

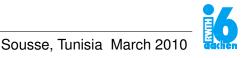
The RWTH-OCR Handwriting Recognition System for Arabic Handwriting

Philippe Dreuw, Georg Heigold, David Rybach, Christian Gollan, and Hermann Ney

dreuw@cs.rwth-aachen.de

DAAD Workshop, Sousse, Tunisia – March 2010

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University, Germany



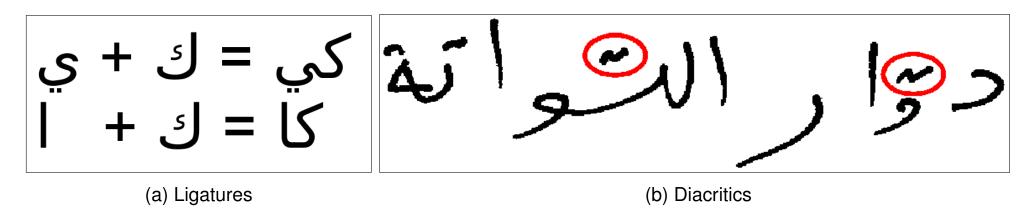
Outline

1. Introduction

- 2. Adaptation of the RWTH-ASR framework for Handwriting Recognition
 - System Overview
 - Discriminative training using modified MMI criterion
 - Unsupervised confidence-based discriminative training during decoding
 - Writer Adaptive Training
- **3. Experimental Results**
- 4. Summary

Introduction

- Arabic handwriting system
 - right-to-left, 28 characters, position-dependent character writing variants
 - ligatures and diacritics
 - Pieces of Arabic Word (PAWs) as subwords



state-of-the-art

- > preprocessing (normalization, baseline estimation, etc.) + HMMs
- ► our approach:
 - > adaptation of RWTH-ASR framework for handwriting recognition
 - > preprocessing-free feature extraction, focus on modeling

RWTH ASR System: Overview

The RWTH Aachen University Open Source Speech Recognition System [Rybach & Gollan⁺ 09] http://www-i6.informatik.rwth-aachen.de/rwth-asr/

speech recognition framework supporting:

- acoustic training including speaker adaptive training
- speaker normalization / adaptation: VTLN, CMLLR, MLLR
- multi-pass decoding
- framework also used for machine translation, video / image processing

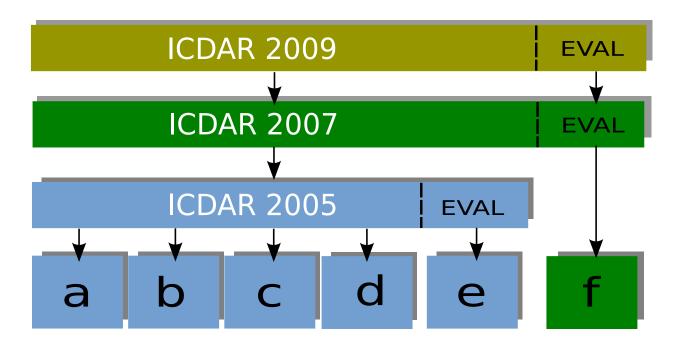
RWTH ASR - The RWTH Aachen University Speech Recognition System	
WTH ASR is a software package containing a speech recognition decoder together with tools for the development of acoustic odels, for use in speech recognition systems. It has been developed by the Human Language Technology and Pattern Recognition roup at the RWTH Aachen University since 2001. Speech recognition systems developed using this framework have been applied accessfully in several international research projects and corresponding evaluations. WTH ASR consists of several libraries and tools written in C++. Currently. only Linux (x86 and x86-64) platforms are supported.	ASR
Features	
decoder for large vocabulary continuous speech recognition word conditioned tree search (supporting across-word models) +HMM emission probability calculation org/minzed for MMX and SSE2 verified acoustic pruning using language model lookahead verd attice generation a eactile framework for data processing: Flow vocal tract length normalization vocal tract length normalization vocal tract dength normalization vocal tract length normalization vocal tract dength normalization support for several fracture dimension reduction methods (e.g. LDA, PCA) vocal tract length normalization support for several fracture dimension reduction methods (e.g. LDA, PCA) vocal tract length normalization support for several fracture dimension probabilities phoneme in triphone context (or shorter context) a across-word context (or shorter context) voloneme in triphone context (or shorter context) support for parameter tripy using phonetic decision trees (classification and regression trees, CART) viglobally pooled diagonal covariance matrix (other types of covariance modelling are possible, but not fully tested) vocarianded MLR (CMLR, "feature space MLLR") vocarianded MLR (MLR (MLR, MERV KM, KM, Kmmati sepaker adaptation vocarianted MLR (MLR, MLR, MLR, Weigh sproces-able VAM, formatis venet trobs for the generation of NIST file formatis are included venet trobs for the generation of NIST file formatis are included	
Documentation	
e development of RWTH ASR is oppoing. A Manual is available in the RWTH ASR Manual Wiki. Access to the wiki requires registra	tion

- published under an open source licence (RWTH ASR Licence)
- commercial licences available on request
- more than 100 registrations until today

Arabic Handwriting - IFN/ENIT Database

Corpus development

- ► ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e
- ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f
- ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f



Arabic Handwriting - IFN/ENIT Database

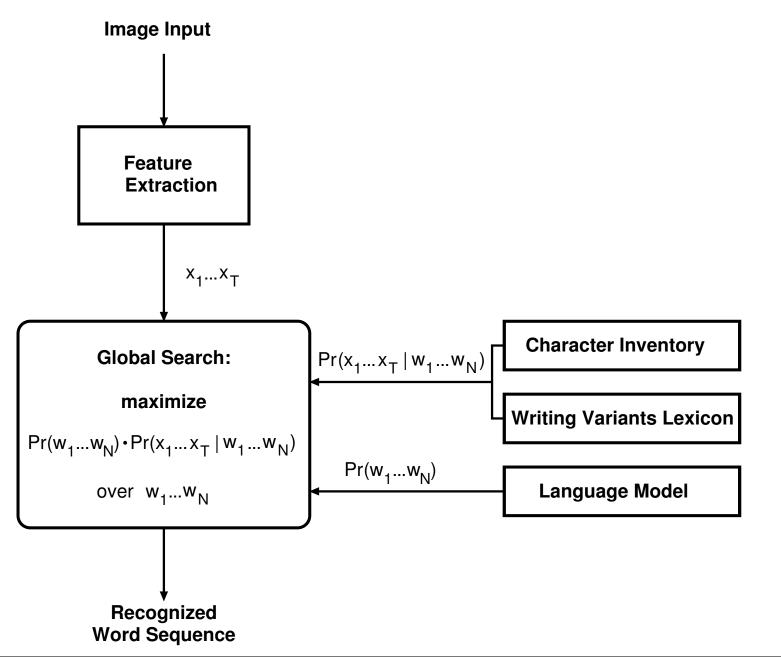
- ► 937 classes
- 32492 handwritten Arabic words (Tunisian city names)
- database is used by more than 60 groups all over the world
- writer statistics

set	#writers	#samples
а	102	6537
b	102	6710
С	103	6477
d	104	6735
е	505	6033
Total	916	32492

examples (same word):

RNTH

System Overview



Writing Variant Model Refinement

HMM baseline system

- \triangleright searching for an unknown word sequence $w_1^N := w_1, \ldots, w_N$
- \triangleright unknown number of words N
- \triangleright maximize the posterior probability $p(w_1^N|x_1^T)$
- > described by Bayes' decision rule:

$$\hat{w}_1^N = rg\max_{w_1^N} \left\{ p^{\gamma}(w_1^N) p(x_1^T | w_1^N)
ight\}$$

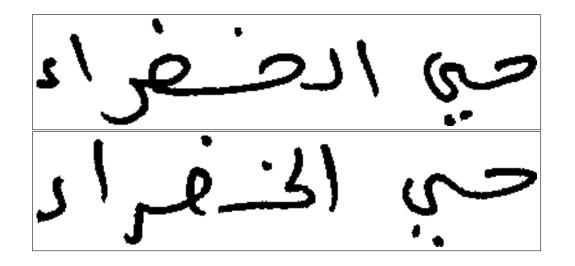
with γ a scaling exponent of the language model.

Writing Variant Model Refinement

ligatures and diacritics in Arabic handwriting

- **>** same Arabic word can be written in several writing variants
- \rightarrow depends on writer's handwriting style

Example: *IaB khM* vs. *khMIaB*



Iexicon with multiple writing variants [Details]

problem: many and rare writing variants

Writing Variant Model Refinement

> probability p(v|w) for a variant v of a word w

- b usually considered as equally distributed
- bere: we use the count statistics as probability:

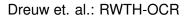
$$p(v|w) = rac{N(v,w)}{N(w)}$$

writing variant model refinement:

$$p(x_1^T|w_1^N) pprox \max_{v_1^N|w_1^N} \left\{ p^lpha(v_1^N|w_1^N) p(x_1^T|v_1^N,w_1^N)
ight\}$$

with v_1^N a sequence of unknown writing variants α a scaling exponent of the writing variant probability

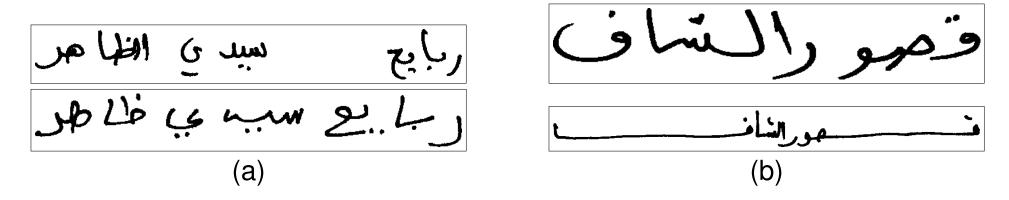
training: corpus and lexicon with supervised writing variants possible!



Visual Modeling: Feature Extraction and HMM Transitions

- recognition of characters within a context, temporal alignment necessary
- ► features: sliding window, no preprocessing, PCA reduction

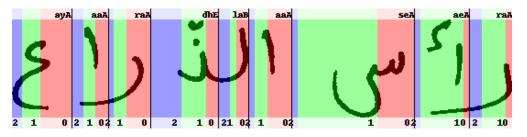
important: HMM whitespace models (a) and state-transition penalties (b)



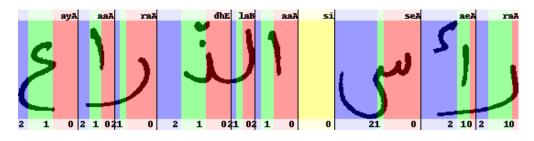


Visual Modeling: Writing Variants Lexicon

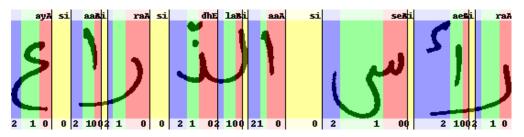
- most reported error rates are dependent on the number of PAWs
- without separate whitespace model



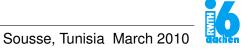
always whitespaces between compound words



whitespaces as writing variants between and within words



White-Space Models for Pieces of Arabic Words [Dreuw & Jonas⁺ 08] in ICPR 2008



Visual Modeling: Model Length Estimation

more complex characters should be represented by more HMM states



• the number of states S_c for each character c is updated by

$$S_c = rac{N_{x,c}}{N_c} \cdot lpha$$

with

- S_c = estimated number states for character c
- $N_{x,c}$ = number of observations aligned to character c
 - N_c = character count of *c* seen in training
 - α = character length scaling factor.

[Visualization]

RWTH-OCR Training and Decoding Architectures

► Training

- Maximum Likelihood (ML)
- CMLLR-based Writer Adaptive Training (WAT)
- b discriminative training using modified-MMI criterion (M-MMI)

Decoding

⊳ 1-pass

- \circ ML model
- M-MMI model
- ⊳ 2-pass
 - **o** segment clustering for CMLLR writer adaptation
 - unsupervised confidence-based M-MMI training for model adaptation

Discriminative Training: Modified-MMI Criterion

• training: weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot x_t$$

1. ML: Maximum Likelihood

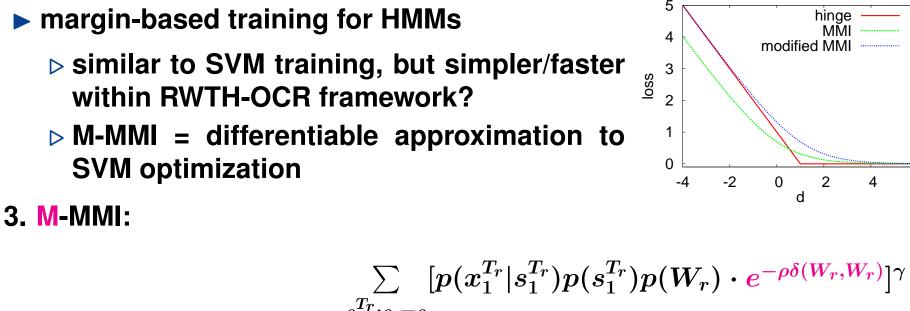
$$\omega_{r,s,t}:=1.0$$

2. MMI: Maximum Mutual Information

$$\omega_{r,s,t} := rac{\sum\limits_{s_1^{T_r}:s_t=s} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(W_r)}{\sum\limits_{V}\sum\limits_{s_1^{T_r}:s_t=s} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(V)}$$

- ► $\omega_{r,s,t}$ is the "(true) posterior" weight
- iteratively optimized with Rprop

Discriminative Training: Modified-MMI Criterion



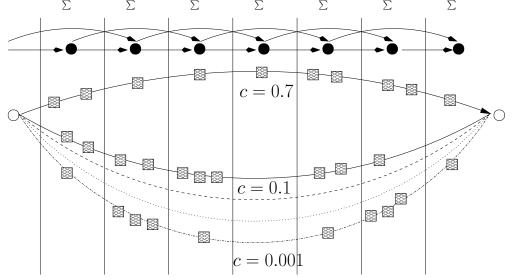
$$\omega_{r,s,t}(
ho
eq 0) := rac{s_1^{T_r}:s_t=s}{\sum\limits_V \sum\limits_{s_1^{T_r}:s_t=s} [p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(V) \cdot e^{-
ho \delta(W_r,V)}]^{\gamma}}$$

- $\blacktriangleright \omega_{r,s,t}$ is the "margin posterior" weight
- ► $e^{-\rho\delta(W_r,W_r)}$ corresponds to the margin offset
- \blacktriangleright with $\gamma \rightarrow \infty$ equals to the SVM hinge loss function
- iteratively optimized with Rprop

6

Decoding: Unsupervised Confidence-Based Discriminative Training

example for a word-graph and the corresponding 1-best state alignment



- necessary steps for margin-based model adaptation during decoding:
 - I-pass recognition (unsupervised transcriptions and word-graph)
 - calculation of corresponding confidences (sentence, word, or state-level)
 - unsupervised M-MMI-conf training on test data to adapt models (w/ regularization)
- can be done iteratively with unsupervised corpus update!



Decoding: Modified-MMI Criterion And Confidences

4. M-MMI-conf:

$$\omega_{r,s,t}(\rho \neq 0) := \underbrace{\sum_{V} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(W_r) \cdot e^{-\rho\delta(W_r,W_r)}}_{V \sum_{V} \sum_{s_1^{T_r}:s_t=s} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(V) \cdot \underbrace{e^{-\rho\delta(W_r,V)}}_{\text{margin}} \cdot \underbrace{\frac{\delta(c_{r,s,t} > c_{\text{threshold}})}_{\text{confidence}}}_{\text{posterior}}$$

weighted accumulation becomes:

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \underbrace{\omega_{r,s,t}(
ho)}_{\mathsf{margin posterior}_{
ho
eq 0}}$$

$$\underbrace{c_{r,s,t}}_{ ext{confidence}}$$
 · x_t

confidences at:

> sentence-, word-, or state-level

.

Training Criterions

ML training: accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} x_t$$

M-MMI training: weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot x_t$$

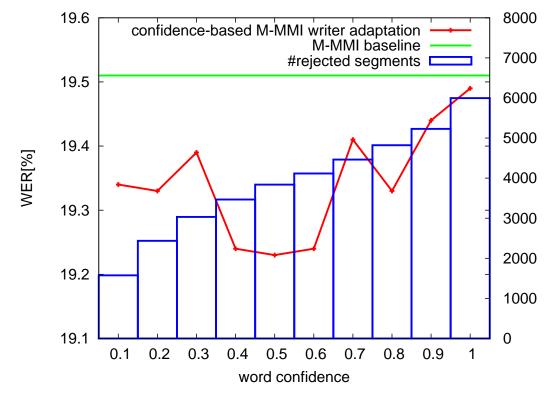
M-MMI-conf training: confidence-weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot c_{r,s,t} \cdot x_t$$

 \triangleright with confidence $c_{r,s,t}$ at sentence-, word, or state-level

Results - Unsupervised Model Adaptation: M-MMI-conf

- M-MMI criterion with posterior confidences (M-MMI-conf)
- unsupervised training for model adaptation during decoding
- word-confidence based M-MMI-conf training and rejections



▷ confidence threshold $c = 0.5 \rightarrow$ more than 60% segment rejection rate ▷ small amount of adaptation data only

Results - Unsupervised Model Adaptation: M-MMI-conf

- unsupervised training for model adaptation during decoding
- state-confidence based M-MMI-conf training and rejections
 - > arc posteriors from the lattice output from the decoder
 - only word frames aligned with a high confidence in 1st pass → unsupervised model adaptation
 - only 5% frame rejection rate (20,970 frames of 396,416)
- ICDAR 2005 Setup [Comparison]

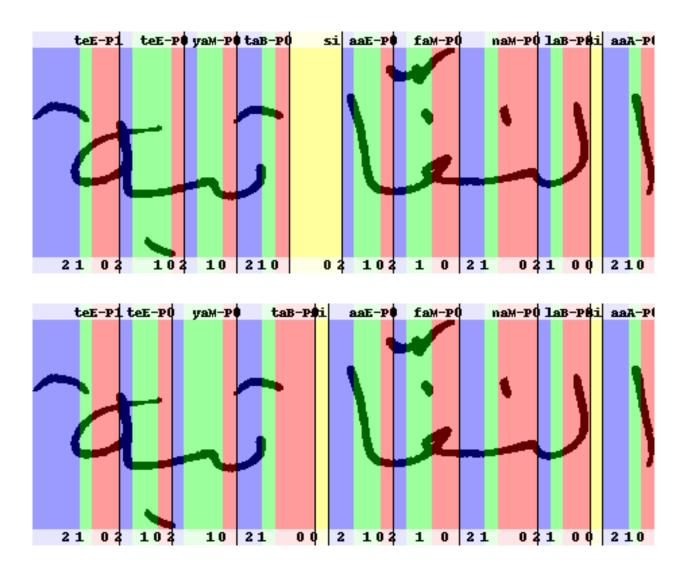
Training/Adaptation	WER[%]	CER[%]
ML	21.86	8.11
M-MMI	19.51	7.00
+ unsupervised adaptation	20.11	7.34
+ word-confidences	19.23	7.02
+ state-confidences	17.75	6.49
+ supervised adaptation	2.06	0.77

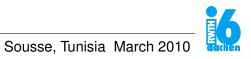
Results - Training: ML vs. MMI vs. Modified-MMI Criterion

- ML = Maximum Likelihood
- MLE = Model Length Estimation
- MMI vs. modified-MMI after 30 Rprop iterations
- ICDAR 2005 Setup [Comparison]

		WER [%]				
Train	Test	ML	+MLE	+MMI	+Modified MMI	
abc	d	10.88	7.80	7.44	6.12	
abd	С	11.50	8.71	8.24	6.78	
acd	b	10.97	7.84	7.56	6.08	
bcd	а	12.19	8.66	8.43	7.02	
abcd	е	21.86	16.82	16.44	15.35	

Visual Inspection of M-MMI Training





Constrained Maximum Likelihood Linear Regression (CMLLR)

writer adaptation

- > method for improving visual models in handwriting recognition
- refine models by adaptation data of particular writers
- widely used is affine transform based model adaptation

CMLLR

- \triangleright Idea: normalize writing styles by adaptation of the features x_t
- constrained MLLR feature adaptation technique
- also known as feature space MLLR (fMLLR) [Details]
- > estimate affine feature transform:

$$x_t' = Ax_t + b$$

CMLLR is text dependent

• requires an (automatic) transcription

Training: CMLLR-based Writer Adaptive Training

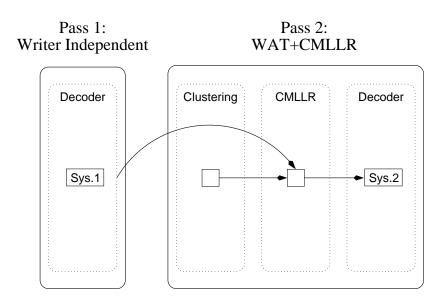
writer adaptation compensates for writer differences during recognition

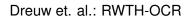
- \rightarrow do the same during visual model training
- \rightarrow maximize the performance gains from writer adaptation

- writer variations are compensated by writer adaptive training (WAT)
- writer normalization using CMLLR
- necessary steps
 - 1. train writer independent GMMs model
 - 2. CMLLR transformations are estimated for each (estimated) writer
 > supervised if writers are known
 - 3. apply CMLLR transformations on features to train writer dependent GMMs

Decoding: CMLLR-based Writer Adaptation

- writers and writing styles are unknown
- necessary steps
 - 1. estimate writing styles using clustering
 - Bayesian Information Criterion (BIC) based stopping condition
 - 2. estimate CMLLR feature transformations for every estimated writing style cluster
 - 3. second pass recognition
 - WAT models + CMLLR transformed features

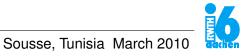




Results - Decoding: Writer Adaptation

- comparison of MLE, WAT, and CMLLR based feature adaptation
- comparison of unsupervised and supervised writer clustering
 - b decoding always unsupervised
 - \triangleright supervised clustering \rightarrow only the writer labels are used!

Train	Test	WER[%]			
		1st pass		2nd p	Dass
		-		WAT+C	MLLR
				unsup.	sup.
abc	d	10.88	7.83	7.72	5.82
abd	С	11.50	8.83	9.05	5.96
acd	b	10.97	7.81	7.99	6.04
bcd	а	12.19	8.70	8.81	6.49
abcd	е	21.86	16.82	17.12	11.22

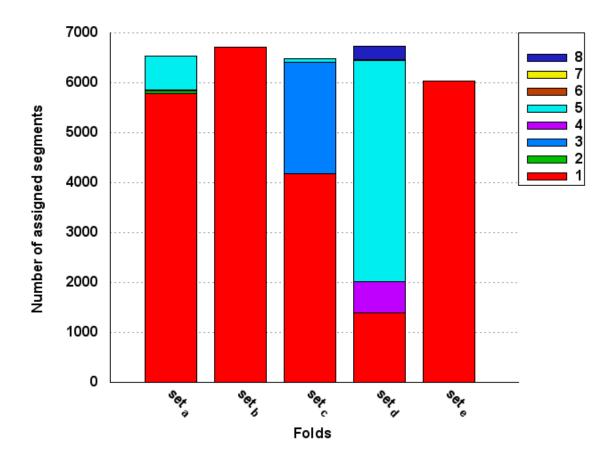


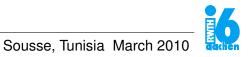
Results - Decoding: Writer Adaptation

unsupervised clustering: error analysis

b histograms for segment assignments over the different test folds

problem: unbalanced segment assignments





Arabic Handwriting - Experimental Results for IFN/ENIT

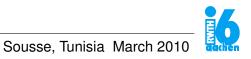
Writer Adaptive Training + CMLLR for Writer Adaptation

see [Dreuw & Rybach⁺ 09], ICDAR 2009 [Visualization]

M-MMI Training + Unsupervised Confidence-Based Model Adaptation see [Dreuw & Heigold⁺ 09], ICDAR 2009 [Details]

► ICDAR 2005 Setup [Comparison]

Train	Test	WER[%]					
			1st pas	SS		2nd p	ass
		ML	+MLE	+M-MMI	WAT+C	MLLR	M-MMI-conf
					unsup.	sup.	
abc	d	10.88	7.83	6.12	7.72	5.82	5.95
abd	С	11.50	8.83	6.78	9.05	5.96	6.38
acd	b	10.97	7.81	6.08	7.99	6.04	5.84
bcd	а	12.19	8.70	7.02	8.81	6.49	6.79
abcd	е	21.86	16.82	15.35	17.12	11.22	14.55



Arabic Handwriting - Experimental Results for IFN/ENIT

evaluation of RWTH-OCR systems at Arabic HWR Competition, ICDAR 2009

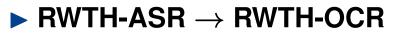
- > external evaluation at TU Braunschweig, Germany
- \triangleright set f and set s are unknown (not available)
- unsupervised M-MMI-conf model adaptation achieved similar improvements
- > 3rd rank (group)

ID	WRR[%]				
	set f_a	set f_f	set f_g	set f	set s
RWTH-OCR, ID12	86.97	88.08	87.98	85.51	71.33
RWTH-OCR, ID13	87.17	88.63	88.68	85.69	72.54
RWTH-OCR, ID15	86.97	88.08	87.98	83.90	65.99
A2iA, ID8	90.66	91.92	92.31	89.42	76.66
MDLSTM, ID11	94.68	95.65	96.02	93.37	81.06

► Note:

▷ focus on modeling (ID12 and ID13) and speed (ID15) - no preprocessing

Summary



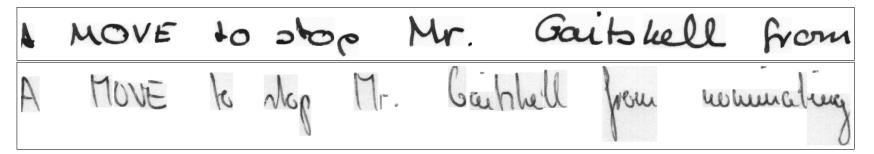
- simple feature extraction and preprocessing
- ▶ Arabic: created a SOTA system, ranked 3rd at ICDAR 2009
- discriminative training
 - > margin-based HMM training (ML vs. MMI vs. M-MMI)
 - unsupervised confidence-based MMI model adaptation (M-MMI-conf)
- writer adaptive training
 - supervised writer adaptation demonstrated the potential
- ongoing work
 - impact of preprocessing in feature extraction (Arabic vs. Latin)
 - > more complex features (e.g. MLP)
 - character context modeling (e.g. CART)
 - Latin: created a SOTA system, best single system

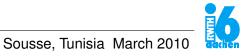
Outlook: Latin Handwriting - IAM Database

English handwriting, continuous sentences

	Train	Devel	Eval 1	Eval 2	Total
Lines	6,161	1,861	900	940	9,862
Running words	53,884	17,720	7,901	8,568	88,073
Vocabulary size	7,754	3,604	2,290	2,290	11,368
Characters	281,744	83,641	41,672	42,990	450,047
Writers	283	128	46	43	500
OOV Rate		≈15%	≈17%	≈15%	

Example lines:





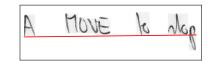
Outlook: Latin Handwriting - UPV Preprocessing

Original images

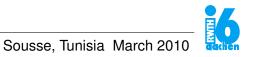
- Images after color normalisation
 - A MOVE to stop
- Images after slant correction

Images after height normalisation

 MOVE
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D</



Note: preprocessing did not help for Arabic handwriting [Visualization]



Outlook: Latin Handwriting - Experimental Results on IAM Database

Systems	Devel WER [%]	Eval WER [%]
RWTH-OCR		
Baseline*	81.07	83.60
+ UPV Preprocessing*	57.59	65.26
+ LBW LM & 50k Lexicon*	31.92	38.98
+ discriminative training (M-MMI)	26.19	32.52
+ confidences (M-MMI-conf)	-	31.87
+ discriminative training (M-MPE)	24.31	30.07
+ confidences (M-MPE-conf)	23.75	29.23
Other Single HMM Systems		
[Bertolami & Bunke 08]	30.98	35.52
[Natarajan & Saleem ⁺ 08]	-	40.01**
[Romero & Alabau ⁺ 07]	30.6**	_
System Combination		
[Bertolami & Bunke 08]	26.85	32.83

*see [Jonas 09] for details

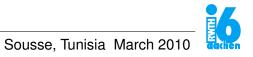
** different data

Thank you for your attention

Philippe Dreuw

dreuw@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/



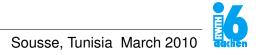
References

- [Bertolami & Bunke 08] R. Bertolami, H. Bunke: Hidden Markov model-based ensemble methods for offline handwritten text line recognition. *Pattern Recognition*, Vol. 41, No. 11, pp. 3452–3460, Nov 2008. 35
- [Dreuw & Heigold⁺ 09] P. Dreuw, G. Heigold, H. Ney: Confidence-Based Discriminative Training for Writer Adaptation in Offline Arabic Handwriting Recognition. In *International Conference on Document Analysis and Recognition*, Barcelona, Spain, July 2009. 30
- [Dreuw & Jonas⁺ 08] P. Dreuw, S. Jonas, H. Ney: White-Space Models for Offline Arabic Handwriting Recognition. In *International Congress on Pattern Recognition*, pp. 1–4, Tampa, Florida, USA, Dec 2008. 12, 47
- [Dreuw & Rybach⁺ 09] P. Dreuw, D. Rybach, C. Gollan, H. Ney: Writer Adaptive Training and Writing Variant Model Refinement for Offline Arabic Handwriting Recognition. In *International Conference on Document Analysis and Recognition*, Barcelona, Spain, July 2009. 30
- [Jonas 09] S. Jonas: Improved Modeling in Handwriting Recognition. Master's thesis, Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Aachen, Germany, Jun 2009. 35

[Natarajan & Saleem⁺ 08] P. Natarajan, S. Saleem, R. Prasad, E. MacRostie, K. Subramanian: Arabic and Chinese Handwriting Recognition, Vol. 4768/2008 of LNCS, chapter Multi-lingual Offline Handwriting Recognition Using Hidden Markov Models: A Script-Independent Approach, pp. 231–250. Springer Berlin / Heidelberg, 2008. 35

[Romero & Alabau⁺ 07] V. Romero, V. Alabau, J.M. Benedi: Combination of N-Grams and Stochastic Context-Free Grammars in an Offline Handwritten Recognition System. *Lecture Notes in Computer Science*, Vol. 4477, pp. 467–474, 2007. 35

[Rybach & Gollan⁺ 09] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf, R. Schlüter, H. Ney: The RWTH Aachen University Open Source Speech Recognition System. In *Interspeech*, Brighton, U.K., Sep 2009. 4

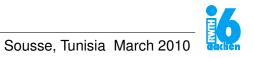


Appendix: Comparisons for IFN/ENIT

ICDAR 2005 Evaluation

Rank	Group	WRR [%]		
		abc-d	abcd-e	
1.	UOB	85.00	75.93	
2.	ARAB-IFN	87.94	74.69	
3.	ICRA (Microsoft)	88.95	65.74	
4.	SHOCRAN	100.00	35.70	
5.	TH-OCR	30.13	29.62	
	BBN	89.49	N.A.	
1*	RWTH	94.05	85.45	

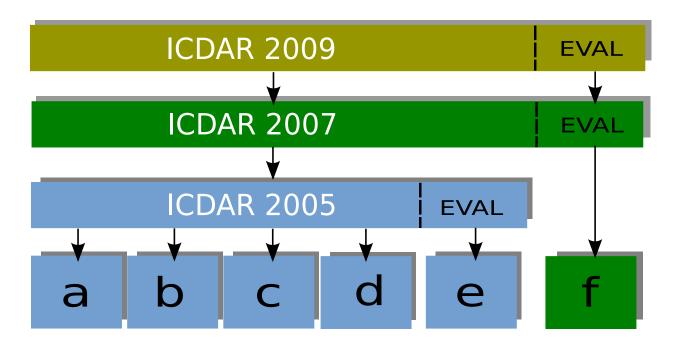
*own evaluation result (no tuning on test data)



Appendix: Arabic Handwriting - IFN/ENIT Database

Corpus development

- ► ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e
- ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f
- ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f

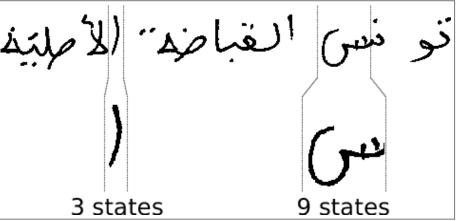


Appendix: Participating Systems at ICDAR 2005 and 2007

- MITRE: Mitre Cooperation, USA over-segmentation, adaptive lengths, character recognition with post-processing
- UOB-ENST: University of Balamand (UOB), Lebanon and Ecole Nationale Superieure des Telecommunications (ENST), Paris HMM-based (HTK), slant correction
- MIE: Mie University, Japan segmentation, adaptive lengths
- ICRA: Intelligent Character Recognition for Arabic, Microsoft partial word recognizer
- SHOCRAN: Egypt confidential
- TH-OCR: Tsinghua University, Beijing, China over-segmentation, character recognition with post-processing
- CACI: Knowledge and Information Management Division, Lanham, USA HMM-based, trajectory features
- CEDAR: Center of Excellence for Document Analysis and Recognition, Buffalo, USA over-segmentation, HMM-based
- PARIS V / A2iA: University of Paris 5, and A2iA SA, France hybrid HMM/NN-based, shape-alphabet
- Siemens: SIEMENS AG Industrial Solutions and Services, Germany HMM-based, adapative lenghths, writing variants
- ARAB-IFN: TU Braunschweig, Germany HMM-based

Appendix: Visual Modeling - Model Length Estimation

more complex characters should be represented by more HMM states



• the number of states S_c for each character c is updated by

$$S_c = rac{N_{x,c}}{N_c} \cdot lpha$$

with

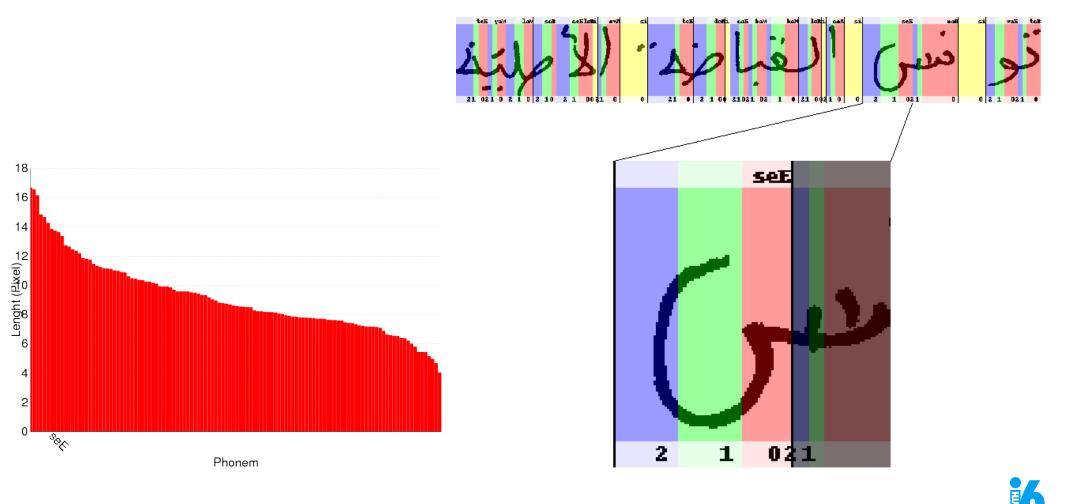
- S_c = estimated number states for character c
- $N_{x,c}$ = number of observations aligned to character c
 - N_c = character count of *c* seen in training
 - α = character length scaling factor.

[Visualization]

Appendix: Visual Modeling - Model Length Estimation

Original Length

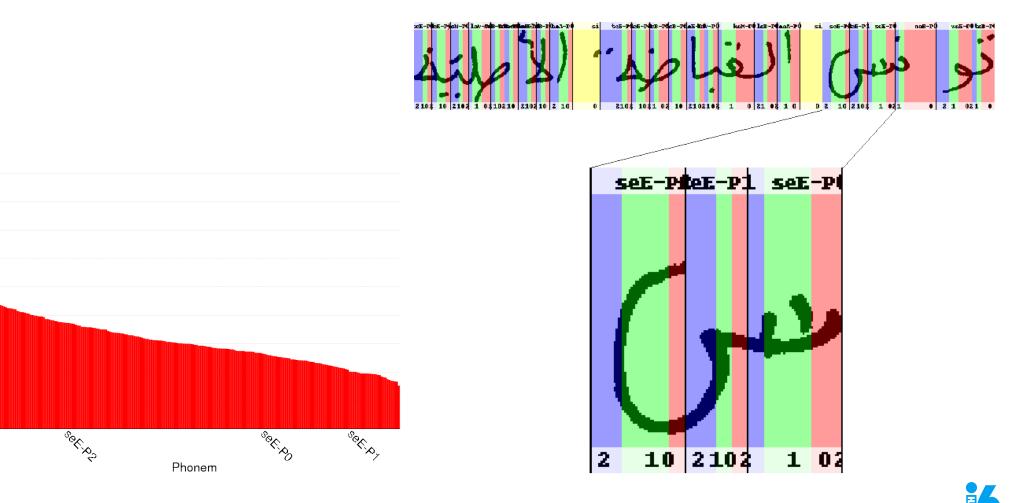
- > overall mean of character length = 7.9 pixel (\approx 2.6 pixel/state)
- ▶ total #states = 357



Appendix: Visual Modeling - Model Length Estimation

Estimated Length

- > overall mean of character length = 6.2 pixel (\approx 2.0 pixel/state)
- ▶ total #states = 558



18

16

14

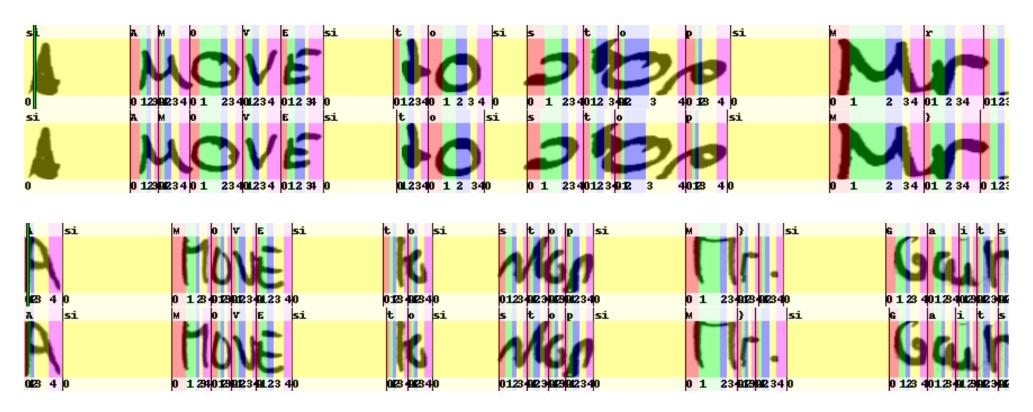
Denght (Pixel)

4

2

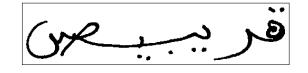
Appendix: Alignment Visualization

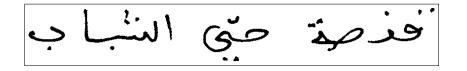
- alignment visualization with and without discriminative training
- upper lines with 5-2 baseline setup, lower lines with additional discriminative training



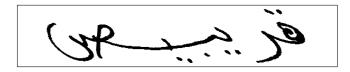
Appendix: Arabic Handwriting - UPV Preprocessing

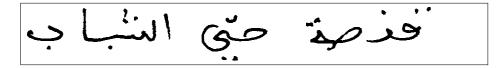
Original images





Images after slant correction

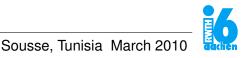




Images after size normalisation

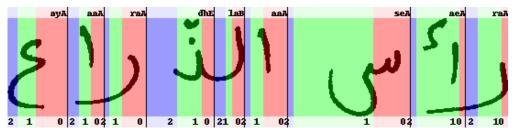
Experimental Results:

- important informations in ascender and descender areas are lost
- not yet suitable for Arabic HWR

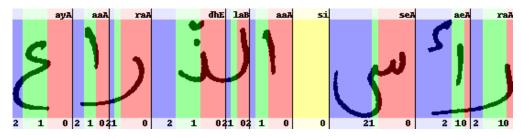


Appendix: Visual Modeling - Writing Variants Lexicon

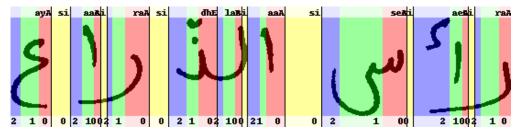
- most reported error rates are dependent on the number of PAWs
- without separate whitespace model



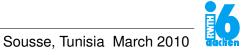
always whitespaces between compound words



whitespaces as writing variants between and within words



White-Space Models for Pieces of Arabic Words [Dreuw & Jonas⁺ 08] in ICPR 2008



Appendix: Constrained Maximum Likelihood Linear Regression

Idea: improve the hypotheses by adaptation of the features x_t

- effective algorithm for adaptation to a new speaker or environment (ASR)
- GMMs are used to estimate the CMLLR transform
- iterative optimization (ML criterion)
 - ▶ align each frame x to one HMM state (i.e. GMM)
 - accumulate to estimate the adaptation transform A
 - Ikelihood function of the adaptation data given the model is to be maximized with respect to the transform parameters A, b
- one CMLLR transformation per (estimated) writer
- constrained refers to the use of the same matrix A for the transformation of the mean μ and variance Σ :

$$x_t' = A x_t + b
ightarrow N(x|\hat{\mu}, \hat{\Sigma})$$
 with $\hat{\mu} = A \mu + b$
 $\hat{\Sigma} = A \Sigma A^T$

