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Abstract
The search for the optimal word sequence can be performed
efficiently even in a speech recognizer with a very large vo-
cabulary and complex models. This is achieved using pruning
methods with empirically chosen parameters and the willing-
ness to accept a certain amount of pruning errors. Quite un-
satisfying though, it is state-of-the-art that such pruning errors
are not directly detected but, instead, indirect consequences of
them, providing only a rough picture of what happens during
search. With the tool Direct Observation of Pruning Errors
(DOPE), described in this paper, pruning errors are detected on
the state hypothesis level, which is a very fine level of granula-
tion, several orders of magnitude finer than the sentence level.
This allows much more exact analyses, including the analysis
of pruning methods, or the effects of pruning parameters.

1. Introduction
Given a speech recognizer together with its knowledge
sources—the pronunciation dictionary, the acoustic model and
the language model—the task generally referred to as ‘search’
is to find the optimal word sequence. To achieve this goal using
Viterbi decoding, the optimal state sequence is determined, giv-
ing rise to the optimal word sequence. It should be stressed that
the search is just this optimization problem, such that differ-
ent search procedures should always result in exactly the same
(state and thus) word sequences with exactly the same proba-
bility values. If, due to pruning, a search procedure finds an
optimal state sequence different from the one found by a full
search, a (canonical) pruning error has occured.

Note that we say ‘the optimal’ sequence as if it were
unique—as usual, ties (identical scores) make the formulation
clumsy, but are no real problem (they can be arbitrarily bro-
ken), so for the sake of a simpler presentation and without loss
of generality, we completely ignore ties throughout this paper.

The basic ingredient of one-stage time-synchronous inte-
grated beam search is to multiply out the available knowledge
sources into a (possibly very large) state space and to unfold it
over time (integrated search), to seek the optimal state sequence
through this state space, working through time, frame by frame,
from a start to an end time frame. Taking advantage of ‘Bell-
man’s optimality principle’ and a process called ‘recombina-
tion’ [1] which only keeps track of state hypotheses that could
in principle be part of an optimal path—and which discards all
others—the computational complexity is only linear in time. In
addition to this exact process that still guarantees finding the
optimum, there is a heuristic process called ‘pruning’ which is
motivated by the fact that, per time frame, the potential state
hypothesis space is typically huge while the number of state
hypotheses that have a realistic chance to be part of the opti-
mal path is rather limited (in the range of thousands per time
frame). By pruning (removing) hypotheses that are much worse

than the optimal partial hypothesis up to this time frame and
thus are unlikely to be part of the globally best path, the global
optimum can still be found given that pruning was not too tight.
There exist several simple and strong pruning methods saving,
in a typical recognition system, several orders of magnitude of
search effort. In contrast to recombination, pruning can result in
losing the optimal path, i. e. in not finding the global optimum.
Pruning errors can cause recognition errors but do not need to.

2. Concepts of a ‘Pruning Error’
It seems obvious what a pruning error is. Let us from now on
restrict to the state hypothesis rather than the word level. This
choice provides finer granularity, and anyway, any pruning error
on the word level comes from a pruning error on the state level.
As a possible definition, a pruning error occurs when

1. Pruning a state hypothesis that would have resulted in the
globally optimal path (‘globally optimal’ means at the
end of the speech input, after exploitation of all available
knowledge sources, in a full search).

However, other variants are also compelling. Try these:

2. Pruning a state (or word) hypothesis that results in an
additional recognition error.

3. Pruning a state hypothesis that would have resulted in
the globally optimal state hypothesis sequence through
the actually spoken word sequence (see section 2).

It might be worth while reflecting why neither of the defi-
nitions implies the other.

(1) is clearly the ‘right’ and academically appealing
definition—however, at least conceptually it has the drawback
that it requires an exhaustive search that is in general practically
not feasible. Even worse, its practical relevance is limited as we
might not even care if one incorrect hypothesis is replaced by
another incorrect one.

(2) describes the type of events that are to be avoided in
a working system—however, this is conceptually immature as
there can be ‘helpful’ pruning errors, and (2) is no more sep-
arated from the knowledge sources ‘acoustic model’ and ‘lan-
guage model’.

(3) is the definition used in this paper: It focuses on the only
practically relevant mal-function of pruning, where the origi-
nally spoken sentence is excluded from competing with other
hypotheses due to pruning.

2.1. Identifying Pruning Errors of type (1) and (2)

A pruning error of type (2) can be detected with a brute force
approach: Run a series of experiments with different search
methods or pruning parameters and compare the errors or the
error rates, see e. g. [2]. The method makes high demands on
computing resources while still not achieving a full search, and
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Figure 1: Example output of DOPE showing from top to bottom: (1) the transcribed word sequence, (2) the recognized word sequence,
(3) the relative score of the spoken state hypothesis, (4) the number of state hypotheses with a score less or equal than the score of the
spoken state hypothesis (ranging up to 1 300), and (5) the number of state hypothesis before pruning (ranging up to 520 000).

unfortunately also not giving further indication about the exact
nature of the pruning error. It provides an indication of type (1)
errors, but it will only uncover a subset of them.

Another method is based on a forced alignment of the
known spoken sentence. With a decoding run on an HMM that
allows exactly the constrained recognition of this sentence (plus
optional non-speech sounds or silence), using exactly the same
acoustic and language model scores, the resulting score Sforced
can be compared with the score Sfree of the optimal word se-
quence derived from a free (normal) recognition. (Scores are
defined as negative log-probabilities, relative to the current best
score of a given time frame.) If the criterion is met that Sforced
is better than Sfree, this proves that the search procedure has
not found the optimal word sequence, i. e. a pruning error of
type (1) has occurred. This criterion is obviously sufficient but
not necessary. We would assume that it works better for shorter
than for longer recordings and better for lower than higher word
error rates.

3. The Concept of DOPE
The DOPE analysis tool follows a simple principle: For each
time frame, it is checked whether, after pruning, the actually
‘spoken’ state hypothesis (for a definition see below) is still part
of the active search space or whether it has been pruned (either
at this point in time or earlier). Here are the details:

Given that the spoken word sequence is known (supervised
situation), a Viterbi time alignment is performed (forced align-
ment), and the optimal state sequence is determined. For every
time frame, the identity of the state as well as that of the his-
tory (the sequence of preceding words) is kept. Let us introduce
the naming conventions spoken state and spoken history. Later
on in the process of recognition, these will allow to identify the
matching state hypothesis in the search space—in our system,
for each time frame the HMM state hypothesis in a phonetic
tree copy indexed with the language model context. Note that
keeping the scores can be interesting to check the software but
is conceptually superfluous.

The implementation of DOPE can be split up into three
parts:

1. Knowing the spoken word sequence, determine the spo-
ken state sequence with a forced alignment.

2. During decoding, for each time frame t check whether
the spoken state hypothesis is active or pruned.

3. Do the statistics.

The implementation is straight-forward. For the connection
(1)→ (2), it is required to match the related but typically some-
what different data structures in training and decoding.

From now on, we focus on pruning errors of type (3):

Definition. When a state hypothesis—i. e. a pair (time frame,
HMM state)—in the globally optimal state sequence through
the actually spoken word sequence is pruned, this is a pruning
error.

4. Experiments
Fig. 1 shows an example output of the DOPE tool. For its eval-
uation, we ran experiments using an MFCC-based English sys-
tem that was trained on European Parliament Plenary Session
(EPPS) data. Using system combination, it was one of four
systems by RWTH that successfully took part in the TC-STAR
evaluation campaign [3]. For simplicity, here we limit ourselves
to the first recognition pass: Except for VTLN, we did not ap-
ply further adaptation techniques. Table 1 gives some statistics
regarding the experimental setup.

EPPS English System on evaluation corpus 2007
Audio 2.9 hrs
# running words 27 000
WER 14.7 %
OOV 0.0 %
# words in the lexicon 53 300
# n-grams, n = 1, . . . , 4 7 400 000

Table 1: Key figures of the English EPPS system and the cor-
responding evaluation corpus; the full system attains a WER
of 10.6 %. For our experiments, we used a lexicon having an
OOV rate of 0 %, the original OOV rate being 0.1 %. The LM
includes n-grams of an order of up to n = 4, during recognition
we used bigram look-ahead.



4.1. Search error analysis

We ran several recognition passes with different values for the
acoustic pruning threshold and measured the Word Error Rate
(WER). One of the principal problems of this classical method
can be seen in Fig. 2: On the left side the number of word errors
is shown as a function of the acoustic pruning threshold (all
other pruning parameters are kept fixed). Starting with high
values, the WER remains constant, whereas for small values
the number of word errors is very sensitive to small changes in
the pruning parameter.
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Figure 2: Errors due to pruning as a function of the acoustic
pruning threshold. To minimize interference between different
pruning strategies, we switched off histogram pruning for this
experiment.

Furthermore, the WER method tends to produce slightly
noisy data such that e. g. increasing the search space does not
necessarily improve the WER: In our data, when relaxing the
pruning threshold from 318 to 320 this resulted in increasing
the number of word errors from 4 008 to 4 014.

On the right we can see the result of DOPE analyzing search
errors on a state level. Over the whole parameter range we ob-
serve a noticable change in the number of pruned spoken state
hypotheses so that pruning errors can now be detected which
are hidden to the WER approach. No noise is visible.

At a WER of 14.7 % (4 011 incorrect words), the score of
only 0.2 % of the spoken state hypotheses (1 763 state hypothe-
ses) exceeds the pruning threshold. So we can derive that an in-
crease in the pruning parameters hardly will improve the recog-
nition result, and almost all word errors are due to modelling
inaccurracies. In contrast, from the WER data it is not clear
whether an increase in the pruning parameters would still im-
prove the WER.

4.2. Inspection of the search effort

A detailed profiling of the RWTH decoder shows that about
60 % of the CPU effort for a recognition pass results from the
evaluation of the acoustic model. The remaining CPU time is
equally distributed between language model (LM) lookups, the
LM look-ahead (LM-LA) computation, and the state expansion.
As a result, more than 70 % of the runtime directly depends on
the number of state hypotheses that are active during search. We
therefore analyze the state space in more detail.

Fig. 3 (a) shows that the number of state hypotheses grows
strongly with increasing score. The converse holds true for spo-
ken state hypotheses, see Fig. 3 (b). Most search effort is spent
on evaluating state hypotheses that are unlikely to eventually be-
come part of the optimum state sequence. Regarding the size of

the search space, on average we have 21 177.1 hypotheses left
after applying a tight pruning that still preserves the optimum
WER. At the same time, on average only 637.6 hypotheses have
a score less or equal than the score of the spoken state hypothe-
sis, which is a lower bound for the minimum search space size.

In [4], the authors state that most search effort is spent in
the first two phoneme generations of the state tree. This is con-
firmed by our experiments: Fig. 3 (c) indicates that about 60 %
of all state hypotheses (before pruning) can be found in the first
two phoneme generations of the state tree, and 99 % of them lie
within the first seven phoneme generations (we used three states
per phoneme).

For spoken state hypotheses, Fig. 3 (d), the recognition ef-
fort reflected by the state frequencies directly follows the word
lengths observed in the recognition corpus. This result is only
interferred by the choice of HMM transitions of the search pro-
cedure.

4.3. Inspection of pruning methods

We now examine the performance of our DOPE tool by investi-
gating whether it finds experimental evidence for the properties
that several state-of-the-art pruning techniques rely on.

The acoustic pruning [1] obviously makes use of the fact
that scores of spoken states tend to be much smaller than in the
average case, as observed in the previous section, Fig. 3 (b).

In practice, parameter values for LM pruning [1] can be
much smaller than those for the acoustic pruning without in-
creasing the WER. In principle, LM pruning can be regarded
as applying acoustic pruning to the set of word end states. We
find that the score distribution for this subset of state hypotheses
does not look different from the one we saw for all hypotheses
in Fig. 3 (a).
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Figure 4: Score of spoken state relative to the current optimum,
averaged over all words; as the number of observations (num-
bers at the markers) decreases over time, values for time > 100
tend to be noisy (less than 100 observations).

Instead, in Fig. 4 we see that scores of spoken states of a
word continuously decrease over time—as opposed to the aver-
age case where scores more or less remain constant. As scores
of spoken states at word end times are smaller, we suppose that
the LM pruning beam can be tighter. In any case, a tighter prun-
ing at word ends will limit the number of newly started trees,
which greatly reduces the search effort that is dominated by the
first generations of the prefix tree. At last, a reduced number
of trees will also minimize the overhead for the computation of
LM look-ahead values.

The LM look-ahead [1] tries to incorporate the LM infor-
mation as early as possible. In Fig. 4 we have already seen that
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Figure 3: Frequency counts before pruning for all active/spoken state hypotheses as a function of depth/score bin; for integer b, a score
bin b is defined as b := bsc, 0 ≤ b < 400, where s is the score of a state hypothesis.

at word start times the score of spoken state hypotheses shows
a large peak. This is caused by the LM look-ahead adding at
word start times a score for the most likely ending word.
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Figure 5: Average LM look-ahead as a function of depth in the
lexical prefix tree, error bars indicating +/− standard deviation

We assume that these peaks can pose problems because
during time-synchronous search, word start hypotheses includ-
ing the LM-LA peak are compared with word end hypotheses
where this information has not been incorporated yet.

Nevertheless, LM-LA leads to a considerable improvement.
Without any look-ahead, the peak would occur at word end
times, and the value of the peak would be equal to the LM-
LA at word end times. (In fact, as we use a 4-gram LM
whereas the LM-LA is based on a bigram LM, both values
might slightly differ.) Using LM-LA we find that the peak, now
occurring at word start times, is much smaller, see Fig. 5. Sec-
ond, we observe that the curve for spoken state hypotheses is
even smoother, further reducing the LM peak.

5. Conclusions and Future Work
The direct observation of pruning errors (DOPE) is a tool that
observes the effects of pruning strategies and parameters on the
state hypothesis level and thus provides much deeper insight

than other methods. The presented experiments show the va-
lidity of the approach. Furthermore, we can conclude that cur-
rent pruning methods are not at their limits and may still be
improved in terms of the resulting search space size.

We have presented DOPE in the context of time-
synchronous beam search. However, it should be noted that the
principle of DOPE is rather general and can be used as well for
other search procedures such as stack decoding or transducer-
based search [4] and also in different areas such as statistical
machine translation.

Further investigations are possible that extend beyond the
scope of this paper, for example the location of errors (short
words, word boundaries, silence, etc.) or the calibration of
pruning methods having large sets of free parameters.
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