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ABSTRACT

Recently, there have been many papers studying discriminative
acoustic modeling techniques like conditional random fields or dis-
criminative training of conventional Gaussian HMMs. This paper
will give an overview of the recent work and progress. We will
strictly distinguish between the type of acoustic models on the one
hand and the training criterion on the other hand. We will address
two issues in more detail: the relation between conventional Gaus-
sian HMMs and conditional random fields and the advantages of
formulating the training criterion as a convex optimization problem.
Experimental results for various speech tasks will be presented to
carefully evaluate the different concepts and approaches, including
both a digit string and large vocabulary continuous speech recogni-
tion tasks.

Index Terms— speech recognition, hidden Markov model, dis-
criminative training, log-linear model, conditional random field

1. INTRODUCTION
State-of-the-art speech recognition systems are based on discrimi-
native Gaussian HMMs (GHMMs). The major points of criticism
of this conventional approach are the indirect parameterization of
the posterior model including many parameter constraints, the non-
convexity of the conventional training criteria such that the optimiza-
tion can get stuck in local optima, and the insufficient flexibility of
the HMMs to incorporate additional dependencies and knowledge
sources. The log-linear framework addresses these issues in a princi-
pled way. Examples for this framework include the log-linear model,
the maximum entropy Markov model (MEMM) [1], the conditional
random field (CRF) [2, 3], the hidden CRF (HCRF) [4, 5], and the
conditional augmented (C-Aug) models [6]. In the log-linear ap-
proach, the posterior is directly modeled, the traditional training cri-
terion is convex (except for HCRFs and C-Aug models), and it is
easy to incorporate additional knowledge (although possibly at the
cost of increased complexity) [7].

Various approaches to direct acoustic modeling have been inves-
tigated. HCRFs [4] are closest to GHMMs. Linear-chain HCRFs [4,
5] differ from conventional GHMMs mainly in the model parame-
terization. The training criterion for HCRFs is non-convex like for
GHMMs. If all hidden variables are eliminated (cf. mixtures) or sup-
pressed (cf. alignments), the HCRF reduces to a CRF [2, 3] and the
optimization problem is convex. MEMMs [1] are similar to CRFs
but the posterior is based on a different decomposition and differ-
ent dependence assumptions. Alternatively, a hybrid architecture [8]
with log-linear models to represent the HMM state posteriors can be
used. All these convex approaches have in common that the decision
boundary is linear and thus, the choice of features is essential for a

good separation of the data. The features considered so far in the lit-
erature can be roughly divided into simple generic features (cf. ker-
nel) [1, 2, 5, 9], and more sophisticated features to overcome the lim-
itations of conventional GHMMs (e.g. detector features) [3, 7, 10].
More sophisticated features tend to be more powerful than the simple
generic features, possibly at the risk of outsourcing the main work
into a separate preprocessing step. A pseudo log-linear approach was
proposed in [6]. This (non-convex) approach also estimates some pa-
rameters of the features and thus, may alleviate the feature selection
problem.

The remainder of this paper is organized as follows. Section 2
introduces the models under consideration. It also formulates an
equivalence relation for Gaussian and log-linear HMMs. Section 3
defines the different training criteria used in this paper. The focus
will be on convex optimization techniques for speech recognition.
Section 4 provides experimental results to study numerical issues
of the parameterization of the models and the utility of convex opti-
mization in speech recognition. Section 5 offers concluding remarks.

2. MODELS
Assume a sequence of feature vectors xT

1 = (x1, . . . , xT ) ∈ �T D

and a word sequence W = wN
1 = (w1, . . . ,wN). Conventional

speech recognition systems are decomposed into the language
model and the acoustic model. The language model typically is
an m-gram language model while the acoustic model is based on
GHMMs. The acoustic model introduces the HMM state sequences
sT

1 = (s1, . . . , sT ) to further decompose the acoustic model into the
transition and the emission models. The latter model is traditionally
represented by Gaussian mixture models. Under these assumptions,
the joint probability of xT

1 and W reads

pGHMM,θ(xT
1 ,W) = (1)

N∏
n=1

p(wn|wn−1)︸       ︷︷       ︸
language model

∑
sT
1

T∏
t=1

p(st |st−1,W)︸         ︷︷         ︸
transition model

N(xt |µstW ,Σ)︸          ︷︷          ︸
emission model

.

For simplicity, a bigram language model and single Gaussians
N(x|µsW ,Σ) with mean µsW ∈ �

D and a globally pooled covariance
matrix Σ ∈ �D×D are used. The model parameters of this GHMM are
θ := {p(w|v) ∈ �+, p(s|s′,W) ∈ �+, µsW ∈ �

D,Σ ∈ �D×D} subject
to the usual constraints, e.g. normalization of (conditional) prob-
abilities and positive-definiteness of covariance matrix. The joint
probability in Equation (1) induces the string posterior by Bayes
rule

pGHMM,θ(W |xT
1 ) =

pGHMM,θ(xT
1 ,W)∑

V
pGHMM,θ(xT

1 ,V)
. (2)



HCRFs are CRFs with hidden variables. Log-linear HMMs
(LHMMs) are linear-chain HCRFs sharing the model structure with
GHMMs where a log-linear parameterization for the generative
submodels are used [4]

pLHMM,Λ(W |xT
1 ) = (3)

1
ZΛ(xT

1 )

N∏
n=1

exp(αwn−1wn )︸         ︷︷         ︸
language model

∑
sT
1

T∏
t=1

exp(αst−1 stW )︸         ︷︷         ︸
transition model

exp(αstW + λ>stW xt)︸                 ︷︷                 ︸
emission model

.

The normalization constant is denoted by ZΛ(xT
1 ). Unlike the

GHMM parameters, the LHMM parameters are unconstrained,
Λ := {αvw ∈ �, αs′ sW ∈ �, αsW ∈ �, λsW ∈ �

D}.
It was shown in [4] that the GHMM in Equation (1) can be trans-

formed into an LHMM in Equation (3) with identical posteriors. Due
to the parameter constraints of GHMMs, it is in general not straight-
forward to transform the LHMM in Equation (3) into a valid GHMM
in Equation (1). Using the ambiguity of the LHMM parameters and
the propagation of the normalization constants, the parameter con-
straints of GHMMs can be imposed on the LHMM such that this
transformation is always possible [11]. This implies that the LHMM
posterior model in Equation (3) and the posterior model induced by
GHMMs in Equation (2) are equivalent, i.e., the associated sets of
posteriors are identical [11]. The equivalence relation was experi-
mentally verified on a simple concept tagging task including a bi-
gram concept model [11]. This result can be extended to Gaussian
mixture models by redefining the HMM state sequence network to
include the density indices, and to density-specific covariance ma-
trices by adding second order features to the LHMM. The equiva-
lence relation for GHMMs and LHMMs implies that all posterior-
based algorithms perform equally for either posterior model. The
discriminative training criteria are an example for posterior-based
algorithms, which are discussed next.

3. TRAINING CRITERIA
The above models are usually optimized by maximizing the mutual
information, i.e., the log-posteriors (MMI). Depending on the pre-
cise definition of the posteriors, different variants of MMI can be
derived. To simplify notation, the language model, the transition
model, and the emission model in Equations (1) and (3) are denoted
by the (pseudo) probabilities h(W), gΛ(s′, s), and fΛ(x, s), respec-
tively. The explicit dependence of f , g on W is dropped because it is
not used. This convention leads to the decision rule

Ŵ = arg max
W

max
sT
1

h(W)
T∏

t=1

f (xt, st)g(st−1, st)


 .

It is independent of the model and the training criterion.
Conventional lattice-based MMI training uses word lattices D

to approximate the normalization constant for the string posterior.
In addition, the maximum approximation is assumed such that each
hypothesis in the word lattice uniquely defines an HMM state se-
quence. The numerator lattice N is the set of HMM state sequences
representing the correct word sequence. These assumptions lead to
the string posterior used for MMI training

p(lattice)
Λ

(W |xT
1 ) =

∑
sT
1 ∈N

h(W(sT
1 ))

T∏
t=1

fΛ(xt, st)g(st−1, st)

∑
sT
1 ∈D

h(W(sT
1 ))

T∏
t=1

fΛ(xt, st)g(st−1, st)
. (4)

The word sequence associated with sT
1 is denoted by W(sT

1 ).
This choice of the posterior results in a non-convex training cri-

terion, both for GHMMs and HCRFs. This is due to the sum in the

numerator of the posterior, and the incomplete sum for the normal-
ization constant in combination with realignment. This conventional
training criterion can be made convex, i.e., the HCRF is cast into
a CRF, by replacing the normalization constant with the sum over
the complete set of HMM state sequences S and by using only the
best HMM state sequence ŝT

1 representing W in the numerator (to be
determined by some existing acoustic model)

p( f ool−proo f )
Λ

(W |xT
1 ) =

h(W(ŝT
1 ))

T∏
t=1

fΛ(xt, ŝt)gΛ(ŝt−1, ŝt)

∑
sT
1 ∈S

h(W(sT
1 ))

T∏
t=1

fΛ(xt, st)gΛ(st−1, st)
. (5)

This training criterion is referred to as fool-proof MMI. It is convex
because it has the same functional structure as a CRF and allows for
the optimization of all model parameters, (hopefully) without any
approximations and heuristics.

Due to the summation over all HMM state sequences, this ap-
proach is feasible only for small tasks (e.g. digit strings). For larger
tasks, we adopt the hybrid approach [8] to optimize the emission pa-
rameters in Equation (3). Here, log-linear models instead of neural
networks or support vector machines are taken as the static classi-
fiers. All other parameters cannot be optimized in this approach.
This simplification considerably speeds up the training. Similar to
fool-proof MMI, the best HMM state sequence ŝT

1 is assumed to be
known and kept fixed during training. The symbol posterior includes
the HMM state prior p(s) (e.g. relative frequencies)

p( f rame)
Λ

(ŝt |xt) =
p(ŝt) fΛ(xt, ŝt)∑
s

p(s) fΛ(xt, s)
. (6)

The induced frame-based MMI training criterion is convex.
Several refinements to MMI are considered for the experiments

in Section 4. First, `2-regularization is used. Furthermore, the poste-
riors can be scaled by some γ ∈ �+, and a margin term scaled with
some ρ ∈ �+ can be incorporated into standard MMI. These modi-
fications are implemented by replacing the posterior in Equation (6)
with, for instance,

p( f rame)
Λ,γρ (ŝt |xt) =

[p(ŝt) fΛ(xt, ŝt) exp(−ρδ(ŝt, ŝt))]γ∑
s

[p(s) fΛ(xt, s) exp(−ρδ(s, ŝt))]γ
.

This variant of MMI is called modified/margin-based MMI (M-
MMI). For lattice-based (Equation (4)) and fool-proof (Equation (5))
MMI, the posterior can be modified in a similar way to derive the
respective M-MMI training criterion. For segment-based MMI, the
Hamming accuracy instead of the Kronecker delta is used in the
margin term. The convexity is not affected by the margin term. It
was shown in [12] that for ρ = 1, the resulting training criterion
F

(M−MMI)
γ converges to the optimization problem of SVMs using

the hinge loss function F (S V M), F (M−MMI)
γ

γ→∞
→ F (S V M). Finally,

other (in general non-convex) training criteria can be used for the
optimization as well, e.g. minimum phone error (MPE).

4. EXPERIMENTAL RESULTS
This section provides experimental comparisons of discriminative
HMMs, log-linear models, and CRFs for different speech tasks.
Unless otherwise stated, the training criteria are optimized with
Rprop [13].

4.1. Tasks & Setups
Special about the RWTH maximum likelihood (ML) GHMM base-
line models is that they use globally pooled variances. This allows
us to produce rather good ML baseline systems with a fairly high
number of Gaussian densities.



Table 2. Word error rates (WER) for SieTill and BNBC Cn test
corpora. M-MMI and MPE is used for SieTill and BNBC Cn.

WER [%]
SieTill BNBC Cn

Model Criterion Optim. Test Eval06 Eval07
GHMM ML EM 1.8 17.9 11.9

M-MMI EBW 1.7 17.0 11.2
or Rprop 1.6 16.5 11.1

LHMM MPE 1.6 16.2 10.8

German digit strings. The SieTill corpus consists of continuously
spoken German digits recorded over the telephone line from adult
speakers. The recognition system is based on gender-dependent
whole-word HMMs. The front-end consists of conventional cepstral
features (MFCC) without derivatives. A sliding window of size five
is used to include temporal context. The feature vector is projected
to 25 dimensions by means of a linear discriminant analysis (LDA).
See [14] for further details. The corpus statistics and setup are
summarized in Table 1.

American English read speech. The Wall Street Journal (WSJ)
corpora include American English read speech recorded under clean
conditions. Since the official WSJ0 corpus does not provide a de-
velopment set, 410 sentences were extracted from ten new speakers
of the North American Business (NAB) task and used as the devel-
opment set. The same setup as in [9] is used for the experiments.
The front-end consists of MFCC features which are normalized by
a fast variant of vocal tract length normalization (VTLN). A trigram
language model is used for recognition. More details on the corpus
statistics and the setup can be found in Table 1.

Mandarin broadcasts. This large vocabulary continuous speech
recognition task consists of Mandarin broadcasts news (BN) and
conversations (BC). The experiments are based on the same setup
as described in [12] and summarized in Table 1. The BNBC Cn
system uses PLP features augmented with a voicing feature. Nine
consecutive frames are concatenated. A tonal feature with its first
and second derivatives and neural network (NN) based features are
added. The feature vector is then projected to 45 dimensions by
means of speaker adaptive training (SAT) and constrained maximum
likelihood linear regression (CMLLR). The PLP features are warped
using VTLN. For recognition, a 4-gram language model is used.

4.2. Parameterization & numerical issues
GHMM vs. LHMM. It was shown in theory that GHMMs and
LHMMs are equivalent, see Section 2. Nevertheless, LHMMs
may outperform GHMMs in practice [4] due to numerical issues
or the approximate equivalence (e.g. if only the emission model
is reestimated). Table 2 provides an experimental comparison of
GHMMs and LHMMs for the SieTill and the BNBC Cn tasks. The
ML GHMM baseline systems were optimized with expectation-
maximization (EM). These models were used to initialize the dis-
criminative training for GHMMs and LHMMs. The discriminative
training was done using extended Baum-Welch (EBW, only GH-
MMs) and Rprop (GHMMs and LHMMs). So far, we have not
observed any consistent differences between GHMMs and LHMMs
in practice.

Density-specific variances. Unlike most other groups, we use a
single globally pooled diagonal covariance matrix. Could we do
better with density-specific diagonal covariance matrices? LHMMs
with first order features xd and second order features x2

d are equiva-
lent to GHMMs with density-specific diagonal covariance matrices
(see Section 2). This observation allows us to test GHMMs with
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Fig. 1. Word error rate (WER) vs. iteration index on SieTill test
corpus. Convergence is not reached after 200 iterations in general.

specific covariance matrices without changing our software. The ex-
perimental results on BNBC Cn suggest that second order features
do not help regarding WER but tended to converge faster than the
system with first order features only.

4.3. Convex optimization
Implementation checking. The definition of a fool-proof training
algorithm as discussed in Section 3 allows for the optimization of
all model parameters from scratch in a principled way. Here, we
check how well the theoretical expectations carry over to practice.
Figure 1 illustrates the convergence behavior of the different train-
ing criteria for different initializations of the training. The conver-
gence rate tends to be lower for lattice-based MMI than for frame-
based and fool-proof MMI, in particular when initialized from ML.
The word error rates (WERs) after convergence are: frame-based
M-MMI: 1.9% (from scratch), 1.9% (from ML, single densities);
lattice-based M-MMI: 4.5% (from scratch), 2.0% (from ML, single
densities), 1.8% (from frame-based M-MMI); fool-proof M-MMI:
1.8% (from scratch), 1.6% (from frame-based M-MMI). Due to the
assumptions made to derive the convex training criteria (see Sec-
tion 3), special attention is directed to the following issues. First, the
dependence on the model initialization. It appears from Figure 1 that
frame-based MMI is independent of the initialization. In contrast,
fool-proof MMI shows some weak dependence on the initialization.
This might indicate some problems with the numerical stability of
fool-proof MMI, e.g. flat optimum. As expected, lattice-based MMI
which is non-convex strongly depends on the choice of the initializa-
tion. Second, the correlation of the training criterion and test WER
because the assumptions (e.g. the discrimination of HMM state se-
quences rather than word sequences) may affect the performance of
the training criterion. Frame-based MMI tends to perform slightly
worse than lattice-based and fool-proof MMI which perform equally.
Finally, the sensitivity to the HMM state alignment. This might be
an issue in particular if the log-linear model/CRF cannot be initial-
ized with the corresponding GHMM as e.g. in [2]. The experiments
do not suggest that this is a critical issue.

Feasibility and utility of higher order features. Table 3 studies
the effect of higher order features, again on the simple German digit
string recognition task. The systems including higher order features
up to degree one, two, and three have 11k, 151k, and 1,407k param-
eters, respectively. The error rate for a discriminative GHMM with
715k parameters is also shown in Table 3 for comparison. Higher
order features beyond degree three are not feasible. For larger tasks
like for example WSJ0, already the use of third order features leads
to rather high training times while the second order features are lim-
ited regarding WER. So, additional features are considered next.



Table 1. Speech corpora and setups.
Identifier (description) Vocabulary size Audio data [h] #States/#Dens. Features/Setup

SieTill (German digit strings) 11 11.3 (Train)/ 11.4 (Test) 430/430-27k 25 LDA(MFCC)
WSJ0 (American read speech) 5k 15 (Train)/0.4 (Test) 1,500/220k 33 LDA(MFCC)+VTLN

BNBC Cn (Mandarin BN&BC) 60k 1,500 (Train) 4,500/1,200k 45 SAT/CMLLR(PLP+voicing
2.2 (Eval06)/2.9 (Eval07) +3 tones+32 NN)+VTLN

Table 3. Word error rates (WERs) on SieTill test corpus for higher
order features, frame-based M-MMI (’frame’, convex) vs. lattice-
based M-MMI (’lattice’, non-convex).

Model Criterion xd xd xd′ xd xd′ xd′′

Log-linear model frame 3.0 1.9 1.8
Log-linear model lattice 2.7 1.8 1.5
GHMM (27k dens.) lattice 1.6 N/A N/A

Set up of a log-linear model from scratch. Finally, a log-linear
model is set up for the WSJ0 task [9]. The emission features include
cluster features (cf. radial basis function kernel) [2, 9] in addition to
the higher order features (cf. polynomial kernel). Assuming clusters
µl and cluster priors p(l) from a preprocessing step, the cluster fea-
tures are defined as p(l)N(x|µl,Σ)/

∑
l′ p(l′)N(x|µl′ ,Σ). The cluster

features have the advantage of being sparse, i.e., only a few clus-
ter features are active (i.e., above some small positive threshold) at
the same time. This makes the accumulation of the sufficient statis-
tics considerably more efficient, even for a large number of features.
The baseline model uses first order features and 130 monophone-
based HMM states only. Then, the model complexity is increased
step by step by using second order features, cluster features includ-
ing temporal context, and CART-tied HMM states in addition. The
results are shown in Table 4. The log-linear system was trained from
scratch, starting with the alignment from the linear segmentation. To
train the final system, a few realignments were required.

Table 4. WER for log-linear models on the WSJ0 test corpus.
Feature setup WER [%]
First order features 22.7
+second order features 10.3
+210 cluster features + temporal context of size 9 6.2
+1,500 CART-tied HMM states 3.9
+realignment 3.6
GHMM (ML/MMI) 3.6/3.0

5. CONCLUSION
Several aspects in the context of direct acoustic modeling were stud-
ied. Gaussian and log-linear HMMs are equivalent. In spite of this,
the log-linear parameterization might be numerically more stable as
it avoids the estimation of covariance matrices, for instance. An ex-
perimental comparison of these models for a digit string recognition
task and a large vocabulary speech recognition task suggested that
this is not the case. Nevertheless, the log-linear framework is at-
tractive due to its simple and flexible parameterization which will
considerably simplify the incorporation of additional dependencies
and knowledge sources in the future. The convexity of the train-
ing criteria is another issue often addressed in numerical optimiza-
tion. Under a few assumptions, the conventional training criterion in
speech recognition can be made convex. First experimental results
along this line are encouraging as for the convergence behavior, in-
cluding the stability and the initialization but are less efficient than
the conventional training criteria. Finally, a log-linear model for a
continuous speech recognition task was set up from scratch (i.e., no
existing GHMM used at all) to evaluate the effectiveness of the direct
modeling approach.
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