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Introduction

I Arabic handwriting system

. right-to-left, 28 characters, position-dependent character writing variants

. ligatures and diacritics

. Pieces of Arabic Word (PAWs) as subwords

(a) Ligatures (b) Diacritics

I state-of-the-art

. preprocessing (normalization, baseline estimation, etc.) + HMMs

I our approach:

. adaptation of RWTH-ASR framework for handwriting recognition

. preprocessing-free feature extraction, focus on modeling
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RWTH ASR System: Overview

The RWTH Aachen University Open Source
Speech Recognition System [Rybach & Gollan+ 09]

http://www-i6.informatik.rwth-aachen.de/rwth-asr/

I speech recognition framework supporting:

. acoustic training
including speaker adaptive training

. speaker normalization / adaptation:
VTLN, CMLLR, MLLR

. multi-pass decoding

I framework also used for machine translation,
video / image processing

I published under an open source licence (RWTH ASR Licence)

I commercial licences available on request

I more than 100 registrations until today
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Arabic Handwriting - IFN/ENIT Database

Corpus development

I ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e

I ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f

I ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f
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Arabic Handwriting - IFN/ENIT Database

I 937 classes

I 32492 handwritten Arabic words (Tunisian city names)

I database is used by more than 60 groups all over the world

I writer statistics
set #writers #samples
a 102 6537
b 102 6710
c 103 6477
d 104 6735
e 505 6033

Total 916 32492

I examples (same word):
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System Overview

Image Input

Feature
Extraction

Character Inventory

Writing Variants Lexicon

Language Model

Global Search:

maximize

x1...xT

Pr(w1...wN) Pr(x1...xT | w1...wN)

w1...wN

Recognized
Word Sequence

over

Pr(x1...xT | w1...wN )

Pr(w1...wN)
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Writing Variant Model Refinement

I HMM baseline system

. searching for an unknown word sequence wN
1 := w1, . . . , wN

. unknown number of words N

. maximize the posterior probability p(wN
1 |xT1 )

. described by Bayes’ decision rule:

ŵN
1 = arg max

wN1

{
pγ(wN

1 )p(xT1 |w
N
1 )

}

with γ a scaling exponent of the language model.
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Writing Variant Model Refinement

I ligatures and diacritics in Arabic handwriting

. same Arabic word can be written in several writing variants
→ depends on writer’s handwriting style

I Example: laB khM vs. khMlaB

I lexicon with multiple writing variants [Details]

. problem: many and rare writing variants
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Writing Variant Model Refinement

I probability p(v|w) for a variant v of a word w

. usually considered as equally distributed

. here: we use the count statistics as probability:

p(v|w) =
N(v, w)

N(w)

I writing variant model refinement:

p(xT1 |w
N
1 ) ≈ max

vN1 |w
N
1

{
pα(vN1 |w

N
1 )p(xT1 |v

N
1 , w

N
1 )

}

with vN1 a sequence of unknown writing variants
α a scaling exponent of the writing variant probability

I training: corpus and lexicon with supervised writing variants possible!
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Visual Modeling: Feature Extraction and HMM Transitions

I recognition of characters within a context, temporal alignment necessary

I features: sliding window, no preprocessing, PCA reduction

I important: HMM whitespace models (a) and state-transition penalties (b)

(a) (b)
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Visual Modeling: Writing Variants Lexicon

I most reported error rates are dependent on the number of PAWs
I without separate whitespace model

I always whitespaces between compound words

I whitespaces as writing variants between and within words

White-Space Models for Pieces of Arabic Words [Dreuw & Jonas+ 08] in ICPR 2008
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Visual Modeling: Model Length Estimation

I more complex characters should be represented by more HMM states

I the number of states Sc for each character c is updated by

Sc =
Nx,c

Nc

· α

with
Sc = estimated number states for character c

Nx,c = number of observations aligned to character c
Nc = character count of c seen in training
α = character length scaling factor.

[Visualization]
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RWTH-OCR Training and Decoding Architectures

I Training

. Maximum Likelihood (ML)

. CMLLR-based Writer Adaptive Training (WAT)

. discriminative training using modified-MMI criterion (M-MMI)

I Decoding

. 1-pass
◦ ML model
◦ M-MMI model

. 2-pass
◦ segment clustering for CMLLR writer adaptation
◦ unsupervised confidence-based M-MMI training for model adaptation
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Discriminative Training: Modified-MMI Criterion

I training: weighted accumulation of observations xt:

accs =
R∑

r=1

Tr∑

t=1

ωr,s,t · xt

1. ML: Maximum Likelihood

ωr,s,t := 1.0

2. MMI: Maximum Mutual Information

ωr,s,t :=

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr)

∑
V

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(V )

I ωr,s,t is the “(true) posterior” weight

I iteratively optimized with Rprop
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Discriminative Training: Modified-MMI Criterion

I margin-based training for HMMs

. similar to SVM training, but simpler/faster
within RWTH-OCR framework?

. M-MMI = differentiable approximation to
SVM optimization  0

 1

 2

 3

 4

 5

-4 -2  0  2  4  6

lo
ss

d

hinge
MMI

modified MMI

3. M-MMI:

ωr,s,t(ρ 6= 0) :=

∑
sTr1 :st=s

[p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr) · e−ρδ(Wr,Wr)]γ

∑
V

∑
sTr1 :st=s

[p(xTr1 |s
Tr
1 )p(sTr1 )p(V ) · e−ρδ(Wr,V )]γ

I ωr,s,t is the “margin posterior” weight

I e−ρδ(Wr,Wr) corresponds to the margin offset

I with γ →∞ equals to the SVM hinge loss function

I iteratively optimized with Rprop
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Decoding: Unsupervised Confidence-Based Discriminative Training

I example for a word-graph and the corresponding 1-best state alignment
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c = 0.001

c = 0.1

c = 0.7

I necessary steps for margin-based model adaptation during decoding:

. 1-pass recognition (unsupervised transcriptions and word-graph)

. calculation of corresponding confidences (sentence, word, or state-level)

. unsupervised M-MMI-conf training on test data
to adapt models (w/ regularization)

I can be done iteratively with unsupervised corpus update!

Dreuw et. al.: RWTH-OCR 17 / 36 Sousse, Tunisia March 2010



Decoding: Modified-MMI Criterion And Confidences

4. M-MMI-conf:

ωr,s,t(ρ 6= 0) :=

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr) · e−ρδ(Wr,Wr)

∑

V

∑

sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(V )

︸ ︷︷ ︸
posterior

· e−ρδ(Wr,V )︸ ︷︷ ︸
margin

· δ(cr,s,t > cthreshold)︸ ︷︷ ︸
confidence

I weighted accumulation becomes:

accs =
R∑

r=1

Tr∑

t=1

ωr,s,t(ρ)︸ ︷︷ ︸
margin posteriorρ 6=0

· cr,s,t︸︷︷︸
confidence

· xt

I confidences at:

. sentence-, word-, or state-level
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Training Criterions

I ML training: accumulation of observations xt:

accs =
R∑

r=1

Tr∑

t=1

xt

I M-MMI training: weighted accumulation of observations xt:

accs =
R∑

r=1

Tr∑

t=1

ωr,s,t · xt

I M-MMI-conf training: confidence-weighted accumulation of observations xt:

accs =
R∑

r=1

Tr∑

t=1

ωr,s,t · cr,s,t · xt

. with confidence cr,s,t at sentence-, word, or state-level
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Results - Unsupervised Model Adaptation: M-MMI-conf

I M-MMI criterion with posterior confidences (M-MMI-conf)

I unsupervised training for model adaptation during decoding

I word-confidence based M-MMI-conf training and rejections

 19.1
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confidence-based M-MMI writer adaptation
M-MMI baseline

#rejected segments

. confidence threshold c = 0.5→ more than 60% segment rejection rate

. small amount of adaptation data only
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Results - Unsupervised Model Adaptation: M-MMI-conf

I unsupervised training for model adaptation during decoding

I state-confidence based M-MMI-conf training and rejections

. arc posteriors from the lattice output from the decoder

. only word frames aligned with a high confidence in 1st pass
→ unsupervised model adaptation

. only 5% frame rejection rate (20,970 frames of 396,416)

I ICDAR 2005 Setup [Comparison]

Training/Adaptation WER[%] CER[%]
ML 21.86 8.11
M-MMI 19.51 7.00
+ unsupervised adaptation 20.11 7.34

+ word-confidences 19.23 7.02
+ state-confidences 17.75 6.49

+ supervised adaptation 2.06 0.77
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Results - Training: ML vs. MMI vs. Modified-MMI Criterion

I ML = Maximum Likelihood

I MLE = Model Length Estimation

I MMI vs. modified-MMI after 30 Rprop iterations

I ICDAR 2005 Setup [Comparison]

WER [%]
Train Test ML +MLE +MMI +Modified MMI
abc d 10.88 7.80 7.44 6.12
abd c 11.50 8.71 8.24 6.78
acd b 10.97 7.84 7.56 6.08
bcd a 12.19 8.66 8.43 7.02
abcd e 21.86 16.82 16.44 15.35
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Visual Inspection of M-MMI Training
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Constrained Maximum Likelihood Linear Regression (CMLLR)

I writer adaptation

. method for improving visual models in handwriting recognition

. refine models by adaptation data of particular writers

. widely used is affine transform based model adaptation

I CMLLR

. Idea: normalize writing styles by adaptation of the features xt

. constrained MLLR feature adaptation technique

. also known as feature space MLLR (fMLLR) [Details]

. estimate affine feature transform:

x′t = Axt + b

. CMLLR is text dependent
◦ requires an (automatic) transcription
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Training: CMLLR-based Writer Adaptive Training

I writer adaptation compensates for writer differences during recognition

→ do the same during visual model training
→maximize the performance gains from writer adaptation

I writer variations are compensated by writer adaptive training (WAT)

I writer normalization using CMLLR

I necessary steps

1. train writer independent GMMs model
2. CMLLR transformations are estimated for each (estimated) writer
. supervised if writers are known

3. apply CMLLR transformations on features to train writer dependent GMMs
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Decoding: CMLLR-based Writer Adaptation

I writers and writing styles are unknown

I necessary steps

1. estimate writing styles using clustering
. Bayesian Information Criterion (BIC) based stopping condition

2. estimate CMLLR feature transformations
for every estimated writing style cluster

3. second pass recognition
. WAT models + CMLLR transformed features

Sys.1 Sys.2

Decoder

Writer Independent
Pass 1: Pass 2:

Clustering CMLLR Decoder

WAT+CMLLR
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Results - Decoding: Writer Adaptation

I comparison of MLE, WAT, and CMLLR based feature adaptation

I comparison of unsupervised and supervised writer clustering

. decoding always unsupervised

. supervised clustering→ only the writer labels are used!

Train Test WER[%]
1st pass 2nd pass
ML +MLE WAT+CMLLR

unsup. sup.
abc d 10.88 7.83 7.72 5.82
abd c 11.50 8.83 9.05 5.96
acd b 10.97 7.81 7.99 6.04
bcd a 12.19 8.70 8.81 6.49
abcd e 21.86 16.82 17.12 11.22
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Results - Decoding: Writer Adaptation

I unsupervised clustering: error analysis

. histograms for segment assignments over the different test folds

. problem: unbalanced segment assignments

Dreuw et. al.: RWTH-OCR 28 / 36 Sousse, Tunisia March 2010



Arabic Handwriting - Experimental Results for IFN/ENIT

I Writer Adaptive Training + CMLLR for Writer Adaptation
see [Dreuw & Rybach+ 09], ICDAR 2009 [Visualization]

I M-MMI Training + Unsupervised Confidence-Based Model Adaptation
see [Dreuw & Heigold+ 09], ICDAR 2009 [Details]

I ICDAR 2005 Setup [Comparison]

Train Test WER[%]
1st pass 2nd pass

ML +MLE +M-MMI WAT+CMLLR M-MMI-conf
unsup. sup.

abc d 10.88 7.83 6.12 7.72 5.82 5.95
abd c 11.50 8.83 6.78 9.05 5.96 6.38
acd b 10.97 7.81 6.08 7.99 6.04 5.84
bcd a 12.19 8.70 7.02 8.81 6.49 6.79
abcd e 21.86 16.82 15.35 17.12 11.22 14.55
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Arabic Handwriting - Experimental Results for IFN/ENIT

I evaluation of RWTH-OCR systems at Arabic HWR Competition, ICDAR 2009

. external evaluation at TU Braunschweig, Germany

. set f and set s are unknown (not available)

. unsupervised M-MMI-conf model adaptation achieved similar improvements

. 3rd rank (group)

ID WRR[%]
set fa set ff set fg set f set s

RWTH-OCR, ID12 86.97 88.08 87.98 85.51 71.33
RWTH-OCR, ID13 87.17 88.63 88.68 85.69 72.54
RWTH-OCR, ID15 86.97 88.08 87.98 83.90 65.99
A2iA, ID8 90.66 91.92 92.31 89.42 76.66
MDLSTM, ID11 94.68 95.65 96.02 93.37 81.06

I Note:

. focus on modeling (ID12 and ID13) and speed (ID15) - no preprocessing
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Summary

I RWTH-ASR→ RWTH-OCR

. simple feature extraction and preprocessing

. Arabic: created a SOTA system, ranked 3rd at ICDAR 2009

I discriminative training

. margin-based HMM training (ML vs. MMI vs. M-MMI)

. unsupervised confidence-based MMI model adaptation (M-MMI-conf)

I writer adaptive training

. supervised writer adaptation demonstrated the potential

I ongoing work

. impact of preprocessing in feature extraction (Arabic vs. Latin)

. more complex features (e.g. MLP)

. character context modeling (e.g. CART)

. Latin: created a SOTA system, best single system
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Outlook: Latin Handwriting - IAM Database

I English handwriting, continuous sentences

Train Devel Eval 1 Eval 2 Total
Lines 6,161 1,861 900 940 9,862
Running words 53,884 17,720 7,901 8,568 88,073
Vocabulary size 7,754 3,604 2,290 2,290 11,368
Characters 281,744 83,641 41,672 42,990 450,047
Writers 283 128 46 43 500
OOV Rate ≈15% ≈17% ≈15%

I Example lines:
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Outlook: Latin Handwriting - UPV Preprocessing

I Original images

I Images after color normalisation

I Images after slant correction

I Images after height normalisation

Note: preprocessing did not help for Arabic handwriting [Visualization]
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Outlook: Latin Handwriting - Experimental Results on IAM Database

Systems Devel WER [%] Eval WER [%]
RWTH-OCR
Baseline* 81.07 83.60

+ UPV Preprocessing* 57.59 65.26
+ LBW LM & 50k Lexicon* 31.92 38.98

+ discriminative training (M-MMI) 26.19 32.52
+ confidences (M-MMI-conf) - 31.87

+ discriminative training (M-MPE) 24.31 30.07
+ confidences (M-MPE-conf) 23.75 29.23

Other Single HMM Systems
[Bertolami & Bunke 08] 30.98 35.52
[Natarajan & Saleem+ 08] - 40.01∗∗

[Romero & Alabau+ 07] 30.6∗∗ -
System Combination
[Bertolami & Bunke 08] 26.85 32.83

*see [Jonas 09] for details

** different data
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Thank you for your attention

Philippe Dreuw

dreuw@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/
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Appendix: Comparisons for IFN/ENIT

I ICDAR 2005 Evaluation

Rank Group WRR [%]
abc-d abcd-e

1. UOB 85.00 75.93
2. ARAB-IFN 87.94 74.69
3. ICRA (Microsoft) 88.95 65.74
4. SHOCRAN 100.00 35.70
5. TH-OCR 30.13 29.62

BBN 89.49 N.A.
1* RWTH 94.05 85.45

*own evaluation result (no tuning on test data)
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Appendix: Arabic Handwriting - IFN/ENIT Database

Corpus development

I ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e

I ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f

I ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f

Dreuw et. al.: RWTH-OCR 39 / 36 Sousse, Tunisia March 2010



Appendix: Participating Systems at ICDAR 2005 and 2007

I MITRE: Mitre Cooperation, USA
over-segmentation, adaptive lengths, character recognition with post-processing

I UOB-ENST: University of Balamand (UOB), Lebanon and Ecole Nationale Superieure des Telecommunications (ENST), Paris
HMM-based (HTK), slant correction

I MIE: Mie University, Japan
segmentation, adaptive lengths

I ICRA: Intelligent Character Recognition for Arabic, Microsoft
partial word recognizer

I SHOCRAN: Egypt
confidential

I TH-OCR: Tsinghua Universty, Beijing, China
over-segmentation, character recognition with post-processing

I CACI: Knowledge and Information Management Division, Lanham, USA
HMM-based, trajectory features

I CEDAR: Center of Excellence for Document Analysis and Recognition, Buffalo, USA
over-segmentation, HMM-based

I PARIS V / A2iA: University of Paris 5, and A2iA SA, France
hybrid HMM/NN-based, shape-alphabet

I Siemens: SIEMENS AG Industrial Solutions and Services, Germany
HMM-based, adapative lenghths, writing variants

I ARAB-IFN: TU Braunschweig, Germany
HMM-based
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Appendix: Visual Modeling - Model Length Estimation

I more complex characters should be represented by more HMM states

I the number of states Sc for each character c is updated by

Sc =
Nx,c

Nc

· α

with
Sc = estimated number states for character c

Nx,c = number of observations aligned to character c
Nc = character count of c seen in training
α = character length scaling factor.

[Visualization]
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Appendix: Visual Modeling - Model Length Estimation

Original Length

I overall mean of character length = 7.9 pixel (≈ 2.6 pixel/state)

I total #states = 357
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Appendix: Visual Modeling - Model Length Estimation

Estimated Length

I overall mean of character length = 6.2 pixel (≈ 2.0 pixel/state)

I total #states = 558
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Appendix: Alignment Visualization

I alignment visualization with and without discriminative training

I upper lines with 5-2 baseline setup, lower lines with additional
discriminative training
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Appendix: Arabic Handwriting - UPV Preprocessing

I Original images

I Images after slant correction

I Images after size normalisation

Experimental Results:

I important informations in ascender and descender areas are lost

I not yet suitable for Arabic HWR
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Appendix: Visual Modeling - Writing Variants Lexicon

I most reported error rates are dependent on the number of PAWs

I without separate whitespace model

I always whitespaces between compound words

I whitespaces as writing variants between and within words

White-Space Models for Pieces of Arabic Words [Dreuw & Jonas+ 08] in ICPR 2008
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Appendix: Constrained Maximum Likelihood Linear Regression

Idea: improve the hypotheses by adaptation of the features xt
I effective algorithm for adaptation to a new speaker or environment (ASR)

I GMMs are used to estimate the CMLLR transform

I iterative optimization (ML criterion)

. align each frame x to one HMM state (i.e. GMM)

. accumulate to estimate the adaptation transform A

. likelihood function of the adaptation data given the model is to be
maximized with respect to the transform parameters A, b

I one CMLLR transformation per (estimated) writer

I constrained refers to the use of the same matrix A for
the transformation of the mean µ and variance Σ:

x′t = Axt + b→ N(x|µ̂, Σ̂) with µ̂ = Aµ+ b

Σ̂ = AΣAT
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