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Abstract
In automatic speech recognition, we are faced with a well-

known inconsistency: Bayes decision rule is usually used to
minimize sentence (word sequence) error, whereas in practice
we want to minimize word error, which also is the usual eval-
uation measure. Recently, a number of speech recognition ap-
proaches to approximate Bayes decision rule with word error
(Levenshtein/edit distance) cost were proposed. Nevertheless,
experiments show that the decisions often remain the same and
that the effect on the word error rate is limited, especially at
low error rates. In this work, further analytic evidence for these
observations is provided. A set of conditions is presented, for
which Bayes decision rule with sentence and word error cost
function leads to the same decisions. Furthermore, the case
of word error cost is investigated and related to word posterior
probabilities. The analytic results are verified experimentally
on several large vocabulary speech recognition tasks.

1. Introduction
In automatic speech recognition research, a number of approxi-
mate approaches to word error minimizing decision rules were
introduced recently1 [1, 7, 9, 11], trying to overcome the well-
known inconsistency between the standard decision rule opti-
mizing sentence error and the appropriate word level evaluation
measures [5, pp. 4-5].

Nevertheless, improvements obtained with these ap-
proaches usually are relatively small, where the larger improve-
ments usually are obtained on more demanding tasks, with
higher baseline error rates. Most important, experimentally it
can be observed that the decisions using the standard sentence
(word sequence) cost function often are equal to those obtained
with decision rules based on word level (Levenshtein or similar)
cost functions, as used in ASR, cf. e.g. the individual systems’
results presented in [4].

In this work, we analyze the relation between the sentence
(word sequence) cost function, and the Levenshtein cost func-
tion as should ideally be used in ASR. Specific properties for
the word error minimizing Bayes decision rule, and its relation
to a specific definition of word posterior probabilities will be
derived. The analytic results are verified and evaluated experi-
mentally. Their quantitative effect is studied by experiments on
three different well-known large vocabulary ASR tasks.

2. Bayes Decision Rule
Assume the case of ASR, with acoustic feature vector sequences
X = x1, . . . , xT , and word sequences W = w1, . . . , wN .

1In automatic speech recognition, these approaches sometimes are
denoted as “minimum” Bayes risk, although Bayes risk by definition
already is minimal. The actual aim in these approaches is to apply word
error cost functions to Bayes decision rule.

Also, define a cost function L(V,W ). Then the posterior risk
for a hypothesizing a word sequence W given an observation
sequence X is

R(W |X) =
X

V ∈M

p(V |X)L(V,W ),

and the Bayes decision rule with this cost function is
WL(X) = arg min

W

X
V ∈M

p(V |X)L(V,W ), (1)

where the summation set M includes all non-zero poste-
rior probability word sequences, whereas the minimization goes
over all word sequences, including zero-probability word se-
quences.2 In ASR, the standard cost function used in Bayes
decision rule is the sentence (word sequence, or 0-1) error. Us-
ing 0-1 cost, Bayes decision rule ends up in the maximization
of the class posterior probability, i.e. the maximum-a-posteriori
(MAP) rule. With the acoustic feature vector sequences X =
x1, . . . , xT , and word sequences W = w1, . . . , wN , the MAP
for ASR reads

WMAP(X) = arg max
W

p(W |X).

Nevertheless, the choice of a sentence error cost function
is inconsistent [5, pp. 4-5] with the evaluation measure used in
ASR, the word error rate, which would require a Levenshtein
cost function to be used in search. In the following, Bayes deci-
sion rule using Levenshtein cost will be called Levenshtein rule.

In [8], a strong connection between the MAP and the Lev-
enshtein rule was shown. Especially it is shown that if one of
the following inequalities is fulfilled, then the MAP and the Lev-
enshtein decision rule give the same results:

2p(WMAP|X) +
X
W :

L(W,WMAP(X))=1

p(W |X) − max
W :

L(W,WMAP(X))=1

p(W |X) ≥ 1 (2)

⇐ 2p(WMAP|X) ≥1. (3)

As a further specialization, Ineq. (3) (and therefore also
Ineq. (2)) follows from the following ineqality:

R(WMAP(X)) =
X
W

p(W |X)L(W,WMAP(X)) ≤ 1

2
, (4)

since for metric and integer-valued cost L we have:

R(WMAP(X)) =
X
W

p(W |X)L(W,WMAP(X))

=
X

W 6=WMAP(X)

p(W |X)L(W,WMAP(X))

≥
X

W 6=WMAP(X)

p(W |X)

= 1− p(WMAP(X)|X).

2In an example in [8, Fig. 1] it was shown that zero probability
classes indeed can result from Bayes decision rule.
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3. Bayes Risk with Word Error Cost
Ideally, all word sequences, including the zero probability word
sequences are possible results of Bayes decision rule with Lev-
enshtein cost (Levenshtein rule), cf. [8, Fig. 1]. To reduce
complexity, the minimization space in the Levenshtein rule, cf.
Eq. (1), can be approximated by the summation spaceM, i.e.
by the non-zero posterior probability word sequences. Let’s
denote this restricted decision rule as minimum word error
(MWE) rule.

In the following we introduce an upper bound to the Lev-
enshtein cost function, which provides further insight into the
relation between Bayes risk and word error rate. A Levenshtein
alignment between two word sequences can be transformed into
a Hamming alignment by inserting empty (ε) words in first and
second word sequence wherever insertion and deletion errors
occur, respectively. Also note that the additional insertion of
pairs of empty words at the same position would not change
the edit-distance between the two aligned sequences. There-
fore, a multiple alignment between a given word sequence and
a set of word sequences can be arranged in a similar way, where
empty words are inserted into each word sequence, such that
each aligned word sequence will have equal length (i.e., includ-
ing the ε-words). The first part of Table 1 shows a correspond-
ing example for the Levenshtein alignment of word sequences
Wi, i = 1, 2, 3, to the seed word sequence W0 using empty
words. The second part of Table. 1 shows the Levenshtein cost
for aligning each pair of these word sequences.

Table 1: Multiple Levenshtein alignment of the word sequences
W1 =a c b, W2 =a d c b, and W3 =a d b to the seed word
sequence W0 =a b c represented by a position-wise alignment
using inserted empty (ε-)words. The table shows the Leven-
shtein cost (edit distance), and the alignment-based cost with
the seed sequence W0, between all pairs of sequences.

Levenshtein multiple alignm.
word cost Hamming cost

sequences W0 W1 W2 W3 W0 W1 W2 W3

W0 a ε b c ε 0 2 2 2 0 2 2 2
W1 a c b ε ε 2 0 1 1 2 0 4 1
W2 a ε d c b 2 1 0 1 2 4 0 4
W3 a d b ε ε 2 1 1 0 2 1 4 0

In the following, the representation of multiple Levenshtein
alignments will be called multiple alignment in short. Note that
the length of all word sequences within a multiple alignment
is made equal by the insertion of empty words. This length
will be called the length of a multiple alignment, denoted as
N(W,M), with the seed word sequenceW and a set of aligned
word sequencesM.

To correctly address the individual words of a word se-
quence V ∈ M after a multiple alignment, the notation
V

(W,M)
n is defined, which refers to the n-th position in word se-

quence V for a multiple alignment of the set of word sequences
M to word sequence W .

Using this notation, a new word level distance measure
can be defined as the Hamming distance [3] between word se-
quences V and W resulting from a multiple alignment of se-
quences inM to a seed word sequence U . This distance mea-
sure will be referred to as multiple alignment Hamming cost in
the following:

L(U,M)(V,W ) =

N(U,M)X
n=1

`
“
V (U,M)

n ,W (U,M)
n

”
, (5)

with the local distance `(v, w) between two words v, w defined
as:

`(v, w) = 1− δv,w = `(w, v). (6)

In the third part of Table 1, the multiple alignment Ham-
ming cost is shown for the case U = W0 and M =
{W0,W1,W2,W3}.

The multiple alignment Hamming cost has a clear relation
to the Levenshtein distance:

L(V,W ) = L(W,M)(V,W )

= L(V,M)(V,W ),
(7)

i.e., the multiple alignment Hamming cost involving the seed
word sequence itself is identical to the corresponding Leven-
shtein cost, as could be seen in the first row and column of the
third part of Table 1. The multiple alignment Hamming cost can
only be larger or equal to the Levenshtein distance, due to the
optimality of the Levenshtein distance:

L(U,M)(V,W ) ≥ L(V,W ), (8)

with the equality (in general not exclusively) obtained both for
W = U or V = U , cf. Eq. (7). Now define an alignment-
dependent Levenshtein risk using the multiple alignment Ham-
ming cost function, which will be referred to as Hamming risk
in the following:

R(U,M)(W |X) =
X

V ∈M

p(V |X) ·
N(U,M)X

n=1

`
“
V (U,M)

n ,W (U,M)
n

”

=

N(U,M)X
n=1

“
1− pn(W (U,M)

n |X)
”
. (9)

with the position conditional word posterior probability

pn(w|X) =
X

V ∈M:V
(W,M)
n =w

p(V |X). (10)

Note that the Hamming risk depends both on the set of word
sequencesM, as well as the seed word sequence U . From Eq.
(7) and Ineq. (8) follows:

R(W,M)(W |X) = R(W |X), (11)

R(U,M)(W |X) ≥ R(W |X), (12)

i.e. the Hamming risk is an upper bound to the Levenshtein risk,
with equality if the seed word sequenceU for the multiple align-
ment is equal to the word sequence W the risks are evaluated
for. Using Eq. (11) and Ineq. (12) we further conclude

R(W |X)−R(U |X) = R(W |X)−R(U,M)(U |X)

≤ R(U,M)(W |X)−R(U,M)(U |X), (13)

i.e. a minimization of the Hamming risk starting from the seed
word sequence U also reduces the Levenshtein risk. The Ham-
ming risk results from the Levenshtein alignment of all word
sequences to a specific word sequence U . Note that the com-
putation of the Levenshtein risk for word sequence U itself re-
quires the same alignments. The Hamming risk can be com-
puted efficiently for all word sequences which were aligned to
word sequence U , the complexity is linear in the number of
word sequences aligned. Therefore the Hamming risk can be
used to efficiently check all word sequences for having lower
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Levenshtein risk than the original hypothesis U used as align-
ment seed. Using the MAP word sequence as alignment seedU ,
this approach was introduced as “N -best ROVER” [10] (NBR),
when applied to the N -best word sequences of a single ASR
system (instead of multiple systems for the purpose of system
combination, as described in [10]). Moreover, NBR can be iter-
ated by consecutively replacing the seed word sequence with the
word sequence minimizing the Hamming risk, which in the fol-
lowing is denoted as Hamming iteration (HIT). Due to Eq. (11),
HIT will not increase the Levenshtein risk. Although this ap-
proach only is locally optimal w.r.t. the Levenshtein risk, its
complexity (per iteration linear in |M|) is better than minimiz-
ing the Levenshtein risk directly (≥ |M|2), assuming that HIT
converges well before all possible word sequences are visited.
Convergence of HIT means that the optimization of the Ham-
ming risk results in the (last) seed word sequence itself, i.e. it
can not be improved further.

Note that the HIT rule can result in word sequences which
are not contained in the original set of word sequences M,
since in any position a word hypothesis from any of the word
sequences contained in M can be chosen. A hypothesis not
contained in M can still have a Levenshtein risk less than its
restricted optimum overM. Also, after application of the HIT
rule, the Hamming risk of the word sequence resulting from the
HIT rule is equal to its Levenshtein risk. Neither the HIT rule
nor the MWE rule guarantee to find the global optimum.

The relation between the standard MAP rule and Bayes de-
cision rule with Levenshtein cost presented in Sec. 2 can be
translated to the decision rules presented here. If at least one
of the Ineqs. (2-4) is fulfilled, then, the MAP, Levenshtein,
MWE, NBR, and HIT decision rules all coincide. The com-
plete proof of this statement will be presented in a further pub-
lication. Nevertheless, the proof is based on the following re-
lation of the word posterior probabilities derived from the mul-
tiple alignment (without proof) with the MAP word sequence
WMAP = wN

1 = w1w2 . . . wN and u 6= wn in position n:

pn(wn|X)− pn(u|X) (14)

≥ 2p(WMAP|X) +
X
W :

L(W,WMAP(X))=1

p(W |X) − max
W :

L(W,WMAP(X))=1

p(W |X)− 1

Clearly, if Ineq. (2) (or its special cases, Ineqs.(3) and (4)) is
fulfilled, the right side of Ineq. (14) will be greater or equal to
zero. Hence, the NBR rule, i.e. the initial iteration of the HIT
rule will decide for the wordswn from the MAP word sequence
in each position n = 1, . . . , N , noting that the optimization of
the Hamming risk can be done position-wise, cf. Eq. (9), i.e.
for each n separately. Sec. 2 also shows that Ineq. (2) leads
to equality of MAP and Levenshtein rule. Since by definition
WMAP ∈ M, all decision rules discussed (MAP, Levenshtein,
MWE, NBR, and HIT) then give identical results.

4. Experiments
Experiments were performed on a number of different speech
recognition tasks. The aim was to evaluate the impact of the
analytic results given here, and the effect of the word level cost
decision rules based on the Levenshtein and Hamming risk in
contrast to the MAP rule. Experiments were performed on the
Wall Street Journal 5k (WSJ5k) with setups as in [8] (with a
slight correction in the acoustic feature extraction, leading to
slightly improved results in this work), the European Parliament
Plenary Sessions (EPPS) using the English System 4 (EPPS-
EN), and the Spanish System 1 (EPPS-ES), cf. [6]. Task statis-
tics are summarized in Table 2, including the test corpus sizes

by hours, segments, segment length, running words, and the
recognizer vocabulary, and baseline word error rate (WER) of
each ASR systems used. The experiments with the word-level
cost Bayes decision rules presented here are based on N -best
lists [9] with 10,000 entries extracted from word graphs gen-
erated by the baseline ASR systems. The N -best list posteriors
are re-normalized to sum to one for each segment, implicitly as-
suming zero posterior probability for word sequences not con-
tained.

Table 2: Test corpus statistics and baseline performance.
test audio number of PP vocab. baseline

corpus [h] segm. words [k] WER[%]
WSJ5k 1.3 740 12137 111 5 3.95

EPPS-ES 6.2 1527 56875 105 61 9.63
EPPS-EN 2.9 644 27386 107 52 9.77

The experimental results are summarized in Tables 3-4.
Each corpus is partitioned into sub-corpora, which comprise
those segments, for which the following conditions are ful-
filled:

a) Levenshtein risk ≤ 1
2

, cf. Ineq. (4);
b) max. posterior prob. ≥ 1

2
, cf. Ineq. (3), but excl. a);

c) Ineq. (2) with Lev. cost fulfilled, but excl. a) & b);
d) Remaining segments, i.e. excl. cases a), b), and c);

“=” MAP, MWE and HIT decision rules coincide;
“6=” MAP, MWE, and/or HIT decision rules do not coincide.

Table 3: Experimental results for the WSJ5k English corpus
using N -best list rescoring.

sub- segm. words av. len. WER [%]
corpus [%] [%] [#word] MAP MWE HIT

a) 68.2 66.8 16.1 1.43
b) 8.4 8.3 16.3 6.33
c) 5.3 5.4 16.7 13.60
d) 18.1 19.5 17.7 11.00 10.20 10.40

“=” 95.8 95.3 16.3 3.33
“ 6=” 4.2 4.7 18.3 16.60 13.20 14.10
all 100.0 100.0 16.4 3.95 3.78 3.83

Table 4: Experimental results for the EPPS Spanish corpus us-
ing N -best list rescoring.

sub- segm. words av. len. WER [%]
corpus [%] [%] [#word] MAP MWE HIT

a) 26.6 10.8 15.2 3.91
b) 2.3 1.7 27.5 4.37
c) 5.5 4.2 28.4 4.99
d) 65.6 83.3 47.3 10.70 10.60 10.60

“=” 79.4 73.4 34.4 7.94
“ 6=” 20.6 26.6 48.1 14.30 13.80 14.00
all 100.0 100.0 37.2 9.63 9.49 9.54

Table 5: Experimental results for the EPPS English corpus us-
ing N -best list rescoring.

sub- segm. words av. len. WER [%]
corpus [%] [%] [#word] MAP MWE HIT

a) 14.9 5.5 16.1 2.08
b) 1.4 0.6 16.7 6.00
c) 3.7 2.7 30.3 3.02
d) 80.0 91.2 48.5 10.50 10.40 10.40

“=” 73.5 67.5 39.1 8.24
“ 6=” 26.6 32.5 39.0 12.90 12.60 12.60
all 100.0 100.0 39.1 9.77 9.67 9.67
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Note that both {a),. . . ,d)} and {=, 6=} comprise the com-
plete corpus, respectively. The decisions of the MAP, MWE,
and HIT rules are proved to be equal if any of the Ineqs. (2)-(4),
cf. cases a)-c). Therefore, in these cases only a single WER
each is shown in Tables 3-4. Finally, the last row of each of the
Tables 3-4 shows the results for the corresponding complete test
corpus. The columns of the results tables show the sub-corpus,
percentage of segments and running words, average segment
length (by number of words), and the word error rates (WER)
for the four decision rules MAP, MWE, and HIT as introduced
in Secs. 2 and 3.

In addition to cases a)-c), where MAP, MWE, and HIT are
proved to coincide (cf. Sec. 2), there still are large subsets of
each corpus, for which the equality is not proved, but neverthe-
less holds, compare cases “d)” and “ 6=”. In cases, where the
MAP and MWE decision are equal, also the word error rates
are well below average for all tasks considered here. There-
fore, the agreement of MAP and MWE provides confidence
information on segment level. The subsets “ 6=”, where MAP,
MWE, and/or HIT differ are comparatively small. Any im-
provements obtained from word error based decision rules like
MWE and HIT originate from these comparably small subsets
of the test corpus. This might further explain, why improve-
ments obtained from word error based decision rules usually are
comparatively low, as could be observed here, and in a number
of other experimental approaches to word error based decision
rules, e.g. [4, 7, 9].

Subsets with lower word error rate have a higher percentage
of cases a)-c). This could be expected: error rate is linked to the
MAP probability via Bayes decision rule, and the magnitude
of the MAP probability plays an important role for cases a)-c).
Although Ineq. (2) covers all three cases a)-c), the bulk of it is
already covered by the special case of low risk in Ineq. (4), i.e.
case a).

By definition, for cases a)-c) a risk lower than 1/2, very
high MAP probability of segments, or high probability mass
for the MAP class and classes with distance one from it are
observed. Nevertheless, assuming constant average probabil-
ity mass per word position for the MAP word sequence, the
posterior probabilities for the MAP word sequence and simi-
lar sequences should decrease with sequence length. Conse-
quently, the average segment lengths for cases a)-c) are lower
than the overall average and show a trend, as the word error
rates do. This length dependence of the equality conditions for
MAP and MWE also supports the choice to cut segments in
ASR tasks into smaller segments, as proposed in the experi-
mental approach presented in [2].

The experimental results show that Ineq. (3) already cov-
ers a major part of Ineq. (2). Recall that Ineq. (3) follows from
Ineq. (4), i.e. it is represented by the union of cases a) and b).
Therefore Ineq. (2), following from both Ineqs. (4) and (3) only
adds subset c). Using Ineq. (3), in [8] a rough estimate of the
ASR word error rate r1 needed to observe a considerable effect
of the MWE over the MAP rule is derived, depending on the
average length M of the segments: r1 & 1 − (1/2)

1
M . Us-

ing Ineq. (4), an even simpler, though less tight estimate for the
word error rate r can be derived, beyond which a considerable
effect can be expected: r2 & 1

2M
. Note that both estimates

converge for large M . For WSJ5k, the average segment length
is 16.4 words, resulting in r1 & 4%, which is very near to the
word error rate observed on WSJ5k. This motivates the low
ratio of less than 5% of segments, for which MWE results in
different decisions than MAP on WSJ5k, cf. case “ 6=” in Ta-
ble 3. On the other hand, for high word error rates and/or long

segment lengths, r would be much higher. Consequently, on
the EPPS and GALE corpora, the ratio of segments covered by
cases a)-c) is considerably reduced. Also the ratio of segments
for which MWE and MAP give different results increases both
with average segment length and word error rate.

5. Conclusions
In this work, fundamental conditions were presented, for which
Bayes decision rule using word error cost and standard sentence
(word sequence, 0-1) cost coincides. The analytic results agree
with experimental evidence that using a task-specific cost func-
tion does not provide considerable improvements on top of the
standard, sentence cost based Bayes decision rule. As part of the
conditions for equality of Bayes decision rule with word error
and sentence error cost, especially the case of Bayes risk lower
than one half is interesting, i.e. the case of a conditional average
word error per segment lower than a constant. This condition
shows the strong relationship between word error rate and the
choice of cost function in Bayes decision rule. It is consistent
with the ASR experiments presented, which show equal deci-
sions using sentence and word error cost, unless the baseline
error rates are high. The connection between word error rate
and posterior probability can even be traced down to word level.
Using the properties of the Levenshtein cost, the Hamming risk
was introduced as an upper bound to the Levenshtein risk. The
corresponding multiple alignment Hamming cost based deci-
sion rule is covered by the more general conditions derived in
Sec. 2. Therefore, the multiple alignment Hamming cost based
Bayes decision rule also is proved to lead to equal decisions than
using Levenshtein cost.
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