1http://www-i6.informatik.rwth-aachen.de/rwth-asr
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speech recognition. A character with its left and right context of one character each
will be called triphone as used in speech recognition. A triphone is annotated as abc ,
for character b with the left context of a and the right context of c .

State tying is used to reduce the number of free parameters in order to estimate
the remaining parameters more robustly. Here CART, a binary decision tree, without
ad-hoc subdivision is used. The internal nodes of the tree are tagged with questions
on the triphone context and type of the central character of the triphone. Possible
questions are, for example, “Is the central character uppercase?”, or “Is the left con-
text a word boundary?”. The leaves of the tree are tagged with labels identifying a
mixture model of the context depending model.

To find the mixture for a triphone state, starting from the root node, recursively the
questions tagged at the current node are asked and if the answer is “yes”, the left
child of the current node is chosen, otherwise the right. When reaching a leaf, the
appropriate mixture is identified by the mixture label.

The tree is constructed starting with the root node modeling all states of all possible
triphones. The observations of a node are modeled by one Gaussian mixture density.
Each leaf F of the tree is then splitted consecutively with the question giving the
largest local improvement in likelihood D(L,R) with the child nodes L and R:

D(L,R) = LL(F )− (LL(L) + LL(R)) (3.16)

= −
1

2

(
nL

D∑
d=1

log

[
σd,F
σd,L

]2
+ nR

D∑
d=1

log

[
σd,F
σd,R

]2)
(3.17)

with nX being the number of observations for node X, D the dimensionality of the
feature vector and σd,X the variance of component d for node X. The algorithm termi-
nates if a certain number of leaves is reached or if the likelihood of all leaves is below
a certain threshold. For further details on the calculation see [Beulen & Bransch+ 96].

3.4.3 Discriminative Training

To handle different writing styles and their variation in HWR the discriminative training
based on a modified MMI introduced by [Heigold & Deselaers+ 08] and and evaluated
on Arabic HWR by [Dreuw & Heigold+ 09] is used.

When using maximum likelihood training, the likelihood of the aligned training data
xTr1 given a transcription wN1 for all aligned training data 1..R is maximized:

F(θ) =
R∑
r=1

log pθ(xTr1 |w
Nr
1 ) (3.18)

The MMI criterion is most commonly referred to as the maximum likelihood for the

27



class posteriors:

F (MMI)(θ) = − 1N
R∑
r=1

log

(
pθ(x

Tr
1 |w

Nr
1 )p(w

Nr
1 )P

vMr
1

Pθ(x
Tr
1 |v

Mr
1 )p(v

Mr
1 )

)
(3.19)

with vM1 being a writing variants lexicon. [Dreuw & Heigold+ 09] define a modified
MMI criterion (M-MMI):

F (M-MMI)
γ (θ)=R(θ, θ0)−

J

R

R∑
r=1

1

γ
log

 [pθ(xTr1 |w
Nr
1 )p(wNr1 )e(−ρδ(w

Nr
1 ,wNr1 ))]γ∑

vMr1
[pθ(xTr1 |v

Mr
1 )p(vMr

1 )e(−ρδ(w
Nr
1 ,vMr1 ))]γ
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with R being a regularization constant proportional to 1
J and γ being a parameter

to control the smoothness of the criterion called approximation level. e(−ρδ(w
Nr
1 ,vMr1 ))

is an additional margin term which is non-zero only for correct wN1 . According to
[Heigold & Deselaers+ 08] F (M-MMI)

θ (Λ) is a smooth approximation to an SVM with
hinge loss function and can be optimized iteratively using gradient-based optimization
techniques. In this work RProp is used for the optimization (see [Zhang & Jin+ 03]).

3.5 Language Model

When creating LMs for handwritten line recognition tasks some special cases need
to be taken into account. In general all text corpora composed for LM generation are
compiled for sentence recognition as shown in Figure 3.6. This means that all text
lines contain a single sentence, starting with the sentence beginning and ending with
a potential punctuation mark and the sentence ending. A generated LM will therefore
have high probabilities for punctuation marks at the line ending but low probabilities
for punctuation marks within the line. But when recognizing a handwritten text line
sentences may begin or end at any position and the number of partial sentences
per line may vary. Thus, the text corpora prepared for sentence recognition need to
be preprocessed. In this work a simple approach to simulate line writing is applied
by concatenating all sentences and inserting new lines at a fixed interval of words.
Several intervals have been tested and a number of 10 words per line were chosen
empirically which increases the number of lines in the corpus by a factor of about two.
Figure 3.7 shows lines from a preprocessed corpus while Figure 3.8 shows the same
passage with explicit white spaces.

Another specialty of handwritten line recognition is hyphenation which divides the
last word of a line into two new words. Hyphenation may result in two new words
to be recognized which are likely not to be observed in the training data, since parts
of hyphenated words are not necessarily a valid word themselves. Nonetheless, this
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<line>Delegates from Mr. Kenneth Kaunda’s United National
independence party ( 280,000 members ) and Mr. Harry
Nkumbula’s African National congress ( 400,000 ) will meet
in London today to discuss a Common course of action .
</line>
<line>Sir Roy Is violently opposed to Africans getting an
elected majority in Northern Rhodesia , but the colonial
Secretary , Mr. Iain Macleod , is insisting on a policy of
change .</line>

Figure 3.6: Example text lines from the LOB corpus without further preprocessing. “ ”
marks possible white spaces.

work will not apply a special approach for hyphenated words because only very few
cases of hyphenations appear in the databases.

All LMs are created using the SRILM toolkit (see [Stolcke 02]).

3.6 Lexica

The creation of word lexica/vocabulary for continuous HWR requires a special treat-
ment. The lexica contain the words that can be recognized and their annotation corre-
sponding to the visual model. In this work, only character models are used, therefore
a word lexicon contains a character annotation. Since the number of words that can
be recognized is depending on the lexicon, size and contained words need to be
chosen carefully. Words not in the lexicon, so-called out of vocabulary (OOV) words,
cannot be recognized. Thus, a small lexicon may lead to bad recognition results,
since less words can be recognized but a large lexicon increases the computation
time and more search errors can occur. Therefore, recognition lexica for continuous
text recognition are created using the most frequent words from large text corpora.

Additional improvements of the lexica are described in more detail in the following
subsections.

3.6.1 White Space Modeling

As proposed by [Dreuw & Jonas+ 08], an explicit white space (blank) modeling is
used for Arabic handwriting instead of modeling white spaces implicitly in the charac-
ter models. The explicit whitespace models improve the model quality of the character
models since less white space needs to be modeled implicitly. In addition, compound
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<line>... Delegates from Mr. Kenneth Kaunda’s</line>
<line>United National independence party ( 280,000
members ) and Mr.</line>

<line>Harry Nkumbula’s African National congress ( 400,000 )
will meet in London today to discuss a Common course of
action . Sir</line>

<line>Roy Is violently opposed to Africans getting an
elected majority</line>

<line>in Northern Rhodesia , but the colonial
Secretary ,</line>

<line>Mr. Iain Macleod , is insisting on a policy of</line>
<line>change . ...</line>

Figure 3.7: Example text lines from the LOB corpus with automatic line breaks every
10 words. Optional white spaces are marked with “ ”.

words respectively sub-words that are divided by explicit white spaces are better sep-
arated since the borders to white spaces are easier to detect than the border between
two characters. Possible white space models are:

No white spaces (NB)
Using the implicit whitespace modeled by the character models.

Between word white spaces (BWB)
White spaces are modeled explicitly between compound words. The NB model
is added as writing variant.

Between word and within word white spaces (BWWB)
White spaces are modeled explicitly between compound words and between
PAWs respectively between initial, final and isolated characters. The BWB and
NB models are added as writing variants.

Figure 3.9 shows an example of the possible white space positions.

3.7 Sub-word Lexica and Language Models

The rate of OOV words in the testing data can be seen as the lowest possible error
rate. To further improve the results without increasing the data used for the lexicon
generation, a recognition on a sub-word level can be performed. The usage of sub-
words decreases the OOV rate, since sub-words are shared between several words.
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<line>... [blank] Delegates [blank] from [blank] Mr. [blank]
Kenneth [blank] Kaunda’s</line>
<line>United [blank] National [blank] independence [blank]
party [blank] ( [blank] 280,000 [blank] members [blank] )
[blank] and [blank] Mr.</line>
<line>Harry [blank] Nkumbula’s [blank] African [blank]
National [blank] congress [blank]( [blank]400,000 [blank] )
[blank] will [blank] meet [blank] in [blank] London [blank]
today [blank] to [blank] discuss [blank] a [blank] Common
[blank] course [blank] of [blank] action [blank] . [blank]
Sir</line>
<line>Roy [blank] Is [blank] violently [blank] opposed
[blank] to [blank] Africans [blank] getting [blank] an
[blank] elected [blank] majority</line>
<line>in [blank] Northern [blank] Rhodesia [blank] , [blank]
but [blank] the [blank] colonial [blank] Secretary [blank]
,</line>
<line>Mr. [blank] Iain [blank] Macleod [blank] , [blank] is
[blank] insisting [blank] on [blank] a [blank] policy
[blank] of</line>
<line>change [blank] . [blank] ...</line>

Figure 3.8: Example text lines from the LOB corpus with automatic line breaks every
10 words. Required white spaces are marked with “[blank]”.
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(a)

(b)

(c)

Figure 3.9: Example image with explicit white space (yellow) modeling: a) no explicit
white spaces (NB); b) white spaces between sub-words (BWB); c) white
spaces between PAWs respectively between initial (B), final (E) and iso-
lated (A) characters (BWWB).
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Thereby the number of necessary items in the vocabulary is decreased while the
number of possible words is increased. For example, 20,000 words consist of only
about 13,000 unique syllables or of 80 unique characters with respect to lower- and
uppercase characters, and other symbols. Therefore, lower error rates are possible.
The complete words can be recombined in a postprocessing step. Though when
using sub-word lexica and LMs, the context information of a sub-word regarding its
predecessors is smaller compared the context of a complete word. Thus, a higher
number of predecessors have to be taken into account when calculating n-gram LMs.

In this work, sub-word units of syllable and character level are tested. In order to
recombine the words from the sub-words, an explicit white space model is used as
indicator for word boundaries.

To create a sub-word lexicon and LM the original words are splitted into sub-words.
The character lexica are created as obvious by dividing the word into its characters
(e.g., see Figure 3.10). For the creation of the syllable lexica a hyphenation software2

is used. The software used calculates the possible position of hyphenations using
the same technique as LATEX as described by [Liang 83]. Unfortunately, the software
is not able to calculate all possible positions but neither was any other of the tested
methods.

2Text-Hyphen, http://search.cpan.org/~kappa/Text-Hyphen-0.11/
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<line>... [blank] D e l e g a t e s [blank] f r o m [blank]
M r . [blank] K e n n e t h [blank] K a u n d a ’ s</line>

<line>U n i t e d [blank] N a t i o n a l [blank] i n d e
p e n d e n c e [blank] p a r t y [blank] ( [blank] 2 8 0
, 0 0 0 [blank] m e m b e r s [blank] ) [blank] a n d
[blank] M r .</line>

<line>H a r r y [blank] N k u m b u l a ’ s [blank] A f r
i c a n [blank] N a t i o n a l [blank] c o n g r e s s
[blank]( [blank] 4 0 0 , 0 0 0 [blank] ) [blank] w i l l
[blank] m e e t [blank] i n [blank] L o n d o n [blank]
t o d a y [blank] t o [blank] d i s c u s s [blank] a
[blank] C o m m o n [blank] c o u r s e [blank] o f
[blank] a c t i o n [blank] . [blank] S i r</line>

<line>R o y [blank] I s [blank] v i o l e n t l y [blank]
o p p o s e d [blank] t o [blank] A f r i c a n s [blank]
g e t t i n g [blank] a n [blank] e l e c t e d [blank]
m a j o r i t y</line>

<line>i n [blank] N o r t h e r n [blank] R h o d e s i a
[blank] , [blank] b u t [blank] t h e [blank] c o l o n
i a l [blank] S e c r e t a r y [blank] ,</line>

<line>M r . [blank] I a i n [blank] M a c l e o d [blank]
, [blank] i s [blank] i n s i s t i n g [blank] o n
[blank] a [blank] p o l i c y [blank] o f</line>

<line>c h a n g e [blank] . [blank] ...</line>

Figure 3.10: Example text lines for a character lexicon and LM from the LOB corpus
with automatic line breaks every 10 words. Required white spaces are
marked with “[blank]”.
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<line>... [blank] Del e gates [blank] from [blank] Mr.
[blank] Ken neth [blank] Kaun da’s</line>
<line>Unit ed [blank] Na tion al [blank] in de pen dence
[blank] par ty [blank] ( [blank] 280,000 [blank] mem bers
[blank] ) [blank] and [blank] Mr.</line>
<line>Har ry [blank] Nkum bu la’s [blank] African [blank]
Na tion al [blank] congress [blank]( [blank]400,000 [blank]
) [blank] will [blank] meet [blank] in [blank] Lon don
[blank] to day [blank] to [blank] dis cuss [blank] a [blank]
Com mon [blank] course [blank] of [blank] ac tion [blank] .
[blank] Sir</line>
<line>Roy [blank] Is [blank] vi o lent ly [blank] op posed
[blank] to [blank] Africans [blank] get ting [blank] an
[blank] elect ed [blank] ma jor i ty</line>
<line>in [blank] North ern [blank] Rhode sia [blank] ,
[blank] but [blank] the [blank] colo nial [blank] Sec re
tary [blank] ,</line>
<line>Mr. [blank] Iain [blank] Macleod [blank] , [blank] is
[blank] in sis ting [blank] on [blank] a [blank] pol i cy
[blank] of</line>
<line>change [blank] . [blank] ...</line>

Figure 3.11: Example text lines for a syllable lexicon and LM taken from the LOB cor-
pus with automatic line breaks every 10 words. Required white spaces
are marked with “[blank]”.
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Chapter 4

Corpora

For evaluation of this thesis’ proposed methods two databases and several text cor-
pora which are widely used in current literature and were chosen.

The IFN/ENIT database provides a set of Arabic handwritten words for single word
recognition. For evaluation of continuous handwriting, the IAM database contains
lines of handwritten English text. Results obtained on these databases are given in
Chapter 5. Some of the LMs and lexica used for recognition are created using the
additional text corpora.

4.1 IFN/ENIT Database

The IFN/ENIT database was published by the “Institut of Communications Technol-
ogy” (Institut für Nachrichtentechnik, IFN) at the Technical University Braunschweig,
Germany, and the “Ecole Nationale d’Ingénieurs de Tunis” (ENIT), Tunisia in 2002
(see [Pechwitz & Maddouri+ 02]).

The database contains a total number of 306 different annotated symbols. These
symbols include the 28 basic Arabic characters, respectively their variants based on
the position in the word, combined with diacritics and a number of ligatures. It con-
tains about 32,000 binarized images, each depicting a Tunisian town name. The
images are classified by the zip code of the associated town with a total of about
1,000 classes. In addition to the zip code, all images are annotated with their spelling,

Figure 4.1: Sample images taken from the IFN/ENIT database (same word)
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Figure 4.2: History of development of the IFN/ENIT database

Table 4.1: Description of the IFN/ENIT database

Devel a Devel b Devel c Devel d Eval e Total

Samples (Words) 6537 6710 6477 6735 6033 32492
Running Characters 51986 53863 52156 54167 45194 257366
Writers 102 102 103 104 505 916

including diacritics and ligatures. Due to writing variants of some town names, about
3,000 different notations exist (three different writing variants for each town name in
average). As displayed in Table 4.1, the database is divided into five folds. Four of
these folds are used as cross validation folds, whereas the remaining fold serves as
evaluation fold. The reason for this division is given by the database’s history of de-
velopment as displayed in Figure 4.2. The database was first published as part of
the ICDAR (International Conference on Document Analysis and Recognition) 2005
Arabic handwriting recognition competition (see [Märgner & Pechwitz+ 05]) with four
cross validation folds (Fold a-d) but without set e. For evaluation of the competition,
participants had to submit their trained systems which were tested on the evaluation
fold e. For the ICDAR 2007 (see [Märgner & Abed 07]) competition the e fold was
published and the systems were later on evaluated on an unpublished evaluation set
f. For the ICDAR 2009 competition no new dataset was published. Some sample
images of the database are depicted in Figure 4.1. The database’s task is a closed
single word recognition, meaning that all words and characters in the test or evalu-
ation sets appeared in the corresponding training data. Table 4.1 indicates that the
training and testing folds are not equally distributed. Especially the number of differ-
ent writers in fold e is higher than in all other folds which might cause a higher error
rate compared to the sets with less writers.
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Figure 4.3: Sample images taken from the IAM database

4.2 IAM Database

The IAM database (see [Marti & Bunke 99]) was published by the Institute of Com-
puter Science and Applied Mathematics (Institut für Informatik und angewandte Math-
ematik, IAM) at the University of Bern. The current database version 3.0 was intro-
duced by [Marti & Bunke 02a] in 2002. It contains a total number of 1,539 pages with
5,685 sentences in 9,862 lines. All words are build using only 80 different symbols
which consist of both upper- and lowercase characters, punctuation, quotation marks,
and a special symbol for crossed out words. A comparison of the predefined training,
testing and evaluation folds is given in Table 4.2, whereas Figure 4.3 displays three
lines of same text written by different writers. According to [Marti & Bunke 02a] and as
the figure implies, the images published with the database have been preprocessed.
All connected components were extracted with their bounding boxes and then pasted
on a virtual writing line. The image was then automatically cropped to minimum width
and height. Thus, the image height and the relative height of the writings baseline
and top-minuscule line differs from image to image, depending on the writing height
of ascenders or descenders, respectively their absence. According to the paper, the
applied preprocessing should not have an effect on the recognition results.

Four different tasks are provided with the database: a writer identification task and
three text recognition tasks, each a word, sentence and line recognition task. In this
thesis the focus is on the line recognition task, as it is the most basic approach to
continuous HWR, and differs from other tasks for example by segment boundaries
within sentences and syllabification.

As underlying corpus of the database, the Lancaster-Oslo/Bergen (LOB) corpus, is
described in detail in Section 4.3. Thus all sentences occurring in the IAM database
were taken from the LOB corpus.
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Table 4.2: Description of the IAM database

Train Eval Devel Total

Lines 6,161 2,781 920 9,862
Running words 53,884 2,5473 8,718 88,073
Vocabulary size 7,764 5,312 2,425 11,368
Running Characters 281,744 126,239 42,074 450,047
Unique Writers 283 162 57 500

OOV Rate 15.45% 15.03%

Table 4.3: Description of the text corpora

Brown LOB Wellington

Lines 49,362 53,694 56,745
Running words 1,045,213 1,119,375 1,144,401
Vocabulary size 53,115 48,276 58,919
Running Characters 5,582,023 5,909,273 6,055,820

4.3 Text Corpora

When performing an open word recognition task, the training data provided by the
database is most often not sufficient to model the data to be recognized. Therefore,
additional text corpora are often needed to create LMs and lexica for the recognition
task. The corpora used in this thesis follow the proposition by [Bertolami & Bunke 08]
and can be described as follows.

The Brown corpus was published by [Francis & Kucera 64] in 1964. It was the first
modern computer readable corpus and contains about one million words in 500 lines
of American English from various text sources, such as reportage, humor and fiction.

The LOB corpus (see [Johansson & Leech+ 78]) was compiled by researchers
from Lancaster, Oslo and Bergen between 1970 and 1978. It corresponds to the
Brown corpus in size and content, but contains words in British English.

The third corpus, which also equals the LOB corpus in size and content is the
Wellington corpus, published by [Holmes & Vine+ 98], and contains words in New
Zealand English.

Table 4.3 gives a more comprehensive overview of the three text corpora.
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Chapter 5

Experiments and Results

In this chapter the main experimental results on both the IFN/ENIT and the IAM
database are reported using the metrics explained in Section 5.1. Since the lan-
guages as well as the tasks performed on the databases differ, the results for the
Arabic and English HWR will be displayed in unique sections. The results of the sin-
gle word recognition task on the IFN/ENIT database are discussed in Section 5.2.
Section 5.3 contains the evaluation of the line recognition task on the IAM database.

5.1 Metrics and Visualization

The error rates commonly used for the evaluation of continuous text recognition are
the word error rate (WER) and character error rate (CER). Both are calculated based
on the number of substitutions, insertions and deletions of words respectively charac-
ters and the number of words or characters in the reference text using the following
equation:

ER =
#substitutions + #insertions + #deletions

#referencecount
(5.1)

The alignment visualizations used in this chapter show training alignment of text
lines to their corresponding HMM states. A R-G-B background colors scheme is used
for the 0-1-2 HMM states in writing direction and yellow for the white space model.
The upper line contains the character model names, where the white space models
are annotated by ’si’ for ’silence’. The state numbers are written in the bottom line.
HMM state-loops are represented by no-color-changes, forwards from one color to
the next and skips by the change to the next but one.

5.2 IFN/ENIT Database

The task on the IFN/ENIT database is single word recognition. Therefore no multi-
gram language-model is used for recognition. In addition, the training vocabulary
equals the possible words to be recognized, the OOV rate is 0%, so that a minimum
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WER of 0% is theoretically possible. All result tables are adapted to the one’s used
for the ICDAR 2005 and 2007 competitions with the following sets (see Section 4.1):

Crossvalitation folds abcd
The folds a-d are used as four-fold-crossvalidation folds as given at the ICDAR
2005 competition.

Evaluation fold abcd-e
Evaluation is done on the fold e with sets a-d as training folds. This is compara-
ble to evaluation fold e of the ICDAR 2005 competitions.

Additional results abcde-d/e
Another evaluation of the ICDAR 2007 competition was done as training-on-the-
testing-data result for which the systems - which were trained on sets a-e - were
evaluated on set d and e.

For a basic experimental setup, the standard parameters of a speech recognition
system are applied. The feature extraction is empirically optimized using PCA trans-
formed motion features described in Section 3.3. The features are extracted on scale
normalized images with a scale height of 16 pixels serving as the reference scale
height for all following size measures. The sliding window has a width of seven slices
with a width of one pixel each, and it is shifted by one pixel in writing direction. This
results in a total number of 7 × 16 × 2 = 224 features which are reduced using the
PCA to a number of 30. These settings are verified by experimental evaluation as
Figure 5.1 depicts. Though a sliding window with nine pixels width achieves slightly
better results, a seven pixel width window is used. This is justified by the fact that
the average character width at a scale-height of 16 pixel is seven pixels, thus a wider
window would imply that more than half of a neighboring character would appear in
the local character’s context. For training and recognition a lexicon with MLE is used
as described in [Dreuw & Jonas+ 08] and Section 3.4.1.

A further overview of the impact of MLE is given later in this section on page 48.

White Space Modeling

Previous experiments have shown that the error rate increases the more PAWs a
word contains. The visual inspection of the training-alignment of a first experiment
with the basic setup displayed in Figure 5.2 explains this effect. The modeling of
white spaces between compound words and PAWs is not yet sufficient and has a
negative impact on the resolution of character models due to the implicit modeling of
background within the models. Thus an explicit white space modeling as introduced
in [Dreuw & Jonas+ 08] is applied to the training-lexicon to improve the modeling of
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Figure 5.1: Comparison of different PCA dimensions and window sizes on the evalu-
ation fold of the IFN/ENIT database

white spaces within a word. Different variants of white space modeling are tested
according to Section 3.6.1.

The results displayed in Table 5.1 and Figure 5.3 as well as the visualisation in
Figure 5.2 show improvements of the error rate and the training-alignment for the se-
tups with explicit white space modeling as writing variants. The NB-lexicon without
explicit white spaced performs worst on all folds since the white spaced between sev-
eral characters are modeled implicitly by the surrounding characters. The alignment
in Figure 5.2 shows that the BWWB lexicon fits best for both cursive (right images)
and non-cursive writing (left images).

Consequently, the BWWB lexicon is retained for further experiments.

Supervised Writing Variants in Training

The first lexicon used for the basic setups contained several writing variants for each
class (town identified by zip code) due to optional ligatures and diacritics. The choice
of the correct writing variant was left to the system during training. Due to few training
examples for some ligatures, those could not be learned and had to be eliminated
from the character inventory of the lexicon and were replaced by one of their more
common writing variants.
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(a)

(b)

Figure 5.2: Alignment visualisation: two distinct words, one written cursive (a) and
one non-cursive (b) trained with different white space lexica: First row NB
lexicon, second row BWB lexicon, third row BWWB lexicon.
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Figure 5.3: Comparison of different PCA dimensions and lexica with and without po-
sition information on the IFN/ENIT database

Table 5.1: Results: White space modeling with white space writing variants in the
lexicon

Train Test WER [%] CER [%]

NB BWB BWWB NB BWB BWWB

abc d 11.39 11.34 10.78 4.67 4.46 3.8
abd c 12.57 11.95 11.44 5.43 5.09 4.37
acd b 11.86 11.36 10.88 4.87 4.41 3.81
bcd a 13.23 13.19 11.86 5.65 5.52 4.45

abcd e 24.96 24.45 23.54 11.04 10.86 9.40
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Table 5.2: Entries in the training lexicon and number of writing variants with and with-
out supervised writing variants on the complete lexicon using BWWB white
space modeling.

BASE SWV

#Entries 938 32493
#Writing Variants 2952 63500

Table 5.3: Results: unsupervised and supervised writing variants in training

Train Test WER [%] CER [%]

BASE SWV BASE SWV

abc d 10.78 7.80 3.86 3.12
abd c 11.44 8.71 4.37 3.41
acd b 10.88 7.84 3.81 2.87
bcd a 11.86 8.663 4.45 3.52

abcd e 23.54 16.82 20.32 7.52

abcde d 7.23 3.44 3.44 1.32
abcde e 18.00 10.09 10.09 3.81

To compensate for this back draw and since the correct writing variant for each
image is known in training, these annotations are used for a training lexicon with
supervised writing variants (SWV). In the new lexicon each image is only associated
with its own writing variant of the corresponding class and the additional variants for
each white space model.

As Table 5.2 shows, the number of different annotations used increases signifi-
cantly from the number of possible classes 938 to the number of images in the cor-
pus 32493. The ratio of writing variants per image on the other hand drops from about
three variants to less than two, which contain only variants of white spaces and not
of the annotation. Thereby, less false variants can be chosen and an improvement of
the visual model is expected. Table 5.3 shows a comparison of the unsupervised and
SWV in training. The WER as well as the CER improve on all crossfolds. The biggest
improvements can be seen on the validation fold where the WER drops by 5.5% and
the CER by almost 13% absolute.

Accordingly, the training with SWV is able to improve the results and will be used
for the subsequent experiments.
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Table 5.4: Results: deslanted, UPV-preprocessed and non-preprocessed input data

Train Test WER [%] CER [%]

DESLANT UPV SWV DESLANT UPV SWV

abc d 11.89 32.74 7.80 4.15 9.58 3.12
abd c 14.54 34.18 8.71 5.04 10.16 3.41
acd b 13.46 33.14 7.84 4.53 9.70 2.87
bcd a 14.46 35.96 8.66 4.98 10.90 3.52

abcd e 22.71 53.39 16.82 8.67 16.02 7.52

abcde d 6.33 19.27 3.44 2.14 5.69 1.32
abcde e 14.02 40.46 10.09 5.29 12.37 3.81

Preprocessing

Most of the current Arabic handwriting recognizers make intensive use of preprocess-
ing (see [Märgner & Abed 07] and [Märgner & Pechwitz+ 05]). The system proposed
here does not use any preprocessing for the input data. To test the impact of pre-
processing on the system the preprocessing tools described in Section 3.2 are ap-
plied (UPV). Since the images in the IFN/ENIT database are binary images, the color
normalization part of the preprocessing is not used. For a better evaluation of the
complete preprocessing the deslanting (DESLANT) step is also used separately for a
second training.

As the results in Table 5.4 show, the preprocessing does not improve the previ-
ous results. In contrary, the preprocessing significantly increases the error rates on
all folds. A visual inspection of the training data might explain this (see Figure 5.4).
Both the deslanting and the height normalization decrease the readability of the im-
ages. The desired effect of the deslanting - a better separation of characters - is
even inverted such that characters that were beforehand side by side are now shifted
beneath each other. The decrease of the height of ascenders and descenders per-
formed by the size normalization as described in Section 3.2 removes additional im-
portant informations from the image, for example, dots that are located in the upper
or lower part of the image. These dots are important since several characters of the
Arabic alphabet differ not by shape but only by the position of dots, for example, Haa
h and Khaa p.

The here applied preprocessing seems not to be suitable for Arabic HWR on the
IFN/ENIT database and will therefore not be applied in subsequent experiments.
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(a)

(b)

(c)

Figure 5.4: Alignment visualisation: preprocessing on the IFN/ENIT database: a) No
preprocessing; b) Deslanted; c) UPV-preprocessing

Approximation of Model Length Estimation

For all previous experiments training lexica with MLE are used which models are com-
plex. The MLE is calculated on the training data which poses the risk of overfitting on
the character length. Thus, an approximation is introduced using a simple but flexible
linear model with fixed number of states for all characters. During the implementa-
tion of the MLE lexicon the mean and median length of all characters are observed.
The length of most characters is located within a range of three and six pixels length.
Hence, a model with more than three different mixtures seems to be inappropriate.
To avoid high loop penalties for longer characters a new topology for the model with
three states and two repetitions per state is used (3-2, cf. Figure 3.2).

Additionally, the 3-2 model better compensates high length variations of the char-
acters. This is important when grouping characters by their shape or by dropping the
position information to create a reduced model set. For example, the mean length
of the letter H. (Baa) in initial and medial position is six pixels but in final position is
more than 17 pixels. If grouping these characters, a MLE would not suffice the length
varieties within the character group.

The results in Table 5.5 show that the model with a 3-2 topology can achieve similar
results as the MLE setup. For additional comparison the results of a model with three
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(a) (b)

Figure 5.5: Comparison of training alignment using 3-1 (a) and MLE (b) topology on
the IFN/ENIT database. The exposed character is aligned correctly only
using the MLE setup, without MLE half of the character is aligned wrongly.

states and one repetition per state topology without MLE is also displayed in the
table (3-1). The MLE setup improves the training alignment in comparison to the 3-1
setup as figure Figure 5.5. The spatial resolution is improved as well as depicted
in Figure 5.6 where the mean lengths of the (pseudo) characters are more smooth
using the MLE and by that a higher spatial resolution is achieved. The MLE setup
outperforms the 3-2 topology setup on the evaluation set and when considering the
character error rate (CER) which implies that MLE is an essential part and should be
used for general evaluation purposes.

Still, the 3-2 model topology performs adequately compared to the MLE and can
be used for experiments in which a MLE can not be implemented respectively its
implementation does not make sense, for example, when using a reduced character
set.

Reduction of Model Size

It is well known from the inspection of the Arabic handwriting that several characters
have similar or identical shape. To exploit this fact for the reduction of the model size
two different method are chosen:

No Position (nopos)
The position-dependent characters can be reduced to their parental character,
such that the position information is dropped and a common and position inde-
pendent model is created. Thereby, the number of characters is reduced from
120 to 50 characters.
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Figure 5.6: Comparison of the mean length of (pseudo) characters using 3-1 (a) and
MLE (b) topology on the IFN/ENIT database.

Table 5.5: Results: setup with a 3-2 respectively 3-1 topology without MLE, and the
SWV setup with MLE

Train Test WER [%] CER [%]

3-1 3-2 SWV 3-1 3-2 SWV

abc d 11.00 8.06 7.80 3.66 3.12 3.01
abd c 11.41 8.63 8.71 3.97 3.41 3.39
acd b 11.13 7.79 7.84 3.65 2.87 2.76
bcd a 12.01 8.63 8.66 4.31 3.52 3.76

abcd e 22.41 17.77 16.82 8.33 7.52 6.85

abcde d 6.40 3.24 3.44 2.05 1.21 1.32
abcde e 11.27 9.07 10.09 4.14 3.10 3.81
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Table 5.6: Results: reduced character set with shape-reduced and without position
informations, and a character set with all informations

Train Test WER [%] CER [%]

nopos reduced 3-2 nopos reduced 3-2

abc d 10.99 12.98 8.06 4.18 4.41 3.12
abd c 11.07 12.21 8.63 4.14 4.16 3.41
acd b 10.86 12.76 7.79 3.90 4.12 2.87
bcd a 11.29 13.25 8.63 4.31 4.54 3.52

abcd e 21.43 26.17 17.77 8.31 9.96 7.52

abcde d 9.87 8.60 3.24 3.82 2.93 1.32
abcde e 21.31 18.47 9.07 8.40 6.89 3.81

Shape Reduction (reduced)
The number of characters can be reduced according to their shape and appear-
ance as proposed by PARIS-V (see [Menasri 08], [Märgner & Abed 07]). For
example, characters that only differ by a dot or a connection to another charac-
ter on one side can be bundled to one new character. To keep both methods
comparable the characters are reduced to a number of 49 characters with this
method.

As illustrated in Table 5.6 none of the proposed methods can outperform the lexicon
with all characters. This is explained by the information loss resulting from the charac-
ter reduction However the model of the setup without position informations has only
15,594 densities which is less than half the number of densities than the full setup
having 35,751 densities. But the error rate only drops by less than 4% on the eval-
uation set. The shape-reduced character set cannot outperform neither the nopos
character set nor the complete character set. These results concur with the results
achieved by the PARIS-V system at the ICDAR 2007 competition.

When improving runtime or memory usage of the system the approach of loos-
ing position informations to produce a reduced character set can be of use. In other
cases, the position and shape information of the characters seem crucial for the recog-
nition result.

CART

For the modeling of triphone contexts, CART as described in Section 3.4.2 is widely
used in speech recognition and is therefore tested in this work. Since yet no work
has been done on CART and Arabic HWR, several possible questions for the splitting
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of the CART nodes are considered. For the left or right context triphone-, state- and
boundary questions are used, for example “is the right context a word boundary”. For
informations about the central character several question set have been tested using
the following possible questions:

• Singe-, double-, trippel dots and their relative positions

• Diacritics: Madda, Hamza, chadda

• Numbers

• Boundary of PAWs and relative position to white spaces

• Ligatures

• Visual appearance (e.g loops, multi piece)

• Stroke stop is needed when drawing the character

• Baseline and top-minuscule informations

Additionally, a second setup for a CART is used which uses a reduced character set
without position informations. The position independent setup only uses questions
about the characters possible positions, for example “is the character a possible final
character”. To keep the CART setups comparable to the previous ones the number
of splits is altered to achieve a similar overall number of densities. The number of
mixtures without cart is 117 characters × 3 states = 351, using CART the number is
enhanced to 400 with the full character set, the position independent character set is
expanded from 50 characters × 3 states = 150 to 200.

Table 5.7 shows the results achieved with the full character set and a optimized
question set (CART) in comparison to the previous achieved baseline result (3-2).
The CART setup is not able to outperform the 3-2 setup, neither on the crossvali-
dation folds, nor on the evaluation fold. A similar effect is observed on the position
independent experiments as Table 5.8 where the WER and CER increase on all folds
also.

This effect can result from two possible reasons. At first, the chosen feature ex-
tractions uses a large window, which models the left and right context of the current
character implicitly. Secondly, the usage of triphones may not be appropriate for hand-
writing as the variety of shape of a character only varies depending on the previous
character but on the following. Except for the relative position to white spaces, the
main difference within characters regarding the context is the vertical position of the
connection to the left or right character respectively parts of the neighboring charac-
ters.

CART context modeling using the proposed questions does not improve the results
on the IFN/ENIT database and will therefore not being used in further experiments.
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Table 5.7: Results: CART experiments on the IFN/ENIT database

Train Test WER [%] CER [%]

3-2 CART 3-2 CART

abc d 8.06 10.96 3.12 4.04
abd c 8.63 10.67 3.41 4.19
acd b 7.79 10.34 2.87 3.61
bcd a 8.63 11.47 3.52 4.63

abcd e 17.77 22.54 7.52 9.17

abcde d 3.24 6.24 1.32 2.36
abcde e 9.07 13.36 3.81 5.27

Table 5.8: Results: CART experiments using the position question set on position
independent characters on the IFN/ENIT database

Train Test WER [%] CER [%]

nopos CART 3-2 CART

abc d 10.99 11.74 4.18 4.61
abd c 11.07 13.40 4.14 5.02
acd b 10.86 14.78 3.90 5.56
bcd a 11.29 14.12 4.31 5.60

abcd e 21.43 25.59 8.31 10.20
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Figure 5.7: Comparison of different PCA dimensions for the Sobel feature set on the
IFN/ENIT database

Feature Extraction

Previous results with handwriting recognition showed, that Sobel filtered images are
often able to improve the results as illustrated by [Keysers & Deselaers+ 07]. Thus,
a second feature extraction setup using the Sobel feature set as described in Sec-
tion 3.3 is applied.

The motion feature set extracts two features (original + motion filtered) for each
pixel in a 7 × 16 which makes a total of 224 features which are reduced with a PCA
reduction to a dimension of 30. The Sobel feature set extracts five features (original
+ per pixel and by that has a total of 560. The dimension of the PCA reduction has
been optimized empirically to 30 as well as displayed in Figure 5.7.

Table 5.9 shows that the Sobel feature set is able to outperform the motion feature
set on three out of four crossvalidation folds. The WER on the evaluation fold also
decreases about a half percent.

The Sobel features are able to improve the results on the cross validation as well
as on the evaluation fold and can therefore be used in further experiments.
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Table 5.9: Results: comparison of motion and Sobel feature sets

Train Test WER [%] CER [%]

Motion Sobel Motion Sobel

abc d 8.06 7.90 3.12 3.01
abd c 8.63 8.23 3.41 3.31
acd b 7.79 7.78 2.87 2.81
bcd a 8.63 8.64 3.52 3.60

abcd e 17.77 17.19 7.52 7.09

abcde d 3.24 2.72 1.32 1.08
abcde e 9.07 8.07 3.81 3.32

Summary

The performance of the system in relation to current state of the art systems can be
seen in Table 5.10. The table shows, that all other systems are outperformed.

5.3 IAM Database

The IAM database contains lines of handwritten text. The task to be performed on
this database is a continuous word recognition task. Due to the varying number of
words per line of text, the error rate is determined not only depending on substitutes
words but also on inserted and deleted ones. Equation 5.1 shows the calculation of
the WER. Character models are used for all experiments and they are mapped to
words using a word lexicon.

5.3.1 Visual Modeling

This subsection discusses optimizations and improvements regarding the training of
the visual model. All training and model parameters were optimized on the devel
set and the results were verified on the evaluation set. For a detailed description
of the sets see Section 4.2. The best training parameters obtained in the previous
Section 5.2 but using the motion feature set are used for an initial setup since the input
data of the IAM database are comparable to the IFN/ENIT database regarding scaling
and resolution. Again, the reference resolution is 16 pixel height. An HMM model with
three states and two repetitions per state is used in the baseline experiment. The
features are extracted by a window sliding in writing direction left-to-right with a width
of seven pixel and a shift of one pixel. The motion features as described in Section 3.3
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Table 5.10: Summary of the results achieved on the IAM database in comparison with
current state of the art systems.

WER [%]
abc-d abcd-e

Proposed Systems
Baseline MLE 10.78 23.54

+ Supervised Writing Variants 7.80 16.82
+ 3-2 Topology 8.06 17.77

ICDAR 2005 results
1. UOB 15.00 24.07
2. ARAB-IFN 12.06 25.31
3. ICRA (Microsoft) 11.05 34.26
...

Other systems
[Natarajan & Saleem+ 08] 10.51 -
[Schambach & Rottland+ 08] - 18.11

are used and the feature dimension is reduced by a PCA to 30. Other dimensions are
also tested but do not perform better as Figure 5.8 shows. In training, the mixtures are
splitted in seven iterations which performed best as Figure 5.10 show. An LDA based
feature reduction has also been tested, using the best training alignment achieved in
this work as class labels but it was not able to outperform the results using the PCA
for feature reduction as Figure 5.9 shows.

Preprocessing

The results of an initially performed baseline experiment depicted in Table 5.11 only
achieve an WER of about 80%, which is obviously not satisfying. Examples of the
corresponding training alignment in Figure 5.11 show that the alignment is sufficient
for images with steady stroke thickness and a centered position of the text within the
image but not for images with variations regarding these properties. Especially the
varying heights of the baseline and top-minuscule lines in the images (see Figure 3.3
for details) as well as the unsteady stroke intensity and thickness combined with the
gray bounding boxes around the connected components (as described in Section 4.1)
seem to decrease the model quality and must be normalized during a preprocessing
step. Hence, the preprocessing described in Section 3.2 is applied. In comparison
to the alignment on the images without preprocessing, the alignment as indicated in
Figure 5.11 is clearly improved. For example the word “MOVE” of the right image
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Figure 5.10: Comparison of the number of splits on the IAM database

is aligned erroneously without preprocessing: all characters are shifted to the left.
The alignment on the preprocessed image show that all character models are aligned
at least partially to the corresponding character in the image. The implicit modeling
of the white spaces has improved too, fewer white spaces are aligned to character
models. Though, the “A” of the preprocessed image on the right side is not correctly
aligned.

Additionally, Table 5.11 shows that the WER on the preprocessed data decreases
more than 30% absolute. Accordingly, a similar effect can be seen in the CER, which
gained about 20%. This improvement recurs on the evaluation set.

Applying the preprocessing proposed by [Juan & Toselli+ 01] the results improve
strongly. Thus, only preprocessed data will be used for further experiments.

Model Length Estimation

Since the size normalization of the preprocessing changed the average width of all
characters, it is necessary to recalculate the length of the model and hence the num-
ber of states used for the HMM. The calculation of the best model length is done
using two approaches, the first one with a fixed number of states for all characters.
The second approach uses MLE which has been used successfully on the IFN/ENIT
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(a)

(b)

Figure 5.11: Comparison of training alignment of two example images a) and b) taken
from the IAM database. Upper lines without preprocessing, lower lines
with preprocessing.

Table 5.11: Results: Comparison of preprocessing

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

Baseline 81.07 34.28 6,569 1,328 13,321 83.60 37.82
Prepocessed 57.59 15.08 2,839 2,191 11,533 65.26 19.27
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Table 5.12: Results: Comparison of model-width fitting by growing state number or
MLE on the IAM database

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

3-2 57.59 15.08 2,839 2,191 11,533 65.26 19.27
5-2 47.72 10.32 3,112 1,526 9,236 54.66 13.76
MLE 54.91 9.37 5,890 422 9,533 62.43 11.74

database as Section 5.2 shows.
The mean length of all characters equals 12 pixels in comparison to about six pixels

before preprocessing, calculated by counting all non-background columns on the in-
put images and dividing their number by the complete number of characters at same
scaling height. This result has to be seen as too high since the size normalization of
the preprocessing does not resize all characters to identical width. For example, the
width of narrow characters like “i” will be smaller than 12 pixel. Thus, to model short
characters less than a total number of 12 states should perform best.

This corresponds to the results achieved with changing state numbers as depicted
in Figure 5.12. The best results are achieved using an HMM with five states and two
repetitions which best model characters with a width of about ten pixels and at least
five pixels.

The length of the characters used for the MLE are extracted on the best results
achieved with a fixed number of states. But since the preprocessing used on the
input images includes a size normalization step and by that alls characters should be
resized to similar width and height, only a small improvement is to be expected. The
MLE does not use state repetitions.

Table 5.12 shows the results of the estimated model length in comparison to the
baseline experiment (3-2). The results of the estimation with fixed model length of five
states and two repetitions (5-2) outperforms the other tested models. The 5-2 setup
improves the results compared to the baseline by about 10% WER and almost 6%
CER on the devel set. The experiment using MLE does not achieve a similar result
but still improves the WER about 3%. It even outperforms the 5-2 setup regarding the
CER. The relatively worse WER can be explained by the high number of deletions
which implies that short words are deleted but long words are modeled better which
also explains the low CER.

An HMM with five states and two repetitions each performs best and will therefore
be used for further experiments.
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Feature Extraction

For comparison with the results of the feature extraction in Section 5.2, the Sobel fea-
tures are extracted on the IAM database as well. The dimension of the PCA reduction
was optimized again and set to 50. Table 5.13 shows in contrary to the improvements
made on the IFN/ENIT database, the Sobel features are not able to outperform the
motion features but achieve similar results. The WER increases about 1% when us-
ing the Sobel features and the CER increases as well on the devel and on the eval
set.

Sobel features do not outperform the motion features but increase the number of
features by a factor of almost two. Therefore, the motion features are used in further
experiments.

CART

As in Section 5.2, context modeling using CART is applied to the IAM database as
well. The same context questions are used as for Arabic handwriting but different
questions are chosen for the central character:

• Upper- and Lowercase characters, baseline and top-minuscule line informations

• Numbers
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Table 5.13: Results: Comparison of different features

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

motion 47.72 10.32 3112 1526 9236 54.66 13.76
Sobel+Abs 48.80 10.41 2827 1692 9515 55.29 13.82

Table 5.14: Results: Comparison of CART experiments on the IAM database

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

No-CART 47.72 10.32 3112 1526 9236 54.66 13.76
Base-CART 60.36 14.71 1562 4230 11847 69.51 17.99

• Punctuation-, quotations marks and other symbols

The number of mixtures without cart is 80 characters × 5 states = 400, using CART
the number is enhanced to 1000.

The results in Table 5.14 illustrate that CART is not able to improve the results of
this experiment, also. In contrary, the error rates increase by almost 15%. The expla-
nation for this is analogous to the Arabic handwriting: The triphone context and the
feature extraction seem not to fit the provided data. In addition, the Latin handwriting
differs in style and connectivity from the Arabic handwriting. For example, only four
characters (o, r, v and w) do not have a connector at the baseline and by that alter
the style of the succeeding character. Additionally, even if written cursive, characters
seldom overlap due to the deslanting step in the preprocessing. Thus, only minimal
variations depending on the context are to be expected and by that the context de-
pending modeling might not be able to improve the results at all.

CART does not improve the results on this experiment with Latin handwriting and
will therefore not being used in further experiments.

5.3.2 Language Models and Recognition

In contrary to the previous subsection, which dealt with the improvements of the visual
models, this section deals with the modeling related to the recognition step. This
includes not only experiments using LMs and lexica trained on additional data, but
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also the subtext structure the recognition is performed on, for example, recognizing
syllables instead of complete words.

Language Models

As reported by [Pitrelly & Roy 03] as well as by [Marti & Bunke 02b], the impact of
LMs on continuous HWR should not be underestimated. The lexica and LMs used
for most experiments were gathered as described by [Bertolami & Bunke 08] in order
to reproduce the results presented in their paper. The LM is compiled as described
in Section 3.5 using the LOB, Brown and Wellington (LBW) corpora (for a descrip-
tion see Section 4.3). The sentences from the corpora were concatenated and then
splitted every ten words to simulate line writing. An approach without this simulation
was also applied but performed worse. The perplexities of the LMs regarding the
testing data are illustrated in Figure 5.13. The perplexity of the LMs decreases signif-
icantly from unigram to bi- and trigram. The decrease from trigram to higher n-grams
is much smaller, which indicates that the used training data does not match the test
data, which is not probable since the LOB corpus is the underlying corpus of the
test data, or too little training data. With more training data, the perplexity should de-
crease the more context is taken into account. The constantly higher perplexity of the
LBW LMs compared to the LMs generated on the training data of the IAM database
(Train-LM) is induced by the higher amount of data used for the generation of the LBW
LMs.

As Table 5.15 shows, the OOV rate of the training lexicon on the devel and eval
data is about 15% which is high compared to the OOV rate of 6.3% proposed by
[Bertolami & Bunke 08]. Hence, different lexica containing the 10 to 50 thousand
(10k,...,50k) most frequent words from the LBW corpora are created to compensate
for the high OOV rates as Table 5.15 illustrates. Since the LOB corpus is the underly-
ing corpus of the IAM database (see Section 4.2), the lines occurring in the devel and
eval set have to be removed before using it for the LM generation to avoid training of
the LM on the testing data.

Figure 5.14 depicts the impact of the different n-grams and the number of words
in the lexica. As supposed, both the WER decrease with an ascending number of
n-grams. Analogously to the perplexity shown in Figure 5.13 WER and CER stabilize
with the trigram LM. The differences between the WER with the same n-gram but
different lexica can be explained by the OOV-rate of each lexicon. For example, the
difference between the OOV rates of the 10k and 20k lexicon is about 4% which
equals the difference between the WERs the two lexica achieve.

As Table 5.17 and Figure 5.14 show, the best WER is reached using a trigram
LM and the 50k lexicon with 33.84% WER on the devel and 39.94% on the eval
set. In comparison to the training lexicon and LM, the WER is topped by more
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Figure 5.13: Perplexity of different LMs build on the training data and the combined
LBW corpora

than 10% absolute on the devel set. The CER improves as well. Additionally, the
results achieved with a 20k lexicon are depicted in the table for comparison with
[Bertolami & Bunke 08] who used a 20k most frequent word lexicon from the same
corpora and reached a WER of 35%.

An inspection of the results obtained reveals that the annotation of the database
and the corpora used for the LMs are not consistently tokenized. Table 5.16 shows
an overview of the most frequent confusion pairs. Several of the errors on the original
data originate from bad tokenization regarding the suffixes “’t” and “’s”. For exam-
ple the tokenizations “[tonight’s]” as well as “[Something] [’s]” can be found in
the annotation of the database. Thus, the retokenization of the databases’ annota-
tion as well as the text corpora are necessary. Additionally, a mapping of ambiguous
writing variants, for example “Mr” and “Mr.” was applied so that all writing variants
are represented equally in the LM. The retokenization of the corpora and annotation
further improves the results in Table 5.17. Both the WER and CER are improved on
the devel set as well as on the eval set. The confusion pairs displayed in Table 5.16
are now free of tokenization errors. When comparing the results of the original with
the retokenized annotation in Table 5.17, the number of substitutions stays almost the
same while the number of deletions decreases about 10% relatively. This is an effect
of the retokenization because when recognizing, for example, “[isn’t]” instead of
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Table 5.15: Comparison of OOV rates of the lexica on devel und eval set

Corpus Lexicon size OOV-Rate [%]

devel Eval

trainset 7,764 15.45 15.03

10k 10.14 10.06
20k 6.96 6.54

LBW 30k 5.42 4.92
40k 4.65 4.01
50k 4.01 3.47

“[isn] [ ’t]”, one substitution and one deletion is counted. After the retokenization,
these deletions are avoided. After the retokenization, most errors are substituted
punctuation marks, which is most likely due to the low resolution of the input images,
and a mix-up of upper- and lowercase characters.

To compensate for the latter error, a lowercase LM is created based on the retok-
enized corpora and all words in the lexicon are mapped to their lowercase equivalent.
Thus, the choice between upper- and lowercase is made only based on the visual
model. Nonetheless, a completely lowercase LM poses a risk, since a lot of informa-
tion is lost and the quality of the visual models might not be sufficient to recognize
the cases adequately. The information loss is especially important for punctuations,
since the most punctuation marks are followed by an uppercase character. The re-
sults achieved with the lowercase LM are also displayed in Table 5.17 but their WER
increases about 13% absolute compared to a true case LM. When using a lowercase
LM the confusion matrix shows that more upper- and lowercase characters are mixed
up.

The experiments with different LMs show that a proper tokenization and generation
of LMs is necessary for good recognition results.

Character Recognition

A problem when recognizing continuous text is the occurrence of words not covered
by the recognition lexicon. Those words cannot be recognized since they are not
known neither by the recognition lexicon nor by the LM. One possibility to recognize
these words correctly is a character based recognition, where the lexicon contains
only the characters that have been seen in the training and an explicit white space
model. The white space model is used as boundary in the reconstruction of the words.
A character LM is trained on the training data and on the LBW corpora with increas-
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Table 5.16: Top10 confusion pairs with original and retokenized annotation an LMs on
the IAM database

Top Original Retokenized

Reference Recognized # Reference Recognized #

1 ; , 10 ; , 11
2 ’t didn’t 8 , . 10
3 , . 8 “ . 8
4 “ . 7 . , 6
5 ’t don’t 7 Broughtons Broughton 6
6 . , 7 his this 6
7 was has 7 was has 6
8 ’t isn’t 6 He the 5
9 his this 6 ” in 4

10 He the 5 ... . 4
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Figure 5.14: Results for different lexica sizes using the LBW corpus and correspond-
ing lexica when recognizing on the devel set
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Table 5.17: Results: Comparison of word LMs and lexica

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

Train-LM & Lex 47.72 10.32 3112 1526 9236 54.66 13.76

LBW LM (3gram)
+ 20k most Lex 36.24 9.05 3138 838 6671 42.13 11.13

+ retokenized LM 34.64 8.92 2790 1080 6690 41.45 10.97
+ lowercase LM 41.37 9.84 3285 867 7882 47.41 12.02

+ 50k most Lex 33.84 8.61 3354 623 6159 39.94 11.95
+ retokenized LM 31.92 8.44 2942 800 6188 38.98 11.79

+ lowercase LM 45.17 9.83 3823 586 8770 51.93 13.52

ing context length. The best WER with word recognition was achieved with a trigram.
A word in the training data is composed of five characters in average. Therefore, a
character recognition with a 15-gram character LM is supposed to achieve the best
results. But as Figure 5.15 shows, the perplexity of the LBW LM on the devel set de-
creases at first but increases after reaching the seven-gram. The perplexity basically
measures the number of possible tokens in the LM within a certain context. A perplex-
ity of six basically means that at every position only six out of 80 characters are likely.
To compare the achieved results with the word based recognition the seven-gram LM
will be applied.

Since a character recognition is able to make more errors in spelling than a word
based system, a spell checker 1 is applied to the recognized text in a post-processing
step. The results of the Train LM and the LBW corpus without and with spell checking
are provided in Table 5.18. When using the Train LM, the WER is decreased about
4% in comparison to the word recognition. But since the OOV rate of the training
lexicon is about 15%, a total loss of about 10% WER is calculated. When comparing
the results achieved by a word based recognition using the LBW LM, the difference
regarding the OOV rate is only a loss of about 5%. The results also show, that the
spell checker can only improve the results created using the Train LM but not the
results achieved with the LBW LM. This implies a good modeling of the testing data
by the visual model and the character LBW LM.

Since the character recognition only uses a seven-gram, it might be able to perform
adequately compared to word base recognition when using an LM trained with more

1ISPELL with standard settings; http://www.gnu.org/software/ispell/ispell.html
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Figure 5.15: Perplexity of different character LMs on the training data and the LBW
corpora

data.

Syllable Recognition

Another possibility to reduce the number of unknown words in the lexicon is syllable
recognition. This method does not erase all unknown words, but the number of pos-
sible syllables is much smaller than the number of possible words. For example, to
model all words of the 20k most frequent word lexicon extracted from the LBW cor-
pora, only 13 thousand syllables are needed. In addition, syllables possess a level
of information that is not as low as characters’ information level, several syllables
themselves form a valid word.

Therefore, the OOV rate drops substantially when using the 20k most frequent
syllables instead of the 20k most frequent words. The OOV rates of the syllable lexica
displayed in Table 5.19 are much smaller than the OOV rates of the word recognition.

In order to perform a syllable recognition, syllable lexica and LMs are created ac-
cording to Section 3.7. Similar to the character recognition, an explicit white space
model is used as indication of word boundaries for the word reconstruction. Also, a
spell checker is applied in a post-processing step to improve the results.

Figure 5.16 depicts the perplexities of the syllable LMs. Again, it indicates that
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Table 5.18: Results: Character recognition with character LMs and lexica

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

Word Recognizer 31.92 8.44 2942 800 6188 38.98 11.79

Train-LM 43.78 21.90 2175 1097 10212 52.93 28.47
+ Spell checker 42.89 22.94 2175 1097 9899 51.70 29.67

LBW LM (7-gram) 35.42 16.28 3631 301 6637 41.49 21.37
+ Spell checker 35.64 17.09 3631 301 6611 41.39 22.07

Table 5.19: Comparison of OOV-rates of the syllable lexica on devel und eval set

Corpus Lexicon size OOV-Rate [%]

devel Eval

trainset 5,726 4.60 4.41

10k 2.33 1.78
20k 1.44 0.92

LBW 30k 0.93 0.59
40k 0.76 0.50
50k 0.63 0.43

the data used for training is not sufficient but will be used for comparison reasons.
Since each word exists of approximately two syllables, a five-gram LM is chosen to
reproduce results obtained using a trigram word LM.

When comparing syllable to word and character recognition the information level of
syllables is higher compared to characters but lower compared to word recognition.
On the other hand is the OOV rate of word recognition higher than the one of syllable
recognition, character recognition has no OOV words. Therefore, the syllable recog-
nition is expected to perform better than the character recognition but worse than the
word recognition.

Table 5.20 shows the results obtained using the training and LBW LM and a 20k
lexicon. None of the results achieved with syllable recognition is able to outperform
a word or character recognition with the same or even less training data. When com-
paring the Train-LM with the LBW LM the WER decreases while the CER increases.
This might be caused by sub-word constraints given by the syllable language model.
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Table 5.20: Results: Syllable recognition with syllable LMs and lexica

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

Word Recognizer 31.92 8.44 2942 800 6188 38.98 11.79

Train LM 48.00 24.44 3702 567 9102 52.49 28.98
+ Spell checker 47.89 25.35 3706 564 9036 52.23 29.64

LBW 46.81 24.47 2960 972 9417 52.40 0 30.47
+ Spell checker 45.96 25.74 2961 969 0250 51.74 29.41
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5.3.3 Discriminative Training

[Dreuw & Heigold+ 09] proposed a MMI based discriminative training and evaluated
it on the IFN/ENIT database. They were able to improve the results by about 30%
relative. The same algorithm, also described in detail in Section 3.4.3, is applied to
the best models generated in this work using the LBW word lm and the character
visual models with five states and two repetitions. For the training-recognition, a word
unigram is chosen. The discriminative training is then performed with a maximum of
50 RProp iterations, the according WERs are illustrated in Figure 5.17. For the final
recognition, the model generated in iteration 42 is chosen to avoid overfitting, since
the WER on the devel set slightly increases in the following iterations, even if the CER
still decreases.

The result achieved is displayed in Table 5.22 using a 20k and a 50k lexicon. The
results improve significantly to less than 30% on the devel set and about 35% on the
evaluation set using a 20k lexicon. With this results we are able to compete with the
current state of the art by [Bertolami & Bunke 08] who achieved also 35% WER on
the evaluation set.

An inspection of the confusion pairs in Table 5.21 shows, that most errors based
on regular characters are eliminated. In contrast, errors regarding punctuation and
quotation marks are increased. This can be explained with a visualization of the
training alignment in Figure 5.18. The punctuation marks, for example, the dot after
“Mr” do now implicitly model the context as a part of the previous character is aligned
to the dot. This might decrease the quality of the punctuation mark models. On
the other hand, the visualization revealed that the modeling of white spaces further
improved as less white space is modeled implicitly by the surrounding characters, for
example after the “to” in Figure 5.18(a).

The discriminative training is able to further improve the results by especially im-
proving the implicit modeling of white spaces and shall therefore be used in ongoing
experiments.

Summary

The performance of the system in relation to current state of the art systems can be
seen in Table 5.23. The table shows, that all other single word recognition systems
are outperformed. The proposed system can only be outperformed by the ensemble
system proposed by [Bertolami & Bunke 08].
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Figure 5.18: Comparison of training alignment of two example images a) and b) taken
from the IAM database. Upper lines without 5-2 baseline setup, lower
lines with additional discriminative training.
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Table 5.21: ableop10 confusion pairs with retokenized LM and discriminative training
on the IAM database

Top Reference Recognized #

1 , . 27
2 . , 21
3 ; , 16
4 ” ’ 8
5 ” , 8
6 ’t not 6
7 isn is 5
8 was has 5
9 “ ’s 4

10 ” , 4

Table 5.22: Results: Recognition using discriminative trained models

Experiment Devel Eval

Words Chars Words Chars

WER [%] CER [%] Del Ins Sub WER [%] CER [%]

No-DT 31.92 8.44 2942 800 6188 38.98 11.79

With-DT
+ 20k most Lex 29.40 7.18 1268 1678 6052 35.32 11.18
+ 50k most Lex 26.19 7.90 1401 1304 5580 32.52 12.40
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Table 5.23: Summary of the results achieved on the IAM database in comparison with
current state of the art systems.

WER [%]
Devel Eval

Proposed Systems
Baseline 81.07 83.60

+ Prepocessed 57.59 65.26
+ LBW LM % Lexicon 34.64 41.45

+ character recognition 35.42 41.49
+ discriminative training 29.40 35.32

Single Word Recognizer
[Bunke & Bengio+ 04] - ≈ 42
[Bertolami & Bunke 08] 30.98 35.52
[Natarajan & Saleem+ 08] - 40.01
[Romero & Alabau+ 07] 30.6 -

Ensemble systems
[Bertolami & Bunke 08] 26.85 32.83
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Chapter 6

Conclusion

In this work, a script independent HWR system was presented and evaluated on Ara-
bic and Latin handwriting. Several methods for improvement of language-, context-
and visual models were tested. In contrary to other systems which use advanced
preprocessing and feature extraction, it was shown that a basic preprocessing for po-
sition and size normalization as well as appearance based features on low resolution
images are sufficient for HWR.

For the Arabic single word recognition task different lexica, preprocessing and
context modeling were tested. On the Latin handwriting a continuous word recogni-
tion task was performed and improvements were made on the preprocessing, lexica,
context- and language models mainly. Additionally, sub-word recognition was evalu-
ated.

Experiments on single word recognition using lexica with explicit white spaces be-
tween compound words or sub-words revealed that the explicit white spaces within
words improve the recognition results as a better segmentation of the sub-words is
achieved. Furthermore, lexica using word wise writing variants were compared to lex-
ica using supervised writing variants for each input image. The usage of supervised
writing variants can further improve the results achieved since the automatic mapping
of writing variants to an input image is not as reliable as the manual annotation of the
images.

The impact of MLE was investigated in comparison to more simple but flexible mod-
els. As an alternative to the complex MLE models an approximation was found using
a fixed number of states with state repetitions which achieves similar error rates on
the cross validation folds. The model was adjusted resulting in a maximum spatial
resolution of the characters with minimal length and with the lowest TDPs for charac-
ters with average length. This simpler model can be used if the length of the model
cannot be estimated reliably.

For further improvements of the visual models on the Arabic database, possibilities
of simplification of the models were compared. Two methods were proposed, one
using a shape based reduction of the models such that similar characters are rep-
resented by one model. The second method uses one model per character instead
of four by not using the position information. Both methods are not able to outper-
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form a system trained with the full information of shape and position of the charac-
ter. Nonetheless, the models trained with a reduced number of characters are much
smaller and thus can be used when optimizing the system for a faster recognition.

The best error rates on the IFN/ENIT database were obtained using a model with
MLE and supervised writing variants. These results outperform most of the published
results and the proposed methods can therefore clearly be seen as state of the art.

On the IAM database the visual models were improved in a similar manner as on
the IFN/ENIT database. The preprocessing applied to the IAM database was able to
improve the results significantly. Most important for this task is the size normalization
as the input data was not normalized in height or text position.

A length estimation of the characters was performed on the preprocessed data
using fixed and variable number of states per character. The MLE was not able to
outperform an estimation with a fixed number of states which can be explained by the
size normalization of the preprocessing.

Most important for continuous word recognition was the creation of LMs and lexica.
Different LMs were tested, using the training data and three additional text corpora.
Results using an LM trained on the training data performed badly due to a high OOV
rate. The error rates were improved by generating an LM and a corresponding most
frequent word lexicon using additional data. Thereby, the tokenization of the database
and the text corpora was modified to a consistent format. A lowercase and reduced
LM along with a true case LM were tested. The best performance was reached using
the true case LM with the retokenized database and corpora.

Moreover, the word recognition was compared to character and syllable recognition.
Therefore, character and syllable LMs and lexica were generated using the improve-
ments made in the word recognition. Both sub-word recognitions were not able to
outperform the word recognition using the additional text corpora. But when deal-
ing with texts with high OOV rates in the word recognition, the character recognition
performed well as it has an OOV rate of 0%.

For further improvements of the visual models, a discriminative training was ap-
plied to the IAM database. Visual inspection showed, that the models were improved
especially regarding the surrounding white spaces. After applying the discriminative
training, the white space was less often modeled implicitly which decreased the error
rate. On the other hand, more errors were made regarding the punctuation mark as
more context of previous characters was modeled implicitly.

The best results were achieved using discriminative training and and optimized LM
on the IAM database and can slightly outperform the currently best results reported
by [Bertolami & Bunke 08].

No improvement where achieved in context modeling with CART on the Latin nor
on Arabic handwriting. This can be explained by the feature extraction which models
the context implicitly and the triphone context which may not fit handwriting. The main
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changes of the characters regarding their context are made in the height of the con-
nectors to the preceding and succeeding character. In handwriting, the connection of
most characters only depends on the preceding character and therefore, the triphone
context might not fit.

The results on both databases reported in this work are rated in line with the ones
of the best published systems. Thus, the here proposed script independent HWR
system has proven to extend the current state of the art in HWR and provides a
promising field for further research and replications.

Outlook

The results have shown that the language- and visual model have a great impact
and can compensate for most preprocessing steps usually performed. Therefore, the
combination of the proposed methods with additional preprocessing and feature ex-
traction may be able to further improve the quality of the visual model. Especially
features extracting shape informations such as dots or short strokes may be able to
improve the recognition of punctuation- and quotation marks which is still not suffi-
cient.

Another approach to improve the recognition of punctuation- and quotation marks
is the usage of better language models. The occurrence of those symbols seems not
to be represented well within the ones currently used.

Also, the usage of sub-word recognition has proven to perform well on continuous
HWR and was successfully used by [Abdulkadr 06] in the ICDAR 2007 competition.
Therefore, subword recognition should be tested on the Arabic single word recogni-
tion task.

The triphone context modeling proposed in this work was not able to obtain good
results. Nonetheless it is known, that the previous character can influence the shape
of a character. Thus, a context modeling using a diphone may be appropriate for
handwriting.

Another method to model the variations in the handwritten text is the writer adap-
tive training (see [Dreuw & Rybach+ 09]). In combination with the writer independent
methods proposed in this work further improvements can be expected.

By using recognizer ensembles, [Bertolami & Bunke 08] showed that the recogni-
tion results can be improved significantly. This is a very promising approach espe-
cially when combining sub-word and word recognizers as, for example, character
recognizers are able to recognize any word but not as reliable as a word recognizer.
The drawback of the word recognizer is the limited vocabulary. By the combination
of both, the reliability of the word recognizer can be combined with the unrestrained
recognition of the character recognizer.
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At last, the script independence of the proposed system needs to be verified on
more scripts and languages as proposed by [Natarajan & Saleem+ 08].

78



List of Figures

1.1 Example ligatures used in Latin typewriting . . . . . . . . . . . . . . . 3
1.2 Example ligatures used in Arabic handwriting . . . . . . . . . . . . . . 4
1.3 Example diacritics used in Arabic handwriting . . . . . . . . . . . . . . 4

3.1 Recognition architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Used HMM topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Example of preprocessing steps . . . . . . . . . . . . . . . . . . . . . 23
3.4 Horizontal and vertical Sobel filter . . . . . . . . . . . . . . . . . . . . 24
3.5 Feature extraction workflow . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Example text from the LOB corpus . . . . . . . . . . . . . . . . . . . . 29
3.7 Example text from the LOB corpus with auto line break . . . . . . . . . 30
3.8 Example text from the LOB corpus with explicit white space . . . . . . 31
3.9 Example of different explicit white space positions . . . . . . . . . . . 32
3.10 Example text from the LOB corpus for character LM . . . . . . . . . . 34
3.11 Example text from the LOB corpus for syllable LM . . . . . . . . . . . 35

4.1 Sample images taken from the IFN/ENIT database . . . . . . . . . . . 37
4.2 History of development of the IFN/ENIT database . . . . . . . . . . . . 38
4.3 Sample images taken from the IAM database . . . . . . . . . . . . . . 39

5.1 Comparison IFN/ENIT: PCA dimension and windowing . . . . . . . . . 43
5.2 Visualization IFN/ENIT: Training alignment . . . . . . . . . . . . . . . . 44
5.3 Comparison IFN/ENIT: PCA dimension and lexica . . . . . . . . . . . 45
5.4 Visualization IFN/ENIT: Alignment with and without preprocessing . . 48
5.5 Visualization IFN/ENIT: Alignment using MLE . . . . . . . . . . . . . . 49
5.6 Comparison IFN/ENIT: Mean length of characters . . . . . . . . . . . 50
5.7 Comparison IFN/ENIT: PCA dimension on Sobel filtered images . . . 54
5.8 Comparison IAM: PCA dimension and windowing . . . . . . . . . . . . 57
5.9 Comparison IAM: PCA and LDA . . . . . . . . . . . . . . . . . . . . . 57
5.10 Comparison IAM: Splits in training . . . . . . . . . . . . . . . . . . . . 58
5.11 Visualization IAM: Alignment with and without preprocessing . . . . . 59
5.12 Comparison IAM: Number of states per character . . . . . . . . . . . . 61
5.13 Comparison IAM: Perplexity on LBW word LMs . . . . . . . . . . . . . 64
5.14 Comparison IAM: Lexicon and LMs . . . . . . . . . . . . . . . . . . . . 66

79



5.15 Comparison IAM: Perplexity on LBW character LMs . . . . . . . . . . 68
5.16 Comparison IAM: Perplexity on LBW syllable LM . . . . . . . . . . . . 70
5.17 Comparison IAM: RProp iterations using discriminative training . . . . 72
5.18 Visualization IAM: Alignment with and without discriminative training . 72

80



List of Tables

1.1 Overview of Arabic characters . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Description of the IFN/ENIT database . . . . . . . . . . . . . . . . . . 38
4.2 Description of the IAM database . . . . . . . . . . . . . . . . . . . . . 40
4.3 Description of the text corpora . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Results IFN/ENIT: White space modeling . . . . . . . . . . . . . . . . 45
5.2 Overview of writing variants and lexica entries . . . . . . . . . . . . . . 46
5.3 Results IFN/ENIT: Supervised writing variants . . . . . . . . . . . . . . 46
5.4 Results IFN/ENIT: Deslanting and Preprocessing . . . . . . . . . . . . 47
5.5 Results IFN/ENIT: MLE approximation . . . . . . . . . . . . . . . . . . 50
5.6 Results IFN/ENIT: Character reduction . . . . . . . . . . . . . . . . . . 51
5.7 Results IFN/ENIT: CART on full character set . . . . . . . . . . . . . . 53
5.8 Results IFN/ENIT: CART on reduced character set . . . . . . . . . . . 53
5.9 Results IFN/ENIT: Sobel feature extraction . . . . . . . . . . . . . . . 55
5.10 Results IFN/ENIT: Summary and comparison . . . . . . . . . . . . . . 56
5.11 Results IAM: Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 59
5.12 Results IAM: MLE and MLE approximation . . . . . . . . . . . . . . . 60
5.13 Results IAM: Sobel features . . . . . . . . . . . . . . . . . . . . . . . . 62
5.14 Results IAM: CART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.15 Comparison of OOV rates using different word lexica . . . . . . . . . . 65
5.16 Comparison of Top10 confusion pairs using different LMs . . . . . . . 66
5.17 Results IAM: LBW lexica and LM . . . . . . . . . . . . . . . . . . . . . 67
5.18 Results IAM: Character recognition . . . . . . . . . . . . . . . . . . . . 69
5.19 Comparison of OOV rates using syllable lexica . . . . . . . . . . . . . 69
5.20 Results IAM: Syllable recognition . . . . . . . . . . . . . . . . . . . . . 70
5.21 Top10 confusion pairs using discriminative training and word recognition 73
5.22 Results IAM: Discriminative Training . . . . . . . . . . . . . . . . . . . 73
5.23 Results IAM: Summary and comparison . . . . . . . . . . . . . . . . . 74

81





Glossary

BCC Binary Connected Components Analysis

CART Classification And Regression Tree
CER Character Error Rate

EM Expectation Maximization

GMM Gaussian Mixture Model

HMM Hidden Markov Model
HWR Handwriting Recognition

LDA Linear Discriminant Analysis
LM Language Model

MLE Model Length Estimation
MMI Maximum Mutual Information

NN Artificial Neural Network
NN Nearest Neighbour

OCR Optical Character Recognition
OOV Out Of Vocabulary

PCA Principal Components Analysis

SVM Support Vector Machine

TDP Time Distortion Penalty

83



WER Word Error Rate

84



Bibliography

[Abdulkadr 06] A. Abdulkadr: Two-tier approach for arabic ofline handwriting recog-
nition. In International Workshop on Frontiers in Handwriting Recognition, pp. 161–
166, 2006.

[Abed & Märgner 09] H.E. Abed, V. Märgner: Improvement of Arabic handwriting
recognition systems; combination and/or reject? Document Recognition and Re-
trieval XVI, Vol. 7247, No. 10, 2009.

[Aburas & Gumah 08] A.A. Aburas, M.E. Gumah: Arabic handwriting recognition:
Challenges and solutions. In International Symposium on Information Technology,
Vol. 2, pp. 1–6, Aug 2008.

[Alma’adeed & Higgens+ 02] S. Alma’adeed, C. Higgens, D. Elliman: Recognition of
off-line handwritten Arabic words using hidden Markov model approach. In Interna-
tional Conference on Pattern Recognition, Vol. 3, pp. 481–484, 2002.

[Bakis 76] R. Bakis: continuous Speech Word Recognition via Centisecond Acoustic
States. In 91st Meeting of the Acoustical Society of America (ASA), Washington,
DC, USA, 1976.

[Bayes 63] T. Bayes: An Essay towards Solving a Problem in the Doctrine of
Chances. Philosophical Transactions of the Royal Society of Londong, Vol. 53,
pp. 370–418, 1763.

[Bazzi & Schwartz+ 99] I. Bazzi, R. Schwartz, J. Makhoul: An Omnifont Open-
Vocabulary OCR System for English and Arabic. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 21, No. 6, pp. 495–504, 1999.

[Bertolami & Bunke 05] R. Bertolami, H. Bunke: Ensemble methods for handwritten
text line recognition systems. In IEEE International Conference on Systems, Man
and Cybernetics, Vol. 3, pp. 2334–2339 Vol. 3, Oct 2005.

[Bertolami & Bunke 08] R. Bertolami, H. Bunke: Hidden Markov model-based en-
semble methods for offline handwritten text line recognition. Pattern Recognition,
Vol. 41, No. 11, pp. 3452–3460, Nov 2008.

85



[Beulen & Bransch+ 96] K. Beulen, E. Bransch, M. Kramer, H. Ney: State-Tying für
kontextabhängige Phonemmodelle. In Proc. ITG-Fachtagung Sprachkommunika-
tion, pp. 51–54, Frankfurt am Main, Germany, Sep 1996.

[Beulen & Bransch+ 97] K. Beulen, E. Bransch, H. Ney: State-Tying for Context De-
pendent Phoneme Models. In European Conference on Speech Communication
and Technology, Vol. 3, pp. 1179–1182, Rhodes, Greece, Sep 1997.

[Buck & Gass+ 08] C. Buck, T. Gass, A. Hannig, J. Hosang, S. Jonas, J.T. Peter,
P. Steingrube, J.H. Ziegeldorf: Data-Mining-Cup 2007: Vorhersage des Einlösever-
haltens. Informatik Spektrum, Vol. 31, No. 6, pp. 591–599, Dec 2008.

[Bunke & Bengio+ 04] H. Bunke, S. Bengio, A. Vinciarelli: Offline recognition of un-
constrained handwritten texts using HMMs and statistical language models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 6, pp. 709–
720, Jun 2004.

[Bunke & Roth+ 95] H. Bunke, M. Roth, E.G. Schukat-Talamazzini: Off-line cursive
handwriting recognition using hidden markov models. Pattern Recognition, Vol. 28,
No. 9, pp. 1399–1413, Sep 1995.

[Caesar & Gloger+ 93] T. Caesar, J. Gloger, E. Mandler: Preprocessing and feature
extraction for a handwriting recognitionsystem. In International Conference on Doc-
ument Analysis and Recognition, pp. 408–411, Tsukuba City, Japan, Oct 1993.

[Chellapilla & Simard+ 06] K. Chellapilla, P. Simard, A. Abdulkader: Allograph based
writer adaptation for handwritten character recognition. In International Workshop
on Frontiers in Handwriting Recognition, Oct 2006.

[Dreuw & Heigold+ 09] P. Dreuw, G. Heigold, H. Ney: Confidence-Based Discrimina-
tive Training for Model Adaptation in Offline Arabic Handwriting Recognition. In In-
ternational Conference on Document Analysis and Recognition, Barcelona, Spain,
Jul 2009.

[Dreuw & Jonas+ 08] P. Dreuw, S. Jonas, H. Ney: White-Space Models for Offline
Arabic Handwriting Recognition. In International Congress on Pattern Recognition,
pp. 1–4, Tampa, Florida, USA, Dec 2008.

[Dreuw & Rybach+ 09] P. Dreuw, D. Rybach, C. Gollan, H. Ney: Writer Adap-
tive Training and Writing Variant Model Refinement for Offline Arabic Handwriting
Recognition. In International Conference on Document Analysis and Recognition,
Barcelona, Spain, Jul 2009.

[Duda & Hart+ 01] R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification. Wiley-
Interscience, 3rd edition, 2001.

86



[El-Hajj & Likforman-Sulem+ 05] R. El-Hajj, L. Likforman-Sulem, C. Mokbel: Arabic
Handwriting Recognition Using Baseline Dependant Features and Hidden Markov
Modeling. In International Conference on Document Analysis and Recognition,
Vol. 1, pp. 70–74, Seoul, Korea, Aug 2005.

[Francis & Kucera 64] W.N. Francis, H. Kucera. Manual of Information to Accompany
a Standard Corpus of Present-Day Edited American English, for use with Digital
Computers. Department of Linguistics, Brown University, Providence, Rhode Is-
land, USA, 1964. http://icame.uib.no/brown/bcm.html.

[Gupta & Niranjan+ 06] G. Gupta, S. Niranjan, A. Shrivastava, R. Sinha: Document
Layout Analysis and Classification and Its Application in OCR. In Enterprise Dis-
tributed Object Computing Conference Workshops, 2006. EDOCW ’06. 10th IEEE
International, pp. 58–58, Oct 2006.

[Heigold & Deselaers+ 08] G. Heigold, T. Deselaers, R. Schlüter, H. Ney: Modified
MMI/MPE: A Direct Evaluation of the Margin in Speech Recognition. In Interna-
tional Conference on Machine Learning, pp. 384–391, Helsinki, Finland, Jul 2008.

[Holmes & Vine+ 98] J. Holmes, B. Vine, G. Johnson. Guide to the Wellington Cor-
pus of Spoken New Zealand English. School of Linguistics and Applied Language
Studies, Victoria University of Wellington, Wellington, New Zealand, Jun 1998.

[Johansson & Leech+ 78] S. Johansson, G.N. Leech, H. Goodluck. Manual of Infor-
mation to Accompany the Lancaster-Oslo/Bergen Corpus of British English, for Use
With Digital Computers. Department of English, University of Oslo, Oslo, Norway,
Dec 1978. http://khnt.hit.uib.no/icame/manuals/lob/INDEX.HTM.

[Juan & Toselli+ 01] A. Juan, A.H. Toselli, J. Domnech, J. González, I. Salvador, E. Vi-
dal, F. Casacuberta: Integrated Handwriting Recognition and Interpretation via
Finite-State Models. International Journal of Pattern Recognition and Artifial Intelli-
gence, Vol. 2004, pp. 519–539, 2001.

[Keysers 07] D. Keysers: Comparison and Combination of State-of-the-art Tech-
niques for Handwritten Character Recognition: Topping the MNIST Benchmark.
techreport, IUPR Research Group, DKFI and TU Kaiserslautern, Oct 2007.

[Keysers & Dahmen+ 00] D. Keysers, J. Dahmen, H. Ney: A Probabilistic View on
Tangent Distance. In Deutsche Arbeitsgemeinschaft für Mustererkennung Sympo-
sium, pp. 107–114, Kiel, Germany, Sep 2000. Springer.

[Keysers & Deselaers+ 07] D. Keysers, T. Deselaers, C. Gollan, H. Ney: Deformation
Models for Image Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 29, No. 8, pp. 1422–1435, Aug 2007.

87



[Kneser & Ney 95] R. Kneser, H. Ney: Improved Backing-off for m-gram Language
Modeling. In International conference on Acoustics, Speech and Signal Processing,
Vol. 1, pp. 181–184, 1995.

[Koerich & Sabourin+ 03] A.L. Koerich, R. Sabourin, C.Y. Suen: Large Vocabulary
Off-Line Handwriting Recognition: A Survey. Pattern Analysis and Applications,
Vol. 6, pp. 97–121, 2003.

[Lee 96] S.W. Lee: Off-Line Recognition of Totally Unconstrained Handwritten Nu-
merals Using MCNN. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 18, pp. 648–652, 1996.

[Liang 83] M. Liang: Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis, Department
of Computer Science, Stanford University, Stanford, CA, USA, Aug 1983.

[Lorigo & Govindaraju 06] L. Lorigo, V. Govindaraju: Offline Arabic handwriting recog-
nition: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 28, No. 5, pp. 712–724, May 2006.

[Lööf & Gollan+ 07] J. Lööf, C. Gollan, S. Hahn, G. Heigold, B. Hoffmeister, C. Plahl,
D. Rybach, R. Schlüter, H. Ney: The RWTH 2007 TC-STAR Evaluation System
for European English and Spanish. In Interspeech 2007, pp. 2145–2148, Antwerp,
Belgium, Aug 2007.

[Majidi 06] M.R. Majidi: Einführung in die arabisch-persische Schrift. Helmut Buske
Verlag, 2006.

[Mandler & Oberländer 89] E. Mandler, M. Oberländer: A single pass algorithm for
fast contour coding of binary images. In DAGM-Symposium, 1989.

[Märgner & Abed 07] V. Märgner, H.E. Abed: Arabic Handwriting Recognition Com-
petition. In International Conference on Document Analysis and Recognition, Vol. 2,
pp. 1274–1278, Sep 2007.

[Märgner & Pechwitz+ 05] V. Märgner, M. Pechwitz, H. Abed: Arabic handwriting
recognition competition. In International Conference on Document Analysis and
Recognition, Vol. 1, pp. 70–74, Seoul, Korea, Aug 2005.

[Marti & Bunke 99] U.V. Marti, H. Bunke: A full English sentence database for off-
line handwriting recognition. In International Conference on Document Analysis
and Recognition, pp. 705 – 708, 1999.

[Marti & Bunke 02a] U.V. Marti, H. Bunke: The IAM-database: an English sentence
database for offline handwriting recognition. International Journal on Document
Analysis and Recognition, Vol. 5, No. 1, pp. 39–46, Nov 2002.

88



[Marti & Bunke 02b] U.V. Marti, H. Bunke: Using a statistical language model to im-
prove the performance of an HMM-based cursive handwriting recognition systems.
World Scientific Series In Machine Perception And Artificial Intelligence, Vol. 1,
pp. 65–90, 2002.

[Menasri 08] F. Menasri: Reconnaissance de l’écriture arabe manuscrite. In Sémi-
naire DGA/DET, Jun 2008.

[Mozaffari & Faez+ 07] S. Mozaffari, K. Faez, V. Margner, H. El Abed: Strategies for
Large Handwritten Farsi/Arabic Lexicon Reduction. In International Conference on
Document Analysis and Recognition, Vol. 1, pp. 98–102, Sep 2007.

[Natarajan & Saleem+ 08] P. Natarajan, S. Saleem, R. Prasad, E. MacRostie, K. Sub-
ramanian: Arabic and Chinese Handwriting Recognition, Vol. 4768/2008 of LNCS,
chapter Multi-lingual Offline Handwriting Recognition Using Hidden Markov Mod-
els: A Script-Independent Approach, pp. 231–250. Springer Berlin / Heidelberg,
2008.

[Neubauer 96] M. Neubauer: Feinheiten bei wissenschaftlichen Publikationen -
Mikrotypographie Regeln, Teil 1. Die TEXnische Kommödie, Vol. 4, pp. 23–40,
1996.

[Ney 90] H. Ney: Acoustic Modeling of Phoneme Units for Continuous Speech
Recognition. In 5th European Signal Processing Conference, Signal Processing
V: Theories and Applications, pp. 65–72. Elsevier Science Publishers, Dec 1990.

[Nopsuwanchai & Povey 03] R. Nopsuwanchai, D. Povey: Discriminative training for
HMM-based offline handwritten character recognition. In International Conference
on Document Analysis and Recognition, pp. 114–118, 2003.

[Pechwitz & Maddouri+ 02] M. Pechwitz, S.S. Maddouri, V. Märgner, N. Ellouze,
H. Amiri: IFN/ENIT-Database of Handwritten Arabic Words. In Colloque Inter-
national Francophone sur l’Ecrit et le Document, pp. 129–136, Hammamet, Tunis,
Oct 2002.

[Pechwitz & Märgner 03] M. Pechwitz, V. Märgner: HMM Based Approach for Hand-
written Arabic Word Recognition Using the IFN/ENIT - Database. In International
Conference on Document Analysis and Recognition, pp. 890– 894, Edinburgh,
Scottland, Aug. 2003.

[Pitrelly & Roy 03] J.F. Pitrelly, A. Roy: Creating word-level language models for large-
vocabulary handwriting recognition. International Journal on Document Analysis
and Recognition, Vol. 5, pp. 126–137, 2003.

89



[Plamondon & Srihari 00] R. Plamondon, S. Srihari: Online and off-line handwriting
recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 22, No. 1, pp. 63–84, Jan 2000.

[Romero & Alabau+ 07] V. Romero, V. Alabau, J.M. Benedi: Combination of N-
Grams and Stochastic Context-Free Grammars in an Offline Handwritten Recog-
nition System. Lecture Notes in Computer Science, Vol. 4477, pp. 467–474, 2007.

[Rybach 06] D. Rybach: Appearance-Based Features for Automatic Continuous Sign
Language Recognition. Master’s thesis, Human Language Technology and Pattern
Recognition Group, RWTH Aachen University, Aachen, Germany, Jun 2006.

[Rybach & Gollan+ 09] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf,
R. Schlüter, H. Ney: The RWTH Aachen University Open Source Speech Recogni-
tion System. In Interspeech, Brighton, U.K., Sep 2009.

[Schambach 03] M.P. Schambach: Model length adaptation of an HMM based cur-
sive word recognition system. In International Conference on Document Analysis
and Recognition, Vol. 1, pp. 109– 113, Edinurgh, Scottland, Aug 2003.

[Schambach & Rottland+ 08] M.P. Schambach, J. Rottland, T. Alary: How to Convert
a Latin Handwriting Recognition System to Arabic. In Internation Conference on
Frontiers in Handwriting Recognition, 2008.

[Shafait & van Beusekom+ 08] F. Shafait, J. van Beusekom, D. Keysers, T. Breuel:
Background variability modeling for statistical layout analysis. In Pattern Recogni-
tion, 2008. ICPR 2008. 19th International Conference on, pp. 1–4, Dec 2008.

[Shepard 53] D.H. Shepard: Apparatus for reading, Dec 1953. US-Patent No
2663758.

[Srihari 93] S. Srihari: Recognition of HAndwritten and Machineprinted Text for
Postal Adress Interpretation. Pattern Recognition Letters, Vol. 14, pp. 291–302,
1993.

[Stolcke 02] A. Stolcke: SRILM - An Extensible Language Modeling Toolkit. In Inter-
national Conference on Spoken Language Processing, Vol. 2, pp. 901–904, Denver,
CO, USA, Sep 2002.

[Sun & Si 97] C. Sun, D. Si: Skew and slant correction for document images using
gradient direction. In International Conference on Document Analysis and Recog-
nition, Vol. 1, pp. 142–146, Aug 1997.

90



[Tappert & Suen+ 90] C. Tappert, C. Suen, T. Wakahara: The state of the art in
online handwriting recognition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Vol. 12, No. 8, pp. 787–808, Aug 1990.

[Verma & Blumenstein+ 98] B. Verma, M. Blumenstein, S. Kulkarni: Recent Achieve-
ments In Off-Line Handwriting Recognition Systems. In In Proceedings of the In-
ternational Conference on Computational Intelligence and Multimedia Applications,
pp. 27–33, 1998.

[Vinciarelli & Luettin 01] A. Vinciarelli, J. Luettin: A new normalization technique for
cursive handwritten words. Pattern Recognition Letters, Vol. 22, No. 9, pp. 1043–
1050, Jul 2001.

[Yanikoglu & Sandon 98] B. Yanikoglu, P.A. Sandon: Segmentation of off-line cursive
handwriting using linear programming. In Pattern Recognition, Vol. 31, pp. 1825–
1833, 1998.

[Zhang & Jin+ 03] J. Zhang, R. Jin, Y. Yang, A. Hauptmann: Modified logistic regres-
sion: An approximation to XVM and its applications in large-scale text categoriza-
tion. In International Conference on Machine Learning, Aug 2003.

[Zimmermann & Bunke 02] M. Zimmermann, H. Bunke: Hidden Markov model
length optimization for handwriting recognition systems. In International Workshop
on Frontiers in Handwriting Recognition, pp. 369–374, 2002.

91




	Contents
	1 Introduction
	1.1 Latin Handwriting
	1.2 Arabic Handwriting

	2 State of the Art in Handwriting Recognition
	2.1 Isolated Character or Digit Recognition
	2.2 Continuous Word Recognition
	2.2.1 Preprocessing
	2.2.2 Feature Extraction
	2.2.3 Modeling
	2.2.4 Decoding


	3 System Overview
	3.1 Theoretical Background
	3.1.1 Visual Modeling
	3.1.2 Training of the Visual Models
	3.1.3 Language Models
	3.1.4 Recognition

	3.2 Preprocessing
	3.3 Feature Extraction
	3.4 Visual Modeling
	3.4.1 MLE
	3.4.2 CART
	3.4.3 Discriminative Training

	3.5 Language Model
	3.6 Lexica
	3.6.1 White Space Modeling

	3.7 Sub-word Lexica and Language Models

	4 Corpora
	4.1 IFN/ENIT Database
	4.2 IAM Database
	4.3 Text Corpora

	5 Experiments and Results
	5.1 Metrics and Visualization
	5.2 IFN/ENIT Database
	5.3 IAM Database
	5.3.1 Visual Modeling
	5.3.2 Language Models and Recognition
	5.3.3 Discriminative Training


	6 Conclusion
	Figures

	List of Figures
	Tables

	List of Tables
	Glossary
	Bibliography

