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Abstract

Modern automatic spoken dialogue systems cover a wide range of applications. There
are systems for hotel reservations, restaurant guides, systems for travel and timetable
information, as well as systems for automatic telephone-banking services. Building the
different components of a spoken dialogue system and combining them in an optimal way
such that a reasonable dialogue becomes possible is a complex task because during the
course of a dialogue, the system has to deal with uncertain information. In this thesis,
we use statistical methods to model and combine the system’s components. Statistical
methods provide a well-founded theory for modeling systems where decisions have to be
made under uncertainty. Starting from Bayes’ decision rule, we define and evaluate var-
ious statistical models for these components, which comprise speech recognition, natural
language understanding, and dialogue management.

The problem of natural language understanding is described as a special machine
translation problem where a source sentence is translated into a formal language target
sentence consisting of concepts. For this, we define and evaluate two models. The first
model is a generative model based on the source-channel paradigm. Because the word
context plays an important role in natural language understanding tasks, we use a phrase-
based translation system in order to take local context dependencies into account. The
second model is a direct model based on the maximum entropy framework and works
similar to a tagger. For the direct model, we define several feature functions that capture
dependencies between words and concepts. Both methods have the advantage that only
source-target pairs in the form of input-output sentences must be provided for training.
Thus, there is no need to generate grammars manually, which significantly reduces the
costs of building dialogue systems for new domains.

Furthermore, we propose and investigate a framework based on minimum error rate
training that results in a tighter coupling between speech recognition and language under-
standing. This framework allows for an easy integration of multiple knowledge sources by
minimizing the overall error criterion. Thus, it is possible to add language understanding
features to the speech recognition framework and thus to minimize the word error rate,
or to add speech recognition features to the language understanding framework and thus
to minimize the slot error rate.

Finally, we develop a task-independent dialogue manager using trees as the fundamental
data structure. Based on a cost function, the dialogue manager chooses the next dialogue
action with minimal costs. The design and the task-independence of the dialogue manager
leads to a strict separation of a given application and the operations performed by the
dialogue manager, which simplifies porting an existing dialogue system to a new domain.
We report results from a field test in which the dialogue manager was able to choose
the optimal dialogue action in 90% of the decisions. We investigate techniques for error
handling based on confidence measures defined for speech recognition and language un-
derstanding. Furthermore, we investigate the overall performance of the dialogue system
when confidence measures from speech recognition and natural language understanding



are incorporated into the dialogue strategy. Experiments have been carried out on the
TelDir database, which is a German in-house telephone directory assistance corpus, and
on the Taba database, which is a German in-house train time scheduling task.



Zusammenfassung

Automatische sprachbasierte Dialogsysteme werden heutzutage in zahlreichen Anwen-
dungen eingesetzt. So gibt es beispielsweise Dialogsysteme für Hotelreservierungen, Sys-
teme zur Reise- und Fahrplanauskunft, sowie Dialogsysteme für das sogenannte Telefon-
Banking. Damit ein für den Benutzer sinnvoller Dialog zustande kommt, muss ein Di-
alogsystem diejenigen Entscheidungen treffen, die zur Beantwortung der Benutzeranfrage
führen. Da ein sprachbasiertes Dialogsystem nur ein unvollständiges Modell der Wirk-
lichkeit besitzt und die Dekodierung von Benutzereingaben fehlerhaft sein kann, können
die Entscheidungen eines Dialogsystems im allgemeinen nicht auf Basis von Faktenwissen
getroffen werden, sondern müssen aufgrund unvollständigen Wissens erfolgen. Um die
Unsicherheit in den Entscheidungen zu beschreiben, verwenden wir in dieser Arbeit statis-
tische Methoden zur Modellierung der Komponenten eines Dialogsystems. Ausgehend von
der Bayesschen Entscheidungsregel definieren und evaluieren wir verschiedene Modelle,
mit deren Hilfe wir die Spracherkennungskomponente, die Sprachverstehenskomponente
und den Dialog Manager modellieren.

Das Problem des Verstehens natürlicher Sprache wird als ein spezielles Problem der
maschinellen Übersetzung beschrieben, wobei ein Satz der Quellsprache in einen Satz der
Zielsprache übersetzt wird. Die Zielsprache ist dabei eine formale Sprache bestehend aus
Konzepten. Hierzu untersuchen wir zwei Modelle: das erste Modell ist eine generatives
Modell, welches auf dem Source-Channel Paradigma basiert. Da lokale Kontexte von
Wörtern eine zentrale Rolle beim Verstehen natürlicher Sprache spielen, verwenden wir
ein phrasenbasiertes Übersetzungssystem, dass Wörter im Kontext modellieren kann.
Das zweite Modell ist ein direktes Modell, welches auf dem Maximum Entropie Ansatz
basiert und ähnlich wie ein Tagger eingesetzt wird. Für das direkte Modell definieren wir
zahlreiche Feature Funktionen, welche die komplexen Abhängigkeiten zwischen Wörtern
und Konzepten erfassen. Beide Ansätze haben den Vorteil, dass nur Satzpaare in Form
von Ein-Ausgabe Sätzen dem Trainingsalgorithmus zur Verfügung gestellt werden müssen.
Dadurch entfällt die manuelle Generierung von Grammatiken, welche häufig im Kontext
von Sprachverstehenssystemen eingesetzt werden.

Desweiteren stellen wir einen auf dem Minimum Error Rate Training basierenden
Ansatz vor, der eine stärkere Kopplung zwischen Spracherkenung und Sprachverstehen er-
laubt. Der Ansatz ermöglicht auf einfache Weise die Integration zahlreicher Feature Funk-
tionen bei gleichzeitiger Minimierung des Evaluationskriteriums. Dadurch ist es möglich,
die Wissensquellen der Sprachverstehenskomponente in die Spracherkennungskomponente
zu integrieren und somit die Wortfehlerrate zu minimieren, beziehungsweise umgekehrt die
Wissensquellen der Spracherkennungskomponente mit den Wissensquellen der Sprachver-
stehenskomponente zu kombinieren und somit die Konzeptfehlerrate zu minimieren.

Zusätzlich entwickeln wir einen domänenunabhängigen Dialog Manager, der auf Ba-
sis einer Kostenfunktion die nächstfolgende Dialogaktion bestimmt. Die Domänenun-
abhängigkeit des Dialog Managers führt zu einer strikten Trennung zwischen der konkreten
Applikation und den Operationen, die der Dialog Manager ausführen kann. Dies ver-



einfacht die Portierung eines existierenden Dialog Managers auf eine neue Domäne. Wir
zeigen empirisch, dass der Dialog Manager in einem Feldtest in der Lage war für ca. 90%
aller Entscheidungen die jeweils optimale Entscheidung zu treffen.

Abschließend untersuchen wir Techniken zur Fehlerbehandlung in sprachbasierten Di-
alogsystemen basierend auf Konfidenzmaßen. Dabei untersuchen wir die Performanz
des Dialogsystems für den Fall, dass Konfidenzmaße für die Spracherkennung und das
Sprachverstehen in die Dialogstrategie eingebaut werden. Experimentelle Resultate wer-
den für die TelDir und die Taba Datensammlung diskutiert. Die TelDir Daten-
sammlung ist ein Korpus aus der Domäne Telefonbuchassistent für die deutsche Sprache,
die Taba Datensammlung ist ein Korpus aus der Domäne Fahrplanauskunftssystem,
ebenfalls für die deutsche Sprache.
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Chapter 1

Introduction

Spoken dialogue systems can be viewed as an advanced application of spoken language
technology. They provide an interface between users and a computer-based application
that permits spoken interaction with the application in a relatively natural manner.
In so doing, spoken dialogue systems provide a stringent test for the major fields of
spoken language technology, including speech recognition and speech synthesis, language
understanding, and dialogue management.

Each of the listed fields is a scientific area of its own, and combining the different
components into a spoken dialogue system as well as dealing with their interplay in an
optimal manner such that a reasonable dialogue between a human and a machine becomes
possible is a challenging task because during the course of a dialogue, the system has to
deal with uncertain information.

In this thesis, we use statistical methods to model and combine the various components
of a spoken dialogue system. We propose approaches for natural language understanding
that avoid building grammars manually and investigate techniques that allow for combin-
ing the various knowledge sources from multiple system components such that the overall
error criterion is minimized. Especially, we investigate the following points:

• Natural language understanding
We present two approaches for analyzing the semantics of natural language inputs
and discuss their advantages and drawbacks. The first approach uses a generative
model based on the source channel paradigm whereas the second approach directly
optimizes the posterior probability using the maximum entropy framework. Starting
from an annotated corpus, we describe the problem of natural language understand-
ing as a translation from a source sentence to a formal language target sentence.
We investigate the quality of different alignment models and feature functions, and
show that the direct maximum entropy model outperforms the generative source
channel-based approach.

• Confidence measures for speech recognition and language understanding
We define confidence measures derived from posterior probabilities for automatic
speech recognition and spoken language understanding. The computation is done on
word graphs and concept graphs, respectively, and is suitable for realtime decoding

1



Chapter 1 Introduction

systems. In addition, we investigate whether graph-based methods also outperform
N -best list approaches for language understanding tasks. While the superiority of
graph-based methods has been shown for speech-recognition tasks, it is unclear,
which method is best suited for language understanding tasks, where we have to
deal with word positions rather than time-aligned word boundaries.

• Feature-based spoken language understanding
Based on the results from the previous points, we enrich the maximum entropy-based
natural language understanding component with additional features extracted from
an automatic speech recognition system and show that these features can improve
the overall performance of a spoken language understanding system. The feature
functions used comprise language and acoustic model probabilities, length models,
posterior probabilities, spelling correction features, and features based on confidence
measures.

• Combining speech recognition and spoken language understanding
In order to yield a tighter coupling between speech recognition and spoken language
understanding, we combine and weight the knowledge sources of both components
such that the overall error criterion is minimized. For this, we employ the minimum
error rate training framework that has become a defacto standard in statistical
machine translation. By combining the different knowledge sources, we can minimize
the word error rate, the slot error rate, or a combination of both error rates. By com-
bining the error counts for both components, we show that we can simultaneously
minimize both word and slot error rates.

• Domain-independent dialogue management
Ideally, the dialogue manager should be application-independent. To achieve this,
we distill the steps that many domains have in common and store the domain-
specific task knowledge in a parameterizable data structure based on trees. Using
several feature functions, all operations of the dialogue manager can be formulated
as cost functions that operate directly on nodes, paths, and trees. We investigate
the capability of the system to choose those actions that are likely to lead as directly
as possible through the tree to the user’s goal and show that different knowledge
sources can be easily integrated into this framework without the necessity to rewrite
the system.

• Dialogue strategies
The actions chosen by the dialogue manager define its dialogue strategy. The goal of
the dialogue manager is to choose a dialogue strategy that meets the user’s request
by minimizing the costs of the dialogue. A common approach to dialogue strategies
is to use a finite state representation of the dialogue. Transitions between the states
determine the actions taken by the dialogue manager. In this thesis, we use decision
trees in order to compute the next state-action pair and measure the dialogue success

2



rate as well as the overall system performance within a field test. In order to keep
the space of possible state-action pairs small, we define meta-states that significantly
reduce the information stored in a dialogue state.

• Error-tolerant dialogue modeling
For spoken dialogue systems, errors can occur on different levels of the system’s
architecture. One of the principal causes for errors during a dialogue session are
erroneous recognition results, which often lead to incorrect semantic interpretations.
Even if the speech input signal has been correctly recognized, the natural language
understanding component can produce error-prone sentence meanings due to the
limitations of its underlying model. To cope with this problem, we introduce a multi-
level error-detection mechanism based on several feature functions in order to find
erroneous recognitions, error-prone semantic interpretations as well as ambiguities
and contradictions. Here, the confidence output of one component is passed as an
additional input to the next component. The proposed features are passed to the
dialogue manager who then determines the subsequent dialogue action.

3
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Chapter 2

Fundamentals of Spoken Dialogue
Systems

In this chapter, we describe the objective of a spoken dialogue system and introduce
the basic terminology used throughout this thesis. Starting from Bayes’ decision rule,
we embed a spoken dialogue system into a statistical framework and describe the dif-
ferent components a dialogue system consists of. The chapter ends with a discussion of
evaluating and measuring the performance of spoken dialogue systems.

2.1 Architecture of a Spoken Dialogue System

The objective of a spoken dialogue system is to let a human interact with a computer-
based information system using speech as means of interaction. Because a spoken dialogue
system can make errors and user requests can be incomplete or ambiguous, a spoken
dialogue system must actively request for missing data and confirm information, resulting
in a sequence of interactions between a user and a machine. This turn-based sequence
of interactions between a user and a machine is called a dialogue. Figure 2.1 illustrates
the course of a dialogue between a human (user) and a machine (system) by example
of a telephone directory assistance task. In this example, the user can ask for telephone
numbers, fax numbers, and email addresses of persons, departments, and companies. After
each user input, the system must select an appropriate dialogue action and response to
the user in a cooperative way such that finally the user’s request can be answered.

Formally, a dialogue turn of the system can be represented as a tuple pS, Aq where S
denotes the state space and A denotes the action set of the dialogue system. A state
s P S represents all the knowledge the system has about internal and external resources
it interacts with [Levin & Pieraccini` 98]. This comprises user input, database entries,
dialogue histories, and so on. The action set of a dialogue system describes the transitions
between dialogue states and includes all possible actions it can perform, such as asking
the user for input, providing output to the user, confirming user input, or interacting with
the database. A path through the state-action space can be described as a finite sequence
of state-action pairs s0a0s1a1 . . . sF starting from an initial state s0 and ending in a final
state sF . A complete sequence of state-action pairs between a user and a machine is called
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Id LastName FirstName PhoneNumber

189 Macherey 8021617

190 Macherey

Keysers Daniel 8021610170

8021613

Klaus

Wolfgang

System:

System:

System:

System:

User:

User:

User:

Manager:

Manager:

Manager:

Hello. This is the RWTH telephone directory
assistant. How may I help you?

Do you need a telephone number, fax number,
or email address?

Can you give me the number of Mr. Macherey?

Uhm, what shall I do now?

select action:

select action:

select action:

I have two persons named Macherey in my

database. Please refine your request.

The phone number of Mr. Wolfgang Macherey
is 80 21613. Shall I repeat the number?

Mr. Wolfgang Macherey.

ask for information

disambiguate

present

. . .

...

...
...

...
...

...
...

...

Application Database

Figure 2.1: Example of a dialogue between a human (User) and a machine (System). After
each user input, the dialogue manager (Manager) determines the next dialogue action and
the system outputs a response.

a dialogue session, a dialogue transaction, or in short a dialogue.

The main components of a sequential spoken dialogue system are depicted in Figure 2.2.
The user provides input to the system by means of speech. The sort of input is referred
to as modality of the dialogue system. In general a dialogue system can use other input
modalities, such as text, gestures, touch-tones, and so on. Dialogue systems that employ
more than one input modality are referred to as multi-modal systems. The user utterance
is decoded into a sequence of words using automatic speech recognition. The natural
language understanding component extracts all the information contained in the decoded
word sequence that is relevant to the underlying task by converting its input into a
semantic representation. This semantic representation serves as input to the dialogue
manager who updates the current dialogue state and determines the next dialogue action.
In general, the dialogue manager can choose between several actions for a given state s.
A concrete selection is referred to as the dialogue strategy of the dialogue system. Both
user utterances as well as system outputs can be classified and described by dialogue
acts. A dialogue act represents the meaning of an utterance at the level of illocutionary
force [Austin 62]. The illocutionary force of an utterance is the speaker’s intention in
producing that utterance. Dialogue acts can be useful for predicting the discourse of a
dialogue. Examples for dialogue acts are statements, confirmations, rejections, yes-no
questions, and so on. Depending on the action chosen and the current dialogue state a
response must be generated by the natural language generation component. Response
generation is essentially the inverse of the understanding process [Young 02]. The system
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, ŵN
1

)

ŵN
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1
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1
)
}

ĉM
1
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1

{

p(cM
1

|ŵN
1

)
}

(ŝ, â) = argmax
s,a

{

p(a|st)·

p(s|st, a, ĉM
1

)
}

v̂N
1

= argmax
vN

1

{

p(vN
1

|at,

st+1)
}

ŷT ′

1
= argmax

yT ′

1

{

p(yT ′

1
|vN

1
)
}

ŷ1, . . . , ŷT ′

Figure 2.2: Architecture of a sequential spoken dialogue system. The user utterance is
represented as a sequence of vectors xT

1 that is decoded into a sequence of words ŵN
1 . After

translating the word sequence into the most likely sequence of concepts ĉM
1 , the dialogue

manager determines the subsequent dialogue action at and successor state st`1. Depending
on the current dialogue state-action pair a response is generated and communicated to
the user.

response consisting of the word sequence v1, . . . , vN is transformed into an acoustic signal
ŷ1, . . . , ŷT 1 using text-to-speech synthesis and is output to the user.

2.2 Decision Rules

From a statistical point of view we try to find in each turn the optimal state-action
pair pŝt`1, âtq that maximizes the conditional probability prpst`1, at|st, x

T
1 q where the
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predecessor state st and the user utterance xT
1 are given.1

pŝt`1, âtq “ argmax
st`1,at

!

prpst`1, at|st, x
T
1 q

)

(2.1)

prpst`1, at|st, x
T
1 q “

ÿ

cM
1

prpst`1, at, c
M
1 |st, x

T
1 q

– max
cM
1

"

ppat|stq
loomoon

Strategy

¨ ppst`1|st, at, c
M
1 q

loooooooomoooooooon

Task Model
looooooooooooooomooooooooooooooon

Dialogue Manager

¨ ppcM
1 |xT

1 , stq

*

(2.2)

ppcM
1 |xT

1 , stq “
ÿ

wN
1

ppcM
1 , wN

1 |xT
1 , stq

– max
wN

1

"

ppwN
1 |xT

1 , stq
loooooomoooooon

ASR

¨ ppcM
1 |wN

1 , xT
1 , stq

looooooooomooooooooon

NLU

*

. (2.3)

Introducing the sequence of concepts cM
1 as a hidden variable allows for decomposing

prpst`1, at|st, x
T
1 q into several submodels resulting in Equation 2.2. Both the strategy

and the task model constitute the dialogue manager. The strategy model provides a
probability for each action at given the state st. The task model describes possible
state transitions given the predecessor state, the dialogue action, and the sequence of
concepts. For the remaining probability ppcM

1 |xT
1 , stq, we ignore the dependence on the

dialogue action. By introducing the word sequence wN
1 as another hidden variable, we can

decompose ppcM
1 |xT

1 , stq into an automatic speech recognition (ASR) term and a natural
language understanding (NLU) term where the NLU term still depends on the acoustic
observations. Plugging Equations 2.2 and 2.3 into Equation 2.1 yields the following
decision rule for each dialogue turn:

pŝt`1, âtq “ argmax
st`1,at

"

ppat|stq ¨ max
cM
1

!

ppst`1|st, at, c
M
1 q¨

¨ max
wN

1

 

ppwN
1 |xT

1 , stq ¨ ppcM
1 |wN

1 , xT
1 , stq

(

)

*

.

(2.4)

Since solving Equation 2.4 is difficult, its solution can be approximated by modeling the
dialogue system as a sequential operation. Figure 2.2 describes a spoken dialogue system
as a sequential operation where the decision of one stage serves as input for the subsequent
stage resulting in the update of the current dialogue state-action pair. This leads to the

1 A detailed discussion on how this quantity is embedded in a decision rule for a complete dialogue
transaction is presented in Section 2.5.
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following chain of decisions:

ŵN
1 “ argmax

wN
1

 

ppwN
1 |xT

1 , stq
(

(2.5)

ĉM
1 “ argmax

cM
1

 

ppcM
1 |ŵN

1 , stq
(

. (2.6)

Plugging Equations 2.5 and 2.6 into Equation 2.4 yields the following modified decision
rule:

pŝt`1, âtq “ argmax
st`1,at

"

ppat|stq ¨ ppst`1|st, at, ĉ
M
1 q :

ĉM
1 “ argmax

cM
1

 

ppcM
1 |ŵT

1 , stq
(

:

ŵN
1 “ argmax

wN
1

 

ppwN
1 |xT

1 , stq
(

*

.

(2.7)

That is, we first determine the optimal word sequence ŵN
1 and use it as input to the natural

language understanding component, which yields the optimal sequence of concepts ĉM
1 that

is used to obtain the next state-action pair. Although Equation 2.7 leads to a much simpler
architecture, using this decision rule to compute the next dialogue state-action pair can
turn out to be suboptimal because the interdependency of decisions is ignored. Knowledge
sources that are introduced to model the probability distribution of a successor component
might also be beneficial for modeling the predecessor components. However, by making
independent decisions in the pipeline of Equation 2.7, these knowledge sources are often
not considered in predecessor components. Furthermore, errors made in one component
are propagated to the next component. Since a subsequent component considers its
possibly erroneous input as its observation, errors often remain undetected. To mitigate
this effect for the speech recognition and language understanding component, one can
produce word graphs in a first pass recognition and perform the semantic analysis on
the graph structure. The graph structure provides a compact representation of sentence
hypotheses. By rescoring the graph with knowledge sources derived from the language
understanding component, we can make a more informed decision when searching for the
best word sequence.

An important question in the design of a spoken dialogue system is to decide who can
take control of the conversation. Systems that completely control the conversation in a
predefined and rigid manner are called single initiative or system initiative systems. If
both the dialogue manager and the user can take control of the dialogue allowing the
user to answer more than one question at a time, the system is called a mixed initiative
system.

In the following sections, we will briefly describe each component of a spoken dialogue
system separately. Section 2.3 overviews the fundamentals of automatic speech recognition
followed by natural language understanding in Section 2.4, and dialogue management in

9



Chapter 2 Fundamentals of Spoken Dialogue Systems

Section 2.5. System output generation is described in Sections 2.6 and 2.7. The chapter
concludes with a discussion on how spoken dialogue systems are evaluated.

2.3 Automatic Speech Recognition

The aim of an automatic speech recognition system is to decode a given speech input
into text. Nowadays, most automatic speech recognition systems follow the statistical
paradigm using Bayes’ decision rule. According to Bayes’ decision rule [Bayes 63], that
word sequence wN

1 “ w1, . . . , wN should be chosen that maximizes the posterior proba-
bility for a given sequence of acoustic observations xT

1 “ x1, . . . , xT :

ŵN
1 “ argmax

wN
1

 

prpwN
1 |xT

1 q
(

“ argmax
wN

1

 

prpwN
1 q ¨ prpxT

1 |wN
1 q

(

. (2.8)

Equation 2.8 transforms the recognition problem to maximizing the product of two
probability distributions: the language model prpwN

1 q and the acoustic model prpxT
1 |wN

1 q.2

The architecture of a statistical speech recognition system is depicted in Figure 2.3. It
mainly consists of four components:

• Signal Analysis
The signal analysis module converts an acoustic signal into a sequence of acoustic
vectors xT

1 suitable for automatic speech recognition. The parameterization of the
input signal should be discriminative with respect to different sounds and robust
with respect to noises in the transmission channel.

• Acoustic Model
The acoustic model captures the acoustic properties of speech and provides the
probability of the observed acoustic signal given a hypothesized word sequence. The
acoustic model includes the pronunciation lexicon, which defines the decomposition
of words into subword units, and the modeling of subword units, such as phonemes,
which are usually modeled context-dependent.

• Language Model
The language model provides the a-priori probability of a hypothesized word se-
quence based on the syntax, semantics, and pragmatics of the language to be
recognized.

• Search
The search module finally combines the two knowledge sources acoustic model and
language model and determines the word sequence that maximizes Equation 2.8.

2 For ease of notation, we ignore the dependence of the dialogue state from the previous section.
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p
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x

T

1 �wN
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x
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Global Search

maximize:

p �wN
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1 �wN
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Acoustic Vectors

Speech Input
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Acoustic Model
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Recognized Word
Sequence ŵ

N

1
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N

1

� Phoneme Inventory� Pronunciation Lexicon

Figure 2.3: Basic architecture of a statistical automatic speech recognition system. The
four main components comprise the signal analysis, the acoustic model, the language
model, and the global search [Ney 90].

2.3.1 Signal Analysis

The objective of the signal analysis is to produce a parameterization of the speech input
signal suitable for automatic speech recognition. Although, ideally the speech waveform
should be modeled directly, today’s modeling techniques are not suitable to process the
raw speech waveform optimally. Signal analysis aims at separating information relevant to
the recognition task from irrelevant information (e.g., speaker or channel characteristics)
and at reducing the data that is presented to the speech recognizer.

The signal analysis module of the speech recognition system used in this thesis is based
on a short-term spectral analysis [Rabiner & Schafer 78]. Starting point of the signal
analysis is the digital representation of a speech input signal (speech waveform). The
sampling rate of a speech waveform depends on the frequency bandwidth of the input
signal. For telephone-bandwidth speech, a sampling rate of 8kHz is sufficient. The speech
waveform is preprocessed using pre-emphasis in order to compensate for glottis mute and
the high-pass filtering caused by the lips [Wakita 73]. After pre-emphasing, the wave-
form is further processed by computing the Mel frequency cepstral coefficients (MFCC)
[Davis & Mermelstein 80], which requires a Fourier analysis of the speech waveform. The
Fourier analysis requires the input signal to be periodic (stationary). Since speech is a
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Speech Signal

Preemphasis and Windowing

Magnitude Spectrum

Mel Scaled Filter Bank

Logarithm

Cepstral Decorrelation

Mean Normalization

Dynamic Features

Feature Vectors

Figure 2.4: Mel frequency cepstral coefficient feature extraction.

highly non-stationary signal, the Fourier analysis must be carried out on short segments
across which the speech signal is assumed to be stationary. These short segments can
be obtained by applying a window function on the input signal. To avoid discontinuities
caused by the truncation of the input signal, a Hamming window is used taping the input
signal near zero at the borders of the window. With these segments the Fourier power
spectrum of the speech waveform is computed for each time frame with a frame shift
of 10ms and a window length of 25ms. The frequency axis of the power spectrum is
warped according to the Mel frequency scale to adjust the spectral resolution to that
of the human ear [Young 93]. The Mel frequency scale is linear up to 1000Hz and
logarithmic thereafter. After the frequency warping, a set of overlapping Mel filters is
applied. These Mel filters are made such that their center frequencies are equidistant on
the Mel scale. For telephone-speech, the filter bank consists of 15 overlapping filters. The
logarithm is applied to the output of the filter bank in order to reduce the dynamic range
of the signal. From a physiological point of view, the logarithm mimics the nonlinear
dependence between intensity and loudness of a signal as it is perceived by humans.
The overlap between neighbored filters leads to a correlation between filter channels
resulting in a correlation matrix that approximately has Toeplitz structure and that is
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decorrelated using a discrete cosine transform [Davis & Mermelstein 80]. In order to
reduce the influence of the transmission channel, which is assumed to be constant, a
mean normalization is applied to the log filter bank coefficients. The dimensionality of
the cepstral vector is reduced by omitting the highest cepstral coefficients for smoothing,
resulting in a total number of 12 cepstrum coefficients, where the 0th coefficient can be
interpreted as the short-term energy of the speech signal.

Cepstral coefficients only describe short-term spectral properties of a signal and are
therefore static quantities. However, the temporal dynamics of a speech signal are im-
portant for speech recognition [Ruske 82, Strange 83]. The temporal dynamics of the
speech signal are taken into account by augmenting the cepstral feature vector with its
derivatives. The derivatives are calculated by linear regression over 5 consecutive time
frames. In the speech recognizer used in this thesis, the first derivative of all cepstral
coefficients and the second derivative of the 0th cepstral coefficient are computed, resulting
in a 12`12`1 “ 25 dimensional observation vector. Finally, a linear discriminant analysis
is applied (see Section 2.3.6). So far, this is the only step in the signal analysis chain that
takes class information into account.

2.3.2 Acoustic Modeling

The objective of acoustic modeling is to provide a stochastic model for prpxT
1 |wN

1 q. The
acoustic model is a concatenation of acoustic models for words or basic subword units the
speech recognition system utilizes according to a pronunciation lexicon. With recognition
tasks of increasing complexity and due to a limited number of training data it is unlikely
that each word of the pronunciation lexicon can be observed sufficiently frequent during
training. Therefore, words are split into subword units of which the most common ones are
(context-dependent) phonemes. A phoneme is the smallest contrastive unit in the sound
system of a language. In [Menzerath & de Lacerda 33], it was shown that the phonetic
variants of a phoneme (allophones) are highly context-dependent, that is, the acoustic
realization of a phoneme depends on its surrounding phonemes. In large vocabulary
continuous speech recognition systems the mostly used subword units are phonemes in a
context of one or two adjacent phonemes, so-called triphones or quinphones, respectively.

The acoustic realizations of a subword unit differ significantly with the speaking rate.
To model different speaking rates, each context-dependent phoneme is represented by a
hidden Markov model (HMM). An HMM is a stochastic finite state automaton consisting
of a number of states and transitions between the states. Both the states and transi-
tions are associated with probability distributions that can be derived from ppxT

1 |wN
1 q by

introducing an unobservable (hidden) sequence of states:

ppxT
1 |wN

1 q “
ÿ

sT
1 :wN

1

ppxT
1 , sT

1 |wN
1 q . (2.9)

Here, the sum is taken over all possible state sequences that are consistent with the given
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word sequence wN
1 . Using the chain rule for joint probabilities yields

ppxT
1 |wN

1 q “
ÿ

sT
1 :wN

1

T
ź

t“1

ppxt|x
t´1
1 , st

1; w
N
1 q ¨ ppst|x

t´1
1 , st´1

1 ; wN
1 q . (2.10)

The probabilities ppxt|x
t´1
1 , st

1; w
N
1 q and ppst|x

t´1
1 , st´1

1 ; wN
1 q are assumed not to depend

on previous observations but only on the current state (Markov assumption) and on the
immediate predecessor state (first-order model):

ppxT
1 |wN

1 q “
ÿ

sT
1 :wN

1

T
ź

t“1

ppxt|st; w
N
1 q ¨ ppst|st´1; w

N
1 q . (2.11)

Thus, the probability is split into the acoustic emission probability ppxt|st; w
N
1 q denoting

the probability to observe an acoustic vector xt while being in state st and the transition
probability ppst|st´1; w

N
1 q for transiting from state st´1 to state st. For the ease of

computation, the sum is often replaced by the maximum, which is called Viterbi or
Maximum approximation [Ney 90]:

ppxT
1 |wN

1 q “ max
sT
1 :wN

1

T
ź

t“1

ppxt|st; w
N
1 q ¨ ppst|st´1; w

N
1 q . (2.12)

The Viterbi approximation has the advantage that Equation 2.12 can be solved in log-
space, thus, reducing the dynamic range of a product of already small probabilities.
Equations 2.11 and 2.12 can be efficiently solved using the forward-backward algorithm
[Baum 72, Rabiner & Juang 86] or dynamic programming [Bellman 57, Viterbi 67, Ney 84].
An example of an HMM in Bakis topology [Bakis 76] is depicted in Figure 2.5.

Often, the emission probability ppxt|st; w
N
1 q is modeled by Gaussian mixture densities:

ppx|s; wN
1 q “

Ls
ÿ

l“1

cslN px|µsl, Σ; wN
1 q , (2.13)

where Ls denotes the number of mixtures and csl denotes the mixture weights with the
constraint

řLs

l“1 csl “ 1, and N px|µ, Σq denotes the normal distribution with mean µ and
covariance Σ.

2.3.3 Language Modeling

The language model prpwN
1 q provides an a-priori probability for a word sequence wN

1 “

w1, . . . , wN . The syntax, semantics, and pragmatics of the language to be processed are
implicitly covered by this statistical model. Because of the unlimited number of possible
word sequences it is not feasible to estimate prpwN

1 q for each word sequence given a finite
training set. Therefore, an additional modeling step is necessary that models each word
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Figure 2.5: 6-state hidden Markov model in Bakis topology. Each state provides a loop,
a forward, and a skip transition. Two contiguous states form a segment denoted by x1y,
x2y, and x3y.

sequence as a sequence of so-called m-grams. For m-gram language models, it is assumed
that a word at position n only depends on its pm ´ 1q predecessor words. Using an
pm ´ 1qth order Markov process, the prior probability prpwN

1 q can be decomposed as
follows:

prpwN
1 q “

N
ź

n“1

prpwn|wn´1
1 q

“
Markov

N
ź

n“1

ppwn|wn´1
n´m`1q . (2.14)

The predecessor words h “ wn´1
n´m`1 “ wn´m`1, . . . , wn´1 are called the history of word wn.

The number of possible m-grams increases exponentially with the history length m ´ 1.
Thus, a considerable amount of m-grams will be unseen during training or have too few
observations for a reliable estimation of ppw|hq. Therefore, smoothing methods have to
be applied. A thorough investigation on different smoothing techniques can be found in
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[Chen & Goodman 98].
A commonly used measure for the evaluation of language models is the perplexity PP

PP “

«

N
ź

n“1

ppwn|wn´1
n´m`1q

ff´1{N

, (2.15)

which can be interpreted as the average number of choices to continue a word sequence
wn´1

n´m`1 at position n. Its logarithm is equal to the entropy of the model.
A variant of m-gram language models are the so-called class-based m-gram models.

For a class-based m-gram model, the conditional probability of a word wn based on its
history is decomposed into the product of the probability of word wn given class kn and
the probability of the class given the preceding classes:

ppwn|wn´1
n´m`1q “ ppwn|knq ¨ ppkn|kn´1

n´m`1q . (2.16)

Equation 2.16 is a generalization of an ordinary m-gram language model because if we
map each word onto a separate class, we obtain the usual m-gram model. Class-based
m-grams can provide a more robust estimation of the conditional probability, especially
if the training corpus used is very small. The classes can be chosen application-specific.
A typical example is an airline information system where all occurring city names can be
mapped onto the class City.

2.3.4 Search

The decision on the spoken word sequence is made during a search process by determining
the word sequence that maximizes the product of the two knowledge sources acoustic
model and language model given the sequence of observation vectors x1, . . . , xT . If the
language model is given by an m-gram and the acoustic model is an HMM then the
following optimization problem has to be solved:

ŵN
1 “ argmax

wN
1

$

&

%

«

N
ź

n“1

ppwn|wn´1
n´m`1q

ff

¨

»

–

ÿ

sT
1 :wN

1

T
ź

t“1

ppxt|st; w
N
1 q ¨ ppst|st´1; w

N
1 q

fi

fl

,

.

-

“ argmax
wN

1

#«

N
ź

n“1

ppwn|wn´1
n´m`1q

ff

¨

«

max
sT
1 :wN

1

T
ź

t“1

ppxt|st; w
N
1 q ¨ ppst|st´1; w

N
1 q

ff+

. (2.17)

As in all search problems, the search can be organized in two different ways: a depth-
first and a breadth-first search. The depth-first strategy is used by the A˚-search or
stack-decoding algorithm. Here the state hypotheses are expanded time-asynchronously
dependent on a heuristic estimate of the cost to complete the path [Jelinek 69, Paul 91].
The performance of the A˚-search relies strongly on the quality of this estimate; the
convergence to a global optimum is guaranteed if the estimate is a lower bound of the
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true costs. Additionally, the search space is minimal if the estimate is equal to the true
costs.

The breadth-first search design is used by the Viterbi search where all state hypotheses
are expanded time-synchronously [Vintsyuk 71, Baker 75, Sakoe 79, Ney 84]. In this
approach the probabilities of all hypotheses up to a given time frame are computed and
thus can be compared to each other. This allows to reduce the search space significantly
by pruning unlikely hypotheses early in the search process. Especially in the breadth-
first approach an efficient pruning is necessary as the number of possible word sequences
grows exponentially in its length N . Thus, a full optimization of Equation 2.17 is only
feasible for small vocabulary sizes. For large vocabulary sizes approximations have to be
made. Instead of finding the exact optimal solution of Equation 2.17, the goal is changed
to find a sufficiently good solution with much less effort. In the so-called beam-search,
only that fraction of the hypotheses is expanded whose likelihood is sufficiently close
to that of the best hypothesis of the given time frame [Lowerre 76, Ney & Mergel` 87,
Ortmanns & Ney 95]. Beam-search does not guarantee to find the globally best word
sequence. This optimal sequence may have been pruned at an intermediate search stage
due to a poor likelihood. However, if the pruning parameters are adjusted properly no
significant search errors occur and the search effort is reduced considerably.

2.3.5 Word Graphs and N-best Lists

Instead of generating only the first-best recognition result, the most likely sentence hy-
potheses can be combined in a word graph. A word graph is a directed acyclic weighted
graph where each edge is labeled with a word hypothesis together with a score and each
node is labeled with a time index.3 Additionally, word graph nodes used in this thesis
also include language model histories. Each word graph has a unique start node called
source and a unique end node called sink. A path from the source to the sink defines a
sentence hypothesis. An example is depicted in Figure 2.6.

Word graphs have proven useful as interface between continuous speech recognition
and language understanding [Oerder & Ney 93]. They are often used as intermediate
representations in multi-pass decoders where the employment of more complex knowledge
sources is difficult or not feasible at all. Incorporating more complex models into the
search process often yields higher recognition performance. However, this performance
gain usually leads to a significant loss in decoding efficiency since the search space increases
if more complex models are used. Besides the performance, the efficiency of a decoder
is of prime importance for a spoken dialogue system because the dialogue system must
respond in realtime to the user’s request. Therefore, a trade-off between the complexity of
a model and the performance gained with this model must be found. A reasonable trade-

3 In some text books, this structure is called a word lattice. In [Schukat-Talamazzini 95], the difference
between a word lattice and a word graph is described such that the latter one lacks the time information
and only provides the adjacency information. However, this distinction is not done in this thesis: here,
a word graph always includes time information.
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off can be achieved if a multi-pass decoder is used where in the first pass a simple model
is used that allows for an efficient decoding at the expense of a suboptimal recognition
result. The first pass generates a word graph of the most likely word hypotheses. In the
second pass, the preselected word hypotheses are rescored using a more complex model.
If proper models for preselecting and rescoring are chosen the decoding will be efficient
at the expense of only a small degradation in word accuracy.
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Figure 2.6: A word graph for the utterance ”I need to talk to Mrs. Nord”. The arcs of the
graph represent words that are hypothesized during search. Each arc is associated with a
word hypothesis and a cost vector containing at least the acoustic score and the language
model score. The nodes contain the language model history and describe start and end
times of word hypotheses. The N -best list can be extracted from the graph using an A˚

search. The dashed circles are only included in order to find the corresponding arcs in
the graph and are not part of the N -best list.

An alternative intermediate representation are N -best lists that contain the most prob-
able N sentence hypotheses with respect to the underlying models [Chow & Schwartz 89].
N -best lists can be easily extracted from word graphs using an A˚ search. Setting the rest
costs to the forward scores of the graph’s edges while recombining sentence hypotheses
with the same word sequence but different time alignments provides a list of the most
probable, pairwise different sentence hypotheses. Compared to word graphs, N -best lists
allow for an easy integration of sentence-based knowledge sources at the expense of a much
more redundant and inefficient representation. As the most likely candidate solutions of
the same decoding problem, N -best entries often differ only in a few word positions.
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Figure 2.6 shows an example of a word graph and an N -best list.

2.3.6 Linear Transformations

Linear transformations are an important tool in pattern recognition tasks in general and
in automatic speech recognition in particular. Typical linear transformations used in
speech recognition are the linear discriminant analysis and the maximum likelihood linear
regression. While the linear discriminant analysis aims at reducing the dimensionality
while keeping those directions that are useful for discriminating the classes, the maximum
likelihood linear regression method aims at adapting the system to different speakers and
to varying environmental conditions.

Linear Discriminant Analysis

The design of a good classifier becomes more difficult as the dimensionality of the input
space increases. One way of dealing with this problem is to preprocess the data so
as to reduce its dimensionality before applying a classification algorithm. The linear
discriminant analysis (LDA) introduced by [Fisher 36] aims to achieve an optimal linear
dimensionality reduction by maximizing the proportion of the difference between the
projected class means (between-class scatter) and the intra-class means (within-class
scatter).

Feature Space Maximum Likelihood Linear Regression

A speaker-independent automatic speech recognition system has to cope with many
variabilities in the acoustic signal. For example, varying transmission channels, noise,
multiple speakers, and different speaking styles are sources of such variabilities. Therefore,
the training material of such systems usually contains a wide range of different acoustic
conditions. However, if the testing conditions strongly differ from the training conditions,
the trained models do not fit well resulting in an increase in error rate. One way
to cope with this mismatch conditions is to adapt the acoustic model to the testing
conditions. An approach that is virtually used in all state-of-the-art speech recognition
systems is called maximum likelihood linear regression (MLLR) and was proposed by
[Leggetter & Woodland 95]. An affine transformation is applied to the mean vectors of
the acoustic emission probabilities of the HMM in order to shift them to the “true” mean
vectors of the testing conditions. This requires that the testing utterances are known.
Since the word sequence of a testing utterance is usually unknown, we can approximate
the correct sequence of words by a first-pass recognition result and use this to compute
the affine transformation and to adapt the mean vectors, which are then used in a second
pass recognition. If only one global transformation matrix is used for all mean vectors,
the transformation can be equivalently applied to the observation vectors, which is called
feature-space maximum likelihood linear regression (F-MLLR).
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2.4 Natural Language Understanding

Natural language understanding aims at extracting all the information from an input
sentence that is relevant to a specific task. If speech is used as means of input, natural
language understanding is often referred to as spoken language understanding. If we
want to automatically acquire meaning, we have to face two problems that in general
cannot be treated independently: first, we need to define the meaning of a sentence
and second, we need a meaning representation. Unfortunately, there is no generally
accepted theory on what the meaning of an arbitrary input sentence should be. Therefore,
language understanding systems are usually task-dependent and are only designed for
limited application domains where the meaning of a user query can be described in
a relatively simple manner.4 The other principal characteristic of natural and spoken
language understanding systems is the need for a meaning representation so that, once
the meaning has been determined, these representations can be used in reasoning tasks. A
first notion would be to use the sentence itself as a representation of its meaning. Although
it is sometimes argued that this is not feasible because words can have multiple meanings
[Allen 95]5, the main counterargument to this approach is its lack of generalization due to
the limited size of training corpora: meaning representations for limited domains provide
a certain structure to the problem of language understanding, which reduces the space
of possible interpretations. If corpus-based methods are employed for natural language
understanding, we usually have corpora of the size of at most some thousand sentences,
which is still not sufficient to observe the most likely verbalizations of a user’s intention and
to generate appropriate replies to the user. In the context of spoken dialogue systems,
intermediate meaning representations help to subdivide the dialogue task into several
subproblems and to structure the information provided by the user so that replies can be
generated from the current system state. Furthermore, if natural language understanding
is investigated independently from a dialogue system, the meaning representation can be
viewed as the result of a classification process. However, if the size of training corpora
increases, using sentences themselves as meaning representations should be reconsidered.

Dependent on the complexity of the understanding task, different meaning representa-
tions have been proposed, among them the first order predicate calculus [Allen 95], case
frames [Issar & Ward 93], semantic frames [Bennacef & Bonnea-Maynard` 94], seman-
tic networks [Bates & Bobrow` 94], and concept representations [Miller & Bobrow` 94b,
Levin & Pieraccini 95]. Concept representations have proven to be very effective in natu-
ral language understanding tasks and will also be used in this thesis. A concept is defined
as the smallest unit of meaning that is relevant to a specific task [Levin & Pieraccini 95].

4 For spoken dialogue systems, a way out to this problem could be to define the meaning of an utterance
directly by means of the action the dialogue system shall perform. This could help to circumvent the
need for an intermediate meaning representation. However, as will be discussed later, this requires
large training corpora.

5 The counterarguments stated in [Allen 95] do not apply here, because we are more interested in the
meaning of phrases and sentences rather than the meaning of isolated words.
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Concept representations can be used in a hierarchical manner (nested concepts) or in a
non-hierarchical manner (flat concepts). Using flat concepts, natural language under-
standing can be described as a conversion from words wN

1 into a sequence of concepts cM
1 .

Formally, the objective can be described as follows: given an input utterance represented
as a sequence of acoustic vectors xT

1 “ x1, . . . , xT , we search for the sequence of concepts
ĉM
1 “ ĉ1, . . . , ĉM that has the highest probability among all possible concept sequences

ĉM
1 “ argmax

cM
1 ,M

"

ppcM
1 |xT

1 q

*

(2.18)
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ÿ
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1 q
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NLU

¨ ppwN
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1 q
loooomoooon
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*

, (2.20)

where we assume that ppcM
1 |wN

1 q is independent of the sequence of acoustic vectors.
Here, ppwN

1 |xT
1 q denotes the common statistical approach in automatic speech recognition

(ASR) and ppcM
1 |wN

1 q is the statistical natural language understanding (NLU) component.
Although both tasks are not independent, Equation 2.20 is often decoded sequentially,

ĉM
1 “ argmax

cM
1 ,M

"

ppcM
1 |ŵN

1 q : ŵN
1 “ argmax

wN
1

 

ppwN
1 |xT

1 q
(

*

, (2.21)

that is, in the first step the optimal word sequence ŵN
1 is determined that maximizes

ppwN
1 |xT

1 q, which is then passed to the NLU component. Since this chain of decoding
steps is only suboptimal, the search for the optimal concept sequence ĉM

1 can be carried
out on word graphs or N -best lists [Zue & Glass` 91, Oerder & Ney 93].

In order to perform an SQL query in a spoken dialogue system, it is not sufficient
to determine the sequence of concepts, but also the values of the concepts, which are
called attributes. Each concept is associated with a (possibly empty) set of attributes.
An attribute is a pair consisting of a name and a value and is sometimes referred to as
slot. The mapping from words to concepts and attributes is usually done using (par-
tial) parsing [Seneff 92, Kellner & Rueber` 97, Minker & Waibel` 99], but also methods
derived from statistical machine translation can be employed [Epstein & Papineni` 96,
Macherey & Och` 01].

2.5 Dialogue Management and Strategies

The goal of the dialogue manager is to change the system from some initial uniformed
state to a sufficiently informed state, such that the user’s information need can be satisfied
[Young 00]. Dependent on the sequence of concepts provided by the natural language
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understanding component and the dialogue history, the dialogue manager must choose
that action that leads as quickly as possible to a final state that is likely to meet the
user’s request. If each dialogue action and state change are assumed to depend only
on the current dialogue state, then the system can be modeled as a Markov decision
process (MDP) [Levin & Pieraccini 97, Levin & Pieraccini` 98]. An MDP is a special
case of the more general framework of reinforcement learning problems, where an agent
(here: the dialogue system) tries to solve an optimization problem by finding an optimal
policy that determines for each state the action he must perform in order to reach his
goal. In contrast to supervised learning techniques, where functions are approximated by
presenting correct input-output patterns, the knowledge about the correct output remains
unknown. Therefore, the agent must interact with his environment (here: the user) and
learns the optimal policy by trial and error.

Let S denote a set of states, A denote a set of actions, and R a set of rewards. Further,
denote t “ 0, 1, 2, . . . discrete points in time. Denote st the current state of the dialogue
system and Apstq the set of possible actions available for state st. If the dialogue manager
chooses action at P Apstq, the state will change to st`1 and the dialogue system gets the
reward rt`1. In general, the reward and the successor state are modeled by a probability
density function

prpst`1, rt`1|st
0, a

t
0, r

t
1q “ ppst`1, rt`1|st, atq , (2.22)

where we assume the system to satisfy the Markov property. A Markov decision process
is fully defined by the set of states, the action set, the transition probability ppst`1|st, atq,
and the expected reward Rt`1ps1, s, aq with

Rt`1pst`1, st, atq “ Etrt`1 | st`1, st, atu (2.23)

“
ÿ

rt`1

rt`1 ¨ pprt`1 | st`1, st, atq . (2.24)

A policy πpa|sq is a probability distribution over states and actions and models the proba-
bility that action a is chosen in state s. Denote rsT

0 , aT ´1
0 s “ s0, a0, s1, a1, . . . , sT ´1, aT ´1, sT

a path through the state-action space, then the probability of this path can be factorized
as follows:

ppsT
0 , aT ´1

0 q “

T ´1
ź

t“0

ppst`1, at|stq “

T ´1
ź

t“0

ppst`1|st, atq ¨ πpat|stq , (2.25)

with ppst`1, at|stq being the probability introduced in Equation 2.1, where we neglect the
user utterance xT

1 . The goal is to maximize the expected reward in the long run, that is,
we compute the expectation of rewards over paths times the probability of the path. This
can be expressed by the following value functions:
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State value function
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State-action value function
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where a discount factor γ with 0 ď γ ă 1 is introduced in order to handle infinite paths.
This simplifies the modeling of dialogue transactions where the duration of the dialogue
is a priori unknown. The optimal strategy can be found by maximizing the expected
reward. With the Bellman equations for value functions

Vπps0q “
ÿ

a0PAps0q

πpa0|s0q ¨
ÿ

s1

pps1 | s0, a0q ¨

!

R1 ` γVπps1q

)

(2.28)

Qπps0, a0q “
ÿ
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!
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a1PAps1q

Qπps1, a1q

)

, (2.29)

the optimal value functions are defined as follows:

V̂ psq “ max
π

Vπpsq @s P S

Q̂ps, aq “ max
π

Qπps, aq @s P S, a P Apsq .
(2.30)

This leads to the optimal strategy π̂ given by:

π̂psq “ argmax
a

!

Q̂ps, aq

)

. (2.31)

If the transition function is unknown, methods based on sampling actual dialogues can
be used [Young 02]. Temporal difference learning is a technique in which the Q function
is updated after every dialogue turn ps, aq Ñ ps1, a1q by comparing the actual one-step
reward with the reward predicted by the Q function

Qt`1ps, aq “ Qtps, aq ` α rrps, aq ` γQps1, a1
q ´ Qps, aqs , (2.32)

23



Chapter 2 Fundamentals of Spoken Dialogue Systems

where α determines the learning rate. In order to ensure that Q is considered over all
reasonable combinations of ps, aq, it is necessary to allow the dialogue to deviate from the
optimal policy occasionally. This can be achieved by adopting a stochastic ε-soft policy:

πps, aq “

#

1 ´ ε ` ε
|Apsq|

if a “ â

ε
|Apsq|

otherwise.
(2.33)

A problem with the MDP approach is the assumption that the state space is fully
observable. This assumption is unrealistic since at least the user state is unknown.
Additionally, due to recognition errors, the system state is also uncertain. Modeling
this uncertainty in a principled way leads to the so-called partially observable Markov
decision process (POMDP) [Williams & Poupart` 05].

2.6 Natural Language Generation

Natural language generation is essentially the inverse of the natural language understand-
ing process. A natural language generation module can be implemented via templates.
Here, a template is a predefined natural language sentence that, besides natural language
words, also contains some variables whose values will be extracted from the current
dialogue state. While writing individual templates is convenient, they may not scale
well to more complex domains.

Alternatively, a probabilistic model can be defined as follows: given a dialogue action
and the current dialogue state, a sequence of words vN

1 must be generated that defines the
system’s answer. Formally, we choose that word sequence v̂N

1 maximizing the following
probability:

v̂N
1 “ argmax

vN
1

 

prpvN
1 |at, st`1q

(

. (2.34)

Since state st`1 contains all the knowledge the dialogue system has collected so far, it
seems reasonable to use the same models for language generation that were employed
for language understanding.6 However, as pointed out in [Young 02], a generation model
based on prpvN

1 |at, st`1q lacks syntactic constraints and tends to produce ungrammatical
sentences. To cope with this problem, the model can be smoothed with a simple m-gram
model, leading to the modified criterion in Equation 2.35:

v̂N
1 “ argmax

vN
1

 

prpvN
1 |at, st`1q ` γ ¨ prpvN

1 q
(

. (2.35)

Here, prpvN
1 |at, st`1q produces a set of candidate sentences and prpvN

1 q selects the most
likely word sequence.

6 The dialogue state st`1 especially contains the attribute value pairs associated with the concepts and
the current dialogue act.
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2.7 Speech Synthesis

In [Ratnaparkhi 00] and [Zhou & Gao` 02], the generation of target sentences is based
on a maximum entropy statistical model. The model is trained on attribute-value pairs
obtained from semantic representations of input texts. This modeling process is largely
domain independent and speeds up the development of systems for different application
domains.

2.7 Speech Synthesis

Once the response v̂N
1 has been generated, it must be converted into an acoustic signal.

This can be achieved by employing a large database of context-dependent phone models
and searching for that phone sequence ŷT 1

1 maximizing the following criterion:

ŷT 1

1 “ argmax
yT 1

1

 

prpyT 1

1 |v̂N
1 q

(

. (2.36)

Current state-of-the art speech synthesis systems are concatenative systems consisting of
three components [Allauzen & Mohri` 04].

The first component is a text analysis front end generating a sequence of feature vectors
for a given input text. Typical components of a feature vector are the predicted phones,
phonetic contexts, acoustic features, including pitch and duration, and prosodic features.

The second component of a concatenative speech synthesis system is the unit selection
algorithm that determines for a given set of recorded acoustic units the sequence of units
with minimal distance to the sequence of feature vectors predicted by the text analysis
front end.

The third component produces an acoustic signal by concatenating the unit sequence
determined by the unit selection algorithm.

Unit selection can be modeled statistically by defining two probability distributions:
the target probability prpzT 1

1 |yT 1

1 q that estimates how well the features yt of a recorded
unit match the specified feature vectors zt, and the concatenation probability prpyT 1

1 q that
estimates how well two units will be perceived to match when appended. This leads to
the following decision rule:

ŷT 1

1 “ argmax
yT 1

1

 

prpyT 1

1 |zT 1

1 pv̂N
1 qq

(

“ argmax
yT 1

1

 

prpyT 1

1 q ¨ prpzT 1

1 pv̂N
1 q|yT 1

1 q
(

,
(2.37)

where zT 1

1 pv̂N
1 q denotes the sequence of feature vectors produced by the text analysis front

end.
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2.8 Measuring System Performance

Because of the interactive nature of spoken dialogue systems, evaluating and measuring
system performance is a difficult problem. An important criterion for measuring system
performance is the dialogue success rate that describes the average proportion of suc-
cessfully finished dialogues. A dialogue is considered successful if the user obtains the
desired information after a finite number of dialogue turns. However, this measure is
not sufficient because it does not take into account certain aspects of a dialogue, such as
the duration of the dialogue, whether the dialogue system explicitly confirms information
and thus extends the duration of the dialogue, and whether the system is able to detect
errors and acts appropriately. This leads to a more subjective evaluation criterion for
measuring the system’s quality as seen from the user’s point of view. Subjective measures
aimed at assessing the user’s opinion on the system are obtained through direct interview
by questionnaire filling. User satisfaction is regarded as the ultimate evaluation criterion,
and subjective measures are helpful to detect weak points in the design of spoken dialogue
systems.

The interactive nature of spoken dialogue systems reveals another problem: since spoken
dialogue systems are a realization of human-machine interfaces and therefore interact with
humans by definition, a proper evaluation is only feasible in large field tests. However,
interactions with humans are expensive and not always practicable during a testing phase.
Furthermore, the results obtained are in general not reproducible since users behave
differently if they are asked to interact with a dialogue system once more.

In order to get a more objective assessment, the individual components of a spoken
dialogue system can be evaluated separately:

• Automatic speech recognition
The automatic speech recognition system is evaluated according to word- and graph
error rates. The word error rate is defined as the Levenshtein distance between
the single-best recognition result and the spoken word sequence. The Levenshtein
distance is computed using dynamic programming and determines the optimal align-
ment of the words in both sequences in terms of number of word deletions, insertions,
and substitutions. The graph error rate and N -best error rate, respectively, reflects
the error rate with the smallest Levenshtein distance that is obtained by an oracle-
based search on word graphs or N -best lists. In general, this minimal error word
sequence does not correspond to the best-scored sentence hypothesis. Graph- and
N -best error rate measure to what extend the spoken word sequence is included in
the graph or N -best list structure. In case of a multi-pass decoding, the graph error
rate is a lower bound to the word error rate. Although the single-best word error
rate is of less importance for a combined speech recognition and spoken language
understanding system, it is useful to estimate the error of the speech recognition
system. If confidence measures are computed, their quality can be described by
confidence error rates and detection error tradeoff curves.
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• Natural language understanding
Similar to the word error rate for automatic speech recognition, we can define
the concept error rate or slot error rate for the natural language understanding
component. The slot error rate is defined as the Levenshtein distance between the
single-best decoded concept sequence and a given reference concept sequence. Since
each concept is associated with a set of attributes, we define the attribute error
rate as the proportion of attributes that have the wrong value with respect to given
reference attribute values.

• Dialogue management
Besides the dialogue success rate, the number of dialogue turns, the frequency
of confirmation questions, and the overall duration of a dialogue transaction are
important. These quantities can be combined to a cost function, where the weights
of the cost function are usually chosen empirically.

• Full system
In order to circumvent large field tests for evaluating the full dialogue system and
to make results reproducible, a system can be evaluated approximately using user
simulations. Here, a user is simulated by a stochastic model that, in place of a
human, interacts with the system. Over the past years, stochastic user models
have found increasing attention in order to learn dialogue strategies and to evaluate
dialogue systems automatically. Stochastic user models have the advantage that
dialogue transactions can be generated offline and are reproducible. Therefore,
studying the expressiveness and limitations of user models (i.e., answering the
question what can be learned from it) has become an active research field.
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Chapter 3

State-of-the-Art

The following sections describe the state-of-the-art in spoken language understanding
and dialogue management. Section 3.1 provides and overview of different natural language
understanding corpora and tasks that where used and investigated in the past. Section 3.2
discusses techniques used in natural language understanding and recent efforts to combine
speech recognition with spoken language understanding. Section 3.3 delineates different
approaches to dialogue management and dialogue strategies. Section 3.4 deals with error
handling in spoken dialogue systems.

3.1 Applications and Corpora

Although several spoken dialogue systems are developed for commercial purposes and are
therefore trained on in-house data, there are a few natural language corpora that are
publicly available and that can be used to develop and evaluate the language understand-
ing components of spoken dialogue systems. The domains of these corpora cover mainly
scheduling and appointment tasks.

3.1.1 Air Travel Information Service (ATIS)

From 1990 - 1994, the Air Travel Information Service (Atis) task was the subject of annual
benchmark evaluations sponsored by DARPA. The task is to retrieve airline schedules,
fares, and related information from a relational database for a restricted set of cities within
the United States and Canada using a spoken language environment [Price 90].

3.1.2 Speech Understanding in Dialogue (SUNDIAL)

The Speech Understanding in Dialogue (Sundial) project started in 1988 and ended
in 1993. The goal of the Sundial project was to build real-time integrated computer
systems that are capable of maintaining co-operative dialogues with users over standard
telephone lines [Peckham 91]. The domains covered by the Sundial project were flight
arrivals, schedules, and reservations. Systems were planned for four different languages:
English, French, German, and Italian.
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3.1.3 Automatic Railway Systems for Europe (ARISE)

The goal of the Arise project, which ran from 1996 - 1998, was to develop and evaluate
spoken language dialogue systems for restricted domain information [den Os & Boves` 99].
During the project, spoken dialogue systems for a train timetable information task were
developed in three different languages: Italian, French, and Dutch.

3.1.4 TRAINS and TRIPS

The Trains project and its successor, Trips, started in 1991 and is an ongoing research
effort on spoken dialogue systems. One of the early achievements of the Trains project
was the collection of a corpus of task-oriented spoken dialogues, which is now available
through the LDC. Over the course of the Trains project, a series of demonstration sys-
tems were built. The domains for these systems involved routing and scheduling of freight
trains, hence the project name. An overview of the project is given in [Allen & Miller` 96]
and [Ferguson & Allen` 96].

3.2 Spoken Language Understanding

Today, most state-of-the-art spoken dialogue systems perform a rule-based semantic anal-
ysis using so-called semantic grammars. Semantic grammars are (probabilistic) context
free grammars consisting of application-dependent handcrafted rules. The first semantic
grammars were originally developed for text-based dialogue systems in the domains of
question answering and intelligent tutoring [Brown & Burton 75]. Besides semantic gram-
mars, other approaches to semantic analysis were developed that are briefly overviewed
in the following. However, it should be pointed out that, to a certain extent, even these
methods fall back to rule-based methods, especially when dealing with numbers and time
expressions.

3.2.1 Rule-based Approaches

The Tina system [Seneff 92] developed at MIT included a rule-based natural language
understanding component. A set of context-free rewrite rules is first transformed into a
network structure. Afterwards, probabilities derived from a set of parsed sentences are
assigned to the arcs of the network. The parser uses a stack decoding search strategy
with a top-down control flow.

Other rule-based systems, which were developed at LIMSI-CNRS, are the L’Atis sys-
tem [Bennacef & Bonnea-Maynard` 94], which is a French version of the American Atis
task, as well as the Mask [Gauvain & Bennacef` 97] and the Arise [Lamel & Rosset` 98]
systems both covering train travel-based domains. All systems employ a rule-based
case frame parser. A frame can be thought of as a network of nodes and relations
[Minker & Waibel` 99]. The top levels of a frame are fixed and represent facts that
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are always true about the supposed situation. The lower levels have terminals or slots
that need to be filled by specific instances of the data.

The CMU-Phoenix system [Issar & Ward 93, Ward & Issar 95] also employs a case
grammar-based implementation. The parser was originally designed for extracting mean-
ing representations from spoken utterances in the Atis task. Its strategy is to apply
grammatical constraints at the phrase level rather than on the full sentence, thus, strings of
phrases that do not form a grammatical English sentence are still parsable by the system.
The CMU-Phoenix system participated in the the official Atis-3 Dec94 evaluation. All
systems were evaluated using a measure called common answer specification (CAS), which
defines the minimal and maximal SQL answer that is considered to be correct. On the
Atis-3 Dec94 test set, the CMU-Phoenix system obtained a CAS of 96.2%, which was,
along with AT&T’s Chronus system, the best scored system for text input.

3.2.2 Statistical Approaches

Stochastic Parsing

The most employed approach to spoken language understanding is based on stochastic
context free grammars (PCFG). In [Kellner & Rueber` 97] individual concepts are mod-
eled by attributed handcrafted PCFGs. A top-down chart parser is used to search an input
word graph for meaningful phrases. The result of a parse is stored in a concept graph. In
order to cope with ungrammatical utterances, a partial parsing strategy is used that only
parses fragments of an utterance that are likely to contain meaningful words, whereas
unparsable parts of the utterance are replaced by so-called filler arcs. Experiments were
conducted on the Philips automatic telephone switchboard and directory information
system (Padis), which is a natural-language user interface to a telephone directory
database. The authors report a concept error rate of 26.9% with an initial word error
rate of 24.4% and a dialogue success rate of about 95%.

In [Minker 98], the portation of a stochastically-based method for natural language
understanding from the Atis task to Mask is described. The author compares a rule-
based approach with a stochastic approach for both tasks. While the stochastic approach
outperforms the rule-based approach on Mask, the rule-based approach works better on
the Atis task.

Markov Model-based Approaches

In AT&T’s Chronus system [Levin & Pieraccini 95], a set of flat concepts is used as
semantic representation. The natural language understanding component is based on
an HMM-like process whose hidden states correspond to the concepts. The sequence of
words generated by this model constitutes the observed sentence.1 Along with CMU’s

1 This generative model is therefore a simple version of a translation model. In [Levin & Pieraccini 95],
this model is misleadingly called a stochastic language model.
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Phoenix system, the described system achieved the best result during the official Atis-3
evaluation with a CAS of 96.2% on the Atis-3 Dec94 test set.

In [Miller & Bobrow` 94a, Miller & Bates` 95], a tree-structured meaning representa-
tion is used. Concepts can be nested forming a tree structure for a given input sentence.
The underlying statistical model for the language understanding component is called
hidden understanding model. This generative model is a two folded statistical process
where in the first step the model chooses the meaning to be expressed and in the second
step selects the word sequences generating that meaning. The first step corresponds to
a semantic language model producing meaning expressions, the second step produces
lexical realizations based on the meaning expressions. A limitation of the nested concept
approach is that linguistic movement phenomena make it difficult to align words of a
sentence to any tree structured meaning representation without introducing crossings.
For the official Atis-3 Dec-94 evaluation, a CAS of 90.6% was reported.

Semantic Classification Trees

In [Kuhn & de Mori 95], semantic classification trees (SCTs) are applied to natural lan-
guage understanding. SCTs are specialized decision trees where the nodes contain pat-
terns of possible input word sequences. The semantic rules are learned automatically
from an annotated corpus and are robust against errors caused by the speech recognizer
as well as disfluencies and ungrammatical utterances produced by the speaker. The SCT
approach was integrated into the Channel system developed at the Centre de Recherche
Informatique de Montréal (CRIM). The authors report a CAS of 87.7% on the Atis-3
Dec-93 corpus.

Machine Translation-based Approaches

Another approach to natural language understanding is derived from the field of statistical
machine translation and was proposed in [Epstein & Papineni` 96]. Given an annotated
corpus, the problem of natural language understanding is described as a translation from
a source sentence to a formal language target sentence. Experiments were carried out
on the Atis-3 corpus. The target sentences are natural language paraphrases of SQL
queries. Both the SQL queries and their natural language paraphrases are provided by
the Atis-3 corpus. The authors report a CAS of 72% using the IBM 1 translation model.
The model used lacks local context information, which is essential for natural language
understanding. This problem is addressed in [Della Pietra & Epstein` 97], where the
model is refined by an additional fertility model. The authors report a CAS of 83.0% on
the context-independent subcorpus of the Atis-3 Dec93 test set.

Most of the approaches described so far are based on the source-channel paradigm and
employ a generative model. A different approach to natural language understanding,
which directly optimizes the posterior probability of the formal language target sentence,
was introduced in [Papineni & Roukos` 97]. Similar to [Epstein & Papineni` 96], natural
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language understanding is regarded as translating a natural language sentence into a
formal target language. To model the posterior probability, the authors define several
feature functions that capture correlations between automatically determined key phrases
in both languages. The features and their associated weights are selected using a training
corpus of matched pairs of source and target language sentences to maximize the entropy
of the resulting conditional probability model. The authors report a CAS of 85.8% for
the context independent sentences on the Atis-3 Dec94 test set.

Hidden Vector State Model

The hidden vector state model was introduced by [He & Young 03a] and is used for
hierarchical semantic parsing. The model associates each state of a push-down automaton
with the state of an HMM. State transitions are factored into separate stack push and
pop operations and are further constrained to give a tractable search space. The model
is complex enough to capture hierarchical structure and is trained on so-called abstract
semantics that can be generated semi automatically from SQL queries provided by the
Atis-3 corpus. For the hidden vector state model the authors report a CAS of 91.5% on
the Atis-3 Dec94 test set. In [He & Young 03b], the method is compared with a finite
state transducer approach. Both approaches show a similar CAS performance on the
Atis-3 Dec94 test set.

Table 3.1: Common answer specification (CAS) results of various systems applied on
the Atis-3 Dec93 and Dec94 test sets. All results were obtained on the context-
independent sentences of the Atis-3 test corpus, that is, answering these sentences does
not require information contained in previous sentences. The table contains results that
were produced on pure text data (NLU) and on speech data (SLU). Rows preceded by a
‹ refer to results obtained during the official Atis-3 evaluations.

Atis-3 Dec93 Atis-3 Dec94
NLU CAS[%] SLU CAS[%] NLU CAS[%] SLU CAS[%]

‹AT&T 92.6 77.9 96.2 93.0
‹BBN 90.4 86.2 90.6 88.1
Cambridge – – 91.5 86.1

‹CMU (case frames) 94.0 91.1 96.2 92.6
CRIM (SCT) 87.7 – – –
IBM (hidden clump.) 83.0 – – –
IBM (feature-based) 86.8 – 85.8 –
LIMSI-CNRS (rules) – – 83.1 –
LIMSI-CNRS (stoch.) – – 81.3 –

‹SRI 85.7 83.5 93.0 89.4
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3.2.3 Combining Speech Recognition and Language Understanding

Combining automatic speech recognition and natural language understanding in a simple
cascaded manner according to Equation 2.7 often leads to suboptimal results because
the interdependence of decisions is ignored. Errors that may occur in the automatic
speech recognition component, are propagated to the natural language understanding
module, which then treats the incoming sentence hypotheses as observations rather than
hypotheses. Therefore, methods that aim at a tighter coupling between speech recognition
and natural language understanding have been studied in various articles.

Word Graphs and N -best Lists

Several methods have been proposed in order to get a tighter integration of speech
recognition and language understanding. Employing word graphs and N -best lists as
interface between the automatic speech recognition module and the natural language un-
derstanding component was already proposed in [Chow & Roukos 89, Oerder & Ney 93]
and [Schwartz & Austin 91]. Word graphs and N -best lists provide a simple interface that
allows for an easy integration of additional knowledge sources, such as semantic grammars
or natural language understanding-specific language models. Once a word graph has been
generated, these knowledge sources can be incorporated into the graph structure. The
search for the best-scored hypothesis is carried out on the graph structure through a
rescoring step resulting in a multi pass decoding strategy. In [Chow & Roukos 89], the
authors describe a system for speech understanding that uses hidden Markov models for
acoustic modeling, a unification grammar for the syntax of English, and a higher order
intensional logic for the semantic representation. To maximize speech understanding
performance, the constraints of the linguistic models are incorporated into the search
process to find the most probable interpretation of the user’s utterance. The approach
parses a word lattice that is produced during a first pass decoding.

Transducer-based Approach

Another way to combine speech recognition and understanding is to define two finite-state
transducers, one for the speech recognition component and one for the language under-
standing module. If both transducers are composed, one yields a finite-state transducer for
a combined recognition-understanding system. Using finite-state transducers to integrate
speech recognition with other areas of natural language processing is very common in ma-
chine translation. In [Vidal 97, Casacuberta & Llorens` 01, Matusov & Kanthak` 05],
finite-state transducer approaches are employed in order to combine acoustic recognition
with translation models. [Matusov & Kanthak` 05] show consistent improvements using
this approach compared with translations obtained from single-best recognition results.
Because natural language understanding can be viewed as a translation between a natural
source language and a formal target language, the finite-state transducer approach can
directly be applied for combining speech recognition and language understanding.
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Concept-based and Grammar-based Language Models

In [Sudoh & Tsukada 05], a standard word-based m-gram language model is replaced by a
word-to-concept translation model. This model can be directly integrated into an existing
speech recognition framework. The authors compare their proposed method with a näıve
cascaded spoken language understanding approach, where the best scored hypothesis
output produced by a speech recognition system is used as input for the natural language
understanding component. The authors show on a Japanese train timetable information
task that their approach yields better results in a precision recall graph compared to the
single-best approach.

In [Moore & Appelt` 95], a grammar-based natural language understanding system
is used as additional language model, which is combined with a trigram model and a
fourgram as well as a class-based fourgram model. The authors show that employing this
enriched language model reduces the word error rate from 2.5% to 2.1% and also reduces
the spoken language understanding error rate from 13.7% to 12.7%.

Enriching Language Understanding with Speech-based Confidence Measures

If word graphs or N -best lists produced by an automatic speech recognition system are
used as intermediate representations, the natural language understanding component can
incorporate the speech-based knowledge sources. In [Hazen & Burianek` 00], speech-
based confidence measures are incorporated into the understanding process. The under-
standing grammar is augmented by additional reject and confirmation markers leading
to a concept error rate reduction of 35% for the Jupiter weather information system.
[Tur & Wright` 02] improve their spoken language understanding system by exploiting
word-level confusion networks obtained from speech recognition word graphs. Using these
networks together with confidence measures improved the classification error rate for
AT&T’s “How may I help you” dialogue system by 38%.

3.3 Dialogue Management and Strategies

The dialogue manager is the central component of a dialogue system where all the
information from the different components, such as speech recognition and language
understanding, must be collected and evaluated so that a reasonable dialogue action can
be selected. The sequence of dialogue action defines the dialogue strategy of a dialogue
system.

3.3.1 Domain-Independent Dialogue Management

Often, dialogue management components are designed for only one particular application.
This can become a bottleneck if a dialogue system needs to be ported to a new domain. To
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tackle this problem. various designs have been proposed that aim at making the dialogue
management component domain-independent.

Construct Algebra

In [Abella & Gorin 99], an approach for creating dialogue management systems based
on a so-called Construct Algebra is described. The dialogue manager consists of three
main components: a task knowledge representation, a construct algebra, and a collection
of dialogue motivators that determine what actions need to be taken by the dialogue
system. The task knowledge is encoded as a hierarchy of constructs, which themselves are
represented as trees. The construct algebra defines a collection of relations and operations
on these constructs. The authors apply their framework to two different tasks: AT&T’s
“How may I help you?” and a voice post query application.

Tree-based Representations

In [Potamianos & Ammicht` 00] and [Ammicht & Potamianos` 01], trees are used for
representing semantic ambiguities, which often occur in spoken natural language tasks.
The tree is constructed from the ontology of the domain. Nodes encode concepts and
edges between nodes encode is-a or has-a relationships. Two types of ambiguities are
modeled: value ambiguities, where the value for a particular attribute is uncertain, and
positional ambiguity, where the attribute to a particular value is ambiguous. A key point
of the described approach is that, similar to [Abella & Gorin 99], task knowledge, user
input, and attribute value pairs are kept separate in related data structures. During a
dialogue transaction, the system extracts data values from user utterances and places them
in instances of the tree. Candidate attribute-value pairs are scored based on supporting
evidence for or against the candidate. The described algorithms are independent of the
domain. The authors report an error reduction of around 50% in a travel reservation task
using their new ambiguity resolution strategy compared to an old system that lacked the
described methods.

3.3.2 Learning Dialogue Strategies

If the new dialogue state-action only depends on the current dialogue state, the system
can be modeled as a Markov Decision Process (MDP). Markov decision processes provide
a theoretical framework for automatic learning of dialogue strategies.

Fully observable Markov Decision Processes

The application of MDPs in the context of spoken dialogue systems was described for the
first time in [Levin & Pieraccini 97]. In [Levin & Pieraccini` 00], the problem of learning
a dialogue strategy is interpreted as an optimization problem. Starting with a dialogue
system that can be described within the MDP framework together with an objective
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function representing the dialogue costs, the optimal dialogue strategy can be computed
using a Monte Carlo algorithm by minimizing the expected dialogue costs. A fundamental
problem of employing MDPs for learning dialogue strategies is that the state space in-
creases exponentially with the information stored in a single state. Another problem that
one is confronted with arises from the huge number of example dialogue sessions that are
necessary in order to compute the optimal dialogue strategy. In [Goddeau & Pineau 00],
techniques are introduced that reduce the number of data and that accelerate the training
of the models. A moot point with all fully observable MDPs is that they assume the
current state of the environment to be known exactly. Thus, the uncertainty introduced
by automatic speech recognition cannot be captured.

Partially observable Markov Decision Processes

The assumption of an always determined state is dropped for a partially observable
Markov decision process (POMDP). In POMDPs, the current state of the system is
not explicitly defined but can be probabilistic. Because a spoken dialogue system can
make errors on different levels of the system’s architecture, such as speech recognition
errors, semantic interpretation errors, and so on, the current state of the dialogue system
is uncertain. Therefore, POMDPs provide a more realistic framework for modeling
dialogue systems compared to standard MDPs. In [Williams & Poupart` 05], the authors
use POMDPs for modeling dialogue strategies. The authors show how to incorporate
discrete and continuous components into the proposed framework and report significant
improvements in a testbed dialogue scenario from the travel domain compared with several
handcrafted dialogue managers.

3.3.3 Dialogue Simulation

Evaluating dialogue turns from real human-machine interactions is a time-consuming and
costly effort. Therefore, using simulated dialogues is a reasonable alternative to evaluate
dialogue systems and to learn dialogue strategies automatically. In [Eckert & Levin` 97],
dialogue simulations are used for evaluation. In [Scheffler & Young 02, Scheffler 02], a
simulation tool is proposed for dialogue evaluation that is applied during the design
process of a dialogue system. Additionally, the simulation tool is applied in a framework
for automatically designing and optimizing dialogue management strategies.

Despite the advantages of simulated dialogues, it is still unclear how to quantitatively
evaluate whether simulated user responses are realistic, generalize well to unseen dia-
logue situations, and resemble the variety of the user population. These questions were
addressed in part in [Schatzmann & Georgila` 05], where different simulation techniques
are investigated and systematically tested and evaluated on real data. The authors show
that none of the currently available techniques can realistically reproduce the variety of
human user behavior and that simple statistical measures are sufficient to distinguish
synthetic dialogues from real dialogues.
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3.4 Error Handling in Spoken Dialogue Systems

For spoken dialogue systems, errors can occur on different levels of the system’s archi-
tecture. One of the principal causes for errors during a dialogue session are erroneous
recognition results, which often lead to incorrect semantic interpretations. Even if the
speech signal has been recognized correctly, the natural language understanding compo-
nent can produce erroneous sentence meanings. Therefore, mechanisms for error detection
and error handling play an important role in the design of spoken dialogue systems.

3.4.1 Word Confidence Measures

State-of-the-art statistical speech recognition systems use Bayes’ decision rule in order
to determine the most likely sequence of word hypotheses. Typically, the score function
used does not provide a measure for the certainty of the recognition result. Therefore,
confidence measures can be employed that quantify this certainty. Word confidence
measures based on word posterior probabilities have proven to be very successful in
automatic speech recognition. In [Macherey 98, Wessel & Macherey` 98], word posterior
probabilities are estimated on word graphs using a forward-backward algorithm. That
way, word posterior-based confidence measures employ the same knowledge sources used
for finding the best-scored hypothesis during the search process. By accumulating the
posterior probabilities of all edges that share the same word index and that overlap with
each other, the problem of different time alignments for the same sentence hypotheses is
mitigated. In [Wessel & Macherey` 98], the authors report a reduction of the confidence
error rate ranging between 15% and 30% for different speech recognition corpora.

In [Kemp & Schaaf 97], posterior probabilities used as confidence measures yield the
largest performance. Similar to [Wessel & Macherey` 98], the posterior probability is
estimated on word graphs using a forward backward-algorithm. However, the exact
algorithm is not further specified. For the German Verbmobil corpus, the authors
report a classification error reduction of 18.4%.

3.4.2 Semantic Confidence Measures

For spoken language understanding, word confidence measures can be augmented by
semantic features. In [Sarikaya & Gao` 03], tag and arc probabilities obtained from a
statistical classer and parser tree as well as probabilities estimated from a maximum
entropy-based semantic structured language model are used as semantic features. Ex-
periments were conducted on an air travel domain. Together with the word posterior
probability, the authors report an improvement of around 13´14% for correct acceptance
at a fixed false acceptance rate of 5%.
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3.4.3 Multi-Level Error Handling

In [Komatani & Kawahara 00], confidence measures for spoken dialogue systems are pro-
posed for two levels: the first level comprises confidence measures for content words
based on N -best lists, the second level comprises confidences measures for semantic
attributes based on inverse document frequencies. The content word-based confidence
measure directly controls the confirmation strategy of the dialogue manager. For this,
the authors define two thresholds. Depending on the interval the confidence value is
located, the user utterance is accepted, explicitly confirmed, or rejected. Although the
proposed ideas are reasonable, an analysis of the false acceptance rate and slot error rate
shows contradictory results where the slot error rate increases if an N -best list is used
and a confirmation strategy is employed.

In [Macherey & Bender` 03], confidence measures are determined on the speech recog-
nition level and the semantic level. Since the natural language understanding component
is based on a maximum entropy framework, the word posterior-based confidence measures
can directly be used as additional features. Both confidence values are propagated to
the dialogue manager who then determines whether the utterance should be accepted,
implicitly, or explicitly confirmed. The authors report a dialogue success rate of 88.6%.

In [Litman & Walker` 99], an approach similar to classification trees is used in order to
detect erroneous recognitions. The approach uses several features, including confidence
measures from the speech recognition unit, features measuring dialogue efficiency, dialogue
quality features that take the number of played rejection prompts and played timeout
prompts into account, and textual features.
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Chapter 4

Scientific Goals

The scientific goals addressed in this thesis are outlined in the following. A reference
pointing to a more detailed description is given at the end of each goal.

• Fast confidence computation for realtime speech recognition systems
We investigate confidence measures for automatic speech recognition that are suit-
able for spoken dialogue systems. Similar to [Wessel & Macherey` 98] the compu-
tation is based on word graphs. However, in contrast to [Wessel & Macherey` 98,
Wessel 02], we do not interpret word graphs in a time-conditioned manner, but
keep the word-conditioned structure, which results in a decreased number of com-
putational steps. The word graphs are an exact representation of all hypotheses
that have survived the pruning. The construction of word graphs during search
is organized such that unreachable hypotheses are automatically eliminated during
the search process. Hence, no time consuming postprocessing steps for eliminat-
ing dead paths are necessary. This reduced computational effort makes posterior
confidence measures especially suitable for spoken dialogue systems. We show that
keeping the word-conditioned graph structure yields a similar performance reported
in [Wessel & Macherey` 98]. Details can be found in Section 5.3.

• F-MLLR for realtime speech recognition systems
We investigate how the F-MLLR transformation can be successfully applied within
a spoken dialogue system where adaptation data is limited and a full second pass
decoding is not feasible due to realtime constraints. We compare two approaches: an
incremental F-MLLR that adapts on data received from the previous utterance and
a word graph-based approach that is based on acoustic rescoring. We also show that
speech recognition-based confidence measures are beneficial for applying F-MLLR
adaptation in spoken dialogue systems. Details can be found in Section 5.4.

• Natural language understanding is a machine translation problem
We show that the problem of natural language understanding can be described as
a special machine translation problem where often no reordering is necessary. We
investigate two approaches: a source channel-based approach and a direct model
based on maximum entropy. In contrast to [Epstein & Papineni` 96] where almost
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no context was taken into account, we show that local contexts are crucial to this
task. The maximum entropy approach to natural language understanding described
in [Papineni & Roukos` 97] requires a decoder that supplies a list of candidate
translations on which then the maximum entropy model is trained. In this thesis,
we directly train the maximum entropy model on bilingual training data. Thus, no
additional decoding step is necessary for the training procedure. Results presented in
[Papineni & Roukos` 97] were produced on pure text data. In this thesis, we also in-
vestigate the robustness of both approaches if speech is used as input modality. The
tree-structured concepts defined in [Miller & Bobrow` 94a, Miller & Bates` 95] can
introduce so-called crossing effects. Therefore, we use flat unstructured concepts,
which are easier to handle and more suitable for machine translation tasks. We
empirically show that flat concepts are sufficient for modeling different natural
language understanding tasks. Details can be found in Chapter 6.

• Tighter coupling between spech recognition and language understanding
Although many authors have investigated enriching natural language understanding
with speech recognition features in order to get a tighter coupling between both
tasks, the combinations do not aim at minimizing an objective function, such as the
number of word errors or slot errors. In this thesis, we employ the minimum error
training algorithm in order to combine speech recognition and natural language
understanding features such that the error criterion used is minimized. A related
approach was investigated in [Matusov & Kanthak` 05] in the context of machine
translation. Here, we use a different optimization technique that computes for each
feature function the corresponding error surface. Furthermore, we investigate a
larger set of feature functions that take also sentence-based features into account.
Details can be found in Section 6.8.

• Domain-independent dialogue management
We present a new approach to domain-independent dialogue management where
trees are used in order to represent the task knowledge. The operations of the
dialogue manager can be entirely formulated as cost functions that operate directly
on nodes, paths, and trees. We investigate the capability of the system to choose
those actions that are likely to lead as directly as possible through the tree to the
user’s goal and show that different knowledge sources can be easily integrated into
this approach without the necessity to rewrite the system. A related approach was
proposed in [Abella & Gorin 99]. However, the paper presents only examples, but
does not describe quantitative results. In this thesis, we investigate how the dialogue
manager performs in actual field tests. Another difference is that the dialogue
manager described in this thesis is entirely based on feature functions derived from
speech recognition, language understanding, and task-based knowledge sources. We
analyze the system’s behavior for choosing the subsequent dialogue action based
on a foregoing assessment of the current dialogue state. Especially, we investigate
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whether the proposed features are able to determine the best path that leads as
quickly as possible to a final state that is likely to meet the user’s request. Details
can be found in Chapter 7.

• Error-tolerant dialogue components
We propose a strategy for detecting errors that may occur during a dialogue trans-
action. The strategy employs confidence measures on different levels of the system’s
architecture. We show that this strategy can be easily integrated into a tree-based
spoken dialogue system and evaluate the strategy within a field test. Furthermore,
we enrich the maximum entropy-based language understanding component with
speech recognition-based confidence measures and analyze if the language under-
standing component can benefit from the speech recognition-based confidence values
in case of recognition errors. Details can be found in Chapter 8.
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Chapter 5

Corpus Description and Automatic
Speech Recognition Results

In this chapter, the corpora are described and recognition results are presented that
serve as a baseline for spoken language understanding results that will be presented in
subsequent chapters. Section 5.1 introduces the corpora used. Word graphs and N -best
lists are specified in Section 5.2. Section 5.3 briefly reviews the computation of word
posterior-based confidence measures that will be incorporated as an additional knowledge
source into the understanding process. Speaker adaptation techniques suitable for spoken
dialogue systems are outlined in Section 5.4, and results are presented in Section 5.5.

5.1 Corpus Description

All experiments were conducted on two different corpora, the TelDir corpus and the
Taba corpus. Both corpora are German in-house corpora and were collected over several
months in telephone-based applications.

5.1.1 TELDIR Corpus

The TelDir corpus is a German in-house telephone directory assistance corpus. The
objective is to answer naturally spoken requests for telephone numbers, fax numbers,
and email addresses of persons, companies, and organizations. The TelDir corpus also
covers utterances for spelling units. The data for training the speech recognition system
and the natural language understanding component were recorded over several months
from fixed telephones as well as wireless and mobile phones under changing conditions.
The conditions cover clean speech, office noise, and traffic noise. The corpus allocation is
summarized in Table 5.1.

Besides acoustic transcriptions, each utterance of the TelDir corpus provides a flat
concept annotation as meaning representation together with its associated attribute val-
ues. A concept is defined as the smallest unit of meaning that is relevant to a specific
task [Levin & Pieraccini 95]. Figure 5.1 (a) depicts an example of a concept-based mean-
ing representation for the utterance “Can you give me the email address of Mr. Florian
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Table 5.1: Corpus allocation for the TelDir corpus. The TelDir corpus is a German
in-house corpus covering the domain of a telephone directory assistance task. Within this
task, users can ask for telephone numbers, fax numbers, and email addresses of persons,
companies, and organizations.

corpus
TelDir-Speech training development evaluation

number of acoustic data rhs 2:00 0:36 0:28
silence portion r%s 58.4 60.7 62.7
# speakers 161 49 41
# sentences 1 399 405 308
# running words 8 840 2 575 1 950
# running phonemes 36 390 10 572 8 040
covered vocabulary 883 443 369
# lexicon entries 1 348
# pronunciations 1 403
# unknown words – 0 0
perplexity (trigram LM) 5.2 22.8 18.7
perplexity (class-trigram LM) 16.4 23.1 22.6

Table 5.2: Bilingual, parallel corpus allocation for the natural language understanding
part of the TelDir corpus. The ‘source’ entries describe the natural language source
side, the ‘target’ entries mark the formal concept language target side of the corpus.

corpus training development evaluation
TelDir-NLU source target source target source target

# sentences 1 399 405 308
# running words 8 840 3 564 2 575 1 054 1 950 801
covered vocabulary 883 22 443 21 369 19
# singletons 0 1 – – – –
# unknown words – – 257 0 168 0
perplexity (trigram LM) 5.2 4.1 22.8 4.5 18.7 4.6

Petzhold”. The first line shows the source sentence, the second line depicts the target
sentence consisting of concepts marked by the preceding @-symbol. The links describe
alignments between words and concepts. Although the corpus already provides a word-
concept reference alignment, we keep this information hidden and determine the alignment
between words and concepts automatically. The fixed corpus alignment is only used for
computing alignment error rates in order to determine whether words are mapped onto the
correct concepts. Table 5.2 summarizes the corpus information for the natural language
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@can_question @email @person

(a)

@origin @destination@want_question @going

(b)

@filler

Herrn Florian Petzholdkönnen Sie mir die Email Adresse von geben

ich würde gerne von Köln nach München fahren

Figure 5.1: Concept-based meaning representations for the utterances (a) “Can you give
me the email address of Mr. Florian Petzhold” taken from the TelDir corpus and (b) “I
would like to go from Cologne to Munich” taken from the Taba corpus. In each subfigure,
the upper text line denotes the word sequence, the lower text line denotes the sequence
of concepts. The links describe alignments between words and concepts.

understanding part. The target vocabulary of the TelDir corpus is specified by a total
number of 22 concepts, including a filler concept that is used for phrases and sentences
that either do not contain useful information or are out of domain sentences. A list of
all concepts together with their associated attributes is contained in appendix B.1. In
contrast to the speech recognition vocabulary, the vocabulary used in the natural language
understanding component is not closed.

5.1.2 TABA Corpus

The Taba corpus is a German in-house corpus covering the domain of a train timetable
scheduling task. The speech data was collected from real users interacting with a fully
functional automatic spoken dialogue system. The system was introduced in 1994 by
Philips Speech Processing, Aachen, Germany, and was the world’s first publicly available
natural language dialogue system. The system is available under the telephone number
+49-241-604020 and provides information on connections between 1, 000 German cities.
The Taba corpus used in this thesis was kindly provided by Philips Speech Processing
and Scansoft. The corpus allocation is summarized in Table 5.3.

Similar to the TelDir corpus, each utterance of the Taba corpus is annotated using
a set of flat concepts as meaning representation. Figure 5.1 (b) depicts an example of a
concept-based meaning representation for the utterance “I would like to go from Cologne
to Munich”. Equivalently, the corpus already provides the affiliated alignments between
natural language words and formal concepts, which are used for computing alignment
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Table 5.3: Corpus allocation for the Taba corpus. Taba is a German in-house corpus
covering the domain of a train timetable information system. The corpus was kindly
provided by Philips and Scansoft.

corpus
Taba-Speech training development evaluation

number of acoustic data rhs 13:09 1:41 1:44
silence portion r%s 46.6 46.7 48.0
# speakers 2 585 324 324
# sentences 17 771 2 247 2 390
# running words 58 098 7 502 7 709
# running phonemes 254 362 33 293 33 659
covered vocabulary 1 678 670 669
# lexicon entries 2 972
# pronunciations 2 988
# unknown words – 0 0
perplexity (trigram LM) 7.7 18.0 16.3
perplexity (class-trigram LM) 11.7 17.9 16.1

Table 5.4: Bilingual, parallel corpus allocation for the natural language understanding
part of the Taba corpus. The ‘source’ entries describe the natural language source side,
the ‘target’ entries mark the formal concept language target side of the corpus.

corpus training development evaluation
Taba-NLU source target source target source target

# sentences 17 771 2 247 2 390
# running words 58 098 31 751 7 502 4 083 7 709 4 254
covered vocabulary 1 678 27 670 26 669 26
# singletons 518 0 – – – –
# unknown words – – 183 0 169 0
perplexity (trigram LM) 7.7 4.4 18.0 4.8 16.3 4.6

error rates. Otherwise, this information is kept hidden and the alignments are computed
automatically. Table 5.4 summarizes the corpus information for the natural language
understanding part. A list of all concepts and attributes is contained in appendix B.2.
Again, the speech recognition vocabulary is closed whereas the vocabulary used in the
natural language understanding component is kept open.
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5.2 Word Graph and N -best List Generation

Word graphs are generated during the integrated trigram search. Each node in the graph
contains the language model history of the outgoing edges. The search implementation
uses so-called reference pointers in order to store traceback information. Thus, it is
guaranteed that the graph only contains hypotheses that remain valid at the end of the
search when the endpoint detection has determined the end of an utterance. The word
graphs are characterized using the following quantities:

• Word graph density
The word graph density (WGD) is defined as the total number of edges contained in
a word graph, including silence and noise words, divided by the number of spoken
words contained in the utterance transcription, where the utterance transcription
may contain non-speech annotations, such as hesitations and other phenomena.

• Node graph density
The node graph density (NGD) describes the node density of the word graph and is
defined as the total number of nodes contained in the word graph, divided by the
number of words contained in the utterance.

• Graph error rate
The most important quantity is the graph word error rate (GER). This quantity
reflects the word error rate with the smallest Levenshtein distance that is obtained
by an oracle-based search on the word graph. The graph word error rate measures
to what extend the spoken word sequence is included in the graph. It is also a
lower bound to the word error rate obtained in subsequent passes that employ word
graphs as intermediate representations.

In order to reduce the graph density, a modified forward-backward pruning is applied. In
contrast to the implementation described in [Sixtus & Ortmanns 99] we do not transform
the word-conditioned word graph into a time-conditioned word graph, but keep the origi-
nal structure. Doing this requires an additional sorting step of all edges but has a couple
of advantages that were not described in [Sixtus & Ortmanns 99]. The advantages only
become evident if the original structure is kept. According to [Sixtus & Ortmanns 99],
we first compute for each edge the score of the best path passing through this edge. As
a modification to the original algorithm, we then sort all edges with respect to their
forward-backward path scores in ascending order. This modification was proposed by
[Och 07]. Now, the pruning parameter is not a predefined score but the desired number
of edges to be kept, that is, the desired word graph density. For a specific word graph, the
desired word graph density defines the absolute number of edges to be kept. Everything
else is discarded. The modified forward-backward pruning algorithm has the following
properties and advantages:
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• Paths are preserved
Because each arc in the word graph is assigned the score of the best path passing
through this arc, the pruning step preserves paths. This is an important property
because it guarantees that each edge in the pruned graph is reachable and that there
is at least one path from the source to the sink going through that arc. An often used
alternative to forward-backward pruning is the so-called posterior pruning where
each arc is pruned if its posterior score falls below a certain threshold. In contrast
to forward-backward pruning, posterior pruning does not guarantee that each edge
in the pruned graph is reachable. In fact, it is possible that posterior pruning
actually prunes edges from the first best recognition result. This usually requires
complicated “repair” steps in which unreachable hypotheses must be eliminated and
where the first best sentence hypothesis needs to be reinserted into the graph. The
forward-backward pruning does not have these disadvantages. For time-conditioned
word graphs, this is irrelevant because those graphs have at most one node per
timeframe. Thus, unreachable edges do not occur.

• Computation is more efficient
In comparison with time-conditioned word graphs, the forward-backward pruning
can be computed much more efficiently on word-conditioned graphs. The reason
for this is that only the backward scores need to be computed. The forward
scores are already computed during the time-synchronous word-conditioned search.
The transformation from word-conditioned to time-conditioned graphs as described
in [Sixtus & Ortmanns 99] invalidates the forward scores because new transitions
between arcs are introduced. Therefore, the forward scores must be recomputed
after the transformation has been applied. This step is not necessary if word-
conditioned graphs are used.

• Language model scores are features of the edges
Time-conditioned word graphs cannot store the language model scores as part of
the edges because the language model contexts have been discarded. For word-
conditioned graphs, language model scores can be directly stored as features of the
edges. Thus, the time consuming language model lookups that are necessary for
time-conditioned graphs can be omitted.

• Pruning parameter is the desired Word Graph Density
The actual pruning parameter for the modified forward-backward pruning algorithm
is the desired graph density. This basically defines an upper bound for the density
of word graphs and, thus, is independent of fluctuations of the actual scores across
utterances and speaker changes.

The N -best lists are constructed using an A˚ search on word graphs. The algorithm
starts at the word graph’s sink and integrates partial sentence hypotheses into a priority
queue. As rest cost estimation, the accumulated forward score of each partial sentence
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hypothesis starting from the graph’s source up to the edge under consideration is used.
The implemented algorithm guarantees that the final N -best list only contains sentence
hypotheses that are pairwise different and that for two N -best list entries `i, `i`1 there is
no sentence hypothesis contained in the graph that

1. either has the same word sequence as `i but a better score

2. or has a different word sequence and a score that is between the scores of `i and
`i`1.

A plot showing the effect of the length of N -best lists on the N -best error rate is presented
for both corpora in Section 5.5.

5.3 Confidence Measures for Speech Recognition

Given a sequence of acoustic vectors xT
1 , statistical automatic speech recognition systems

employ Bayes’ decision rule in order to determine the most likely sequence of words ŵN
1

with respect to the underlying models:

ŵN
1 “ argmax

wN
1

 

prpwN
1 |xT

1 q
(

(5.1)

“ argmax
wN

1

"

prpwN
1 q ¨ prpxT

1 |wN
1 q

prpxT
1 q

*

with prpxT
1 q “

ÿ

vM
1 ,M

prpvM
1 q ¨ prpxT

1 |vM
1 q . (5.2)

Since prpxT
1 q does not depend on the word sequence wN

1 , it is neglected for practical
reasons because evaluating this expression requires a summation over an exponential
growing number of word sequences. As a result, the system’s decisions are based on joint
probabilities rather than on posterior probabilities [Young 94]. Although it is still possible
to determine the most likely word sequence given the language model and the acoustic
model, we are unable to measure the quality of the recognition. In other words: by giving
up the posterior probability, we lose a measure for the certainty of the recognition. If we
find a suitable approximation for the denominator expression, we will obtain a score for
the certainty of the recognition because the posterior probability can be interpreted as a
confidence measure in a natural manner.

The posterior probability in Equation 5.1 can be used as confidence measure for the
sentence hypothesis wN

1 . However, we are more interested in word-based confidence
measures rather than in sentence-based confidence measures. This can be easily obtained
if we sum up all posterior probabilities for a word hypothesis wn that contain the word
under consideration at the corresponding word position:

prpwn|xT
1 q “

ÿ

wn´1
1

ÿ

wN
n`1

prpwn´1
1 , wn, w

N
n`1|xT

1 q . (5.3)
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This quantity can be efficiently approximated on word graphs using a modified forward
backward algorithm [Valtchev & Odell` 97, Wessel & Macherey` 98]. Since we may also
employ other features as confidence measures, we define a confidence measure as a function
C that, given a vocabulary V and a d-dimensional feature space Fd, determines for each
word hypothesis wn,r at position n for the rth utterance whether wn,r has been recognized
correctly or wrongly:

C : V ˆ Fd
ÝÑ t0, 1u

Cpwn,r, f
d
n,rq ÞÝÑ

"

1 if wn,r was recognized correctly
0 otherwise.

(5.4)

5.3.1 Computation of Word Posterior Probabilities

According to Section 2.3.5, a word graph contains boundary times for its word hypotheses.
Let rw; τ, ts denote a hypothesis for word w with starting time τ and ending time t and let
rw; tsN1 “ rw1; t0 ` 1, t1s, . . . , rwN ; tN´1 ` 1, tN s be a sequence of word hypotheses, where
t0 “ 0 and tN “ T by definition. Further, define τn – tn´1 ` 1. Then we can rewrite
Equation 5.3 as follows:

pprw; τ, ts|xT
1 q “

ÿ

rw;tsN1

N
ÿ

n“1:
rwn;τn,tns“rw;τ,ts

pprw; tsN1 |xT
1 q . (5.5)

Instead of explicitly summing the posterior probabilities of all sentence hypotheses that
contain a particular word hypothesis, a forward-backward algorithm is used based on
dynamic programming. Let hm´1

1 be the m ´ 1 predecessor words of word w, referred to
as the history of word w. For ease of notation, the probability ppw|hj

i q is equated with
ppwq if j ă i, for example, ppw|h0

1q “ ppwq.

The forward probability Φphm´1
2 ; rw; τ, tsq is the probability that the last hypothesis of

a word hypothesis sequence is rw; τ, ts and that its m ´ 2 predecessor words are hm´1
2 :

Φphm´1
2 ; rw; τ, tsq “

ÿ

n, rw;tsn1 :

rwn;τn,tns“rw;τ,ts

"

δpwn´1
n´m`2, h

m´1
2 q ¨

n
ź

i“1

ppxti
ti´1`1|wiq ¨ ppwi|w

i´1
i´m`1q

*

.

(5.6)
This quantity can be efficiently computed using the following recursive formula:

Φphm´1
2 ; rw; τ, tsq “ ppxt

τ |wq ¨
ÿ

h1

ÿ

τ 1

Φτ´1phm´2
1 ; rhm´1; τ

1, τ ´ 1sq ¨ ppw|hm´1
1 q . (5.7)

Similarly, the backward probability Ψprw; τ, ts; fm´2
1 q is the probability that the first

52



5.3 Confidence Measures for Speech Recognition

hypothesis of a word hypothesis sequence is rw; τ, ts and that its future is fm´2
1 :

Ψprw; τ, ts; fm´2
1 q “

ÿ

N, rw;tsNn :

rwn;τn,tns“rw;τ,ts

"

δpwn`m´2
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¨

N
ź

j“n`maxt1,m´1u

ppwj|w
j´1
j´m`1q

*

.

(5.8)

This quantity can also be efficiently computed using the following recursive formula:

Ψprw; τ, ts; fm´2
1 q “ ppxt

τ |wq ¨
ÿ

fm´1

ÿ

t1

Ψt`1prf1; t ` 1, t1
s, fm´1

2 q ¨ ppfm´1|w, fm´2
1 q . (5.9)

With the definitions in Equations 5.5, 5.7, and 5.9 the posterior probability can now be
computed by summing over all histories and futures of the word hypothesis rw; τ, ts and by
incorporating the language model probabilities. Thus, we arrive at the following equation:

pprw; τ, ts|xT
1 q “

ÿ

hm´1
2

ÿ

fm´2
1

"

Φphm´1
2 ; rw; τ, tsq ¨ Ψprw; τ, ts; fm´2

1 q

ppxT
1 q ¨ ppxt

τ |wq
¨

¨

m´2
ź

n“1

ppfn|hm´1
n`1 , w, fn´1

1 q

*

.

(5.10)

5.3.2 Computation of Word-Based Confidence Measures

A word confidence rpp¨q is now computed by summing over all word hypothesis probabilities
pprw; τ, ts|xT

1 q that share the same word label and that have at least one common time
frame t:

CASR – rpprw; τ, ts|xT
1 q “ max

t̃:τďt̃ďt

ÿ

pτ 1,t1q:τ 1ďt̃ďt1

pprw; τ 1, t1
s|xT

1 q . (5.11)

The basic principle is depicted in Figure 5.2. The maximization over t̃ is motivated
by the following property: for each time frame t̃, all word hypothesis probabilities that
are contained in the word graph and that intersect this time frame must sum to unity.
For a word hypothesis rw; τ, ts of the recognized word sequence, the word graph may
contain several word hypotheses sharing the same word label but having slightly different
time boundaries. Thus, the probability mass is distributed over several edges. Although
word hypotheses sharing the same word label may indicate the correctness of the word
hypothesis under consideration, they belong to different paths and compete with each
other. To mitigate this effect, we maximize over the time frame t̃, for which the sum of
the word hypothesis probabilities with the same word label and approximately the same
time boundaries is maximal, and use this value as word confidence.
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5.3.3 Evaluating Confidence Measures

After computing the confidence score, each generated word hypothesis is tagged as either
correct or wrong, depending on whether its confidence exceeds a tagging threshold that
must be optimized on a development set beforehand. The performance of the ASR
confidence measure is evaluated using two different metrics:

• Confidence Error Rate
The confidence error rate (CER) is defined as the number of incorrectly assigned
tags divided by the total number of generated words in the recognized sentence. The
baseline CER is given by the number of substitutions and insertions, divided by the
number of generated words. The CER strongly depends on the tagging threshold.
Therefore, the tagging threshold is adjusted beforehand on a development corpus
distinct from the test set.

• Detection Error Tradeoff curve
The detection error tradeoff (DET) curve plots the false rejection rate versus the
false acceptance rate for different values of the tagging threshold. The false rejection
rate is defined as the number of correctly recognized words that have been tagged as
wrong, divided by the total number of correctly recognized words. It is also referred
to as type I error. The false acceptance rate, also referred to as type II error, is
calculated as the number of incorrect words that have been accepted, divided by
the total number of incorrectly recognized words.

∑

[w;τ,t]:τ≤t̃≤t

p([w; τ, t]|xT
1 ) = 1

t̃τ ′ τ t′ t
time

︸ ︷︷ ︸ ︸ ︷︷ ︸

incoming paths outgoing paths

w
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d
h
y
p
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h
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Figure 5.2: Principle of the word graph-based confidence computation. The word posterior
probabilities are computed within the framework of a forward backward algorithm with
the property that for each time frame t̃, all word hypothesis probabilities that intersect
this time frame must sum to one.
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5.3.4 Modifications to former Implementation

Although the computation of confidence measures on the basis of word graphs was already
introduced in [Wessel & Macherey` 98], the implementation used in this thesis differs
significantly from the former implementation described in [Macherey 98] and [Wessel 02].
Furthermore, the modifications used are more suitable for a realtime speech recognition
system. The differences are:

• Word-conditioned word graphs
The automatic speech recognition module performs an integrated word-conditioned
m-gram search where m depends on the complexity of the language model used.
This word dependency is carried over into the structure of the word graph. Each
node of a word graph is associated with a time frame and a language model history.
Thus, each time frame may contain multiple nodes that pairwise differ in their
language model histories. In contrast to this, the former implementation condensed
multiple nodes for one time frame into a single node leading to a time-conditioned
interpretation of the word graph. Thus, the final word graph allowed for more word
contexts than actually survived the search process. The new implementation only
contains those contexts that were originally hypothesized and survived the pruning
during the search process.

• Exact representation of the pruned search space
Caused by the word-conditioned graph structure, the new implementation guaran-
tees that a word graph is an exact representation of all word hypotheses that have
survived the pruning of the search space.

• Inherent elimination of unreachable hypotheses
The book keeping of word hypotheses is based on a technique called reference
counting, that is, edges, from which the final node cannot be reached, are eliminated
automatically during the search process. Thus, the time consuming removal of
unreachable hypotheses in a postprocessing step, which was necessary in the former
implementation, is omitted.

• Generic implementation
The graph structure is implemented using a graph container class. Because of
the language model histories stored in a graph’s nodes, there is only one generic
implementation necessary that covers all language models with arbitrary history
lengths.

5.4 Speaker Adaptation

In the following section, we will briefly summarize the fundamentals of feature-space
maximum likelihood linear regression and discuss how this adaptation technique can be
efficiently employed in a realtime speech recognition system.
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5.4.1 F-MLLR

Denote η a hidden Markov Model. Then the goal of the feature-space maximum likelihood
linear regression (F-MLLR) is to affinely transform the features of the test data such as
to maximize the likelihood of the hidden Markov Model η:

x̂t “ Axt ` b, A P IRDˆD, b P IRD (5.12)

pÂ, b̂q “ argmax
pA,bq

!

log prpX̂|ηq

)

, X̂ “ x̂1, . . . , x̂T . (5.13)

Integrating the affinely transformed acoustic features into the auxiliary function of the
EM algorithm leads to:
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1

prpX|ηq
¨
ÿ

Q

ppX, Q|ηq log ppX̂, Q|ηq (5.14)
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, (5.15)

where Ã “ rA|bs and x̃t “

„

xt

1



. Maximizing Q with respect to the affine transformation

Ã leads to the following sufficient statistics for the F-MLLR:
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D
ÿ

i“1

T
ÿ

t“1

γtpiq (5.16)
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D
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i“1

T
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i µix̃

J
t (5.17)

Gpjq
“

D
ÿ

i“1

T
ÿ

t“1

γtpiq

σ2
ij

x̃tx̃
J
t . (5.18)

For each row j, we have to solve

T prA´J
|0sqj “ ãjG

pjq
´ kj , (5.19)

which is a pD ` 1q dimensional vector equation. This leads to the following algorithm:
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Algorithm 1 F-MLLR Calculation

Input: posteriors γtpiq
features xt

Gaussians tµi, Σiu

Output: Ã “ rA|bs

Compute sufficient statistics T , K, and Gpiq

Invert Gpiq statistics for each dimension
Initialize Ã “ rIn|0s

repeat
Compute A´J and A˚J

for all dimensions d do
solve Equation 5.19

end for
until convergence

where A˚ is the adjoint matrix of A.

5.4.2 F-MLLR in Realtime Speech Recognition Systems

Since Equations 5.16 - 5.18 depend on the state posterior probabilities γtpiq, applying the
F-MLLR actually requires a two-pass recognition, that is, in the first pass the most likely
word sequence together with its alignment is determined. Using this data as input for
the F-MLLR algorithm, we can compute the affine transformation. After applying the
affine transformation matrix Â onto the feature vectors xT

1 resulting in the transformed
feature vectors x̂T

1 , we have to do a search in the transformed feature space in a second
pass. Of course, performing the time consuming acoustic search two times in a spoken
dialogue system that is bound to certain realtime constraints is not feasible. Therefore,
the following approximations can be applied.

Incremental F-MLLR

In general, a dialogue transaction of a turn-based dialogue system contains more than
one user utterance. Under the assumption that the speaker does not change during a
dialogue transaction we can apply an incremental F-MLLR as follows: after recognizing
the user’s first utterance, we compute the transformation matrix according to Algorithm 1.
However, instead of applying it on the first utterance, we shall use this transformation
matrix in order to transform the feature vectors obtained from the user’s second utterance.
The adaptation data collected from the first and second utterance is used to estimate a
transformation matrix for the third utterance, and so on. This incremental update of
the F-MLLR transformation matrix and its delayed application has the advantage that
there are no further computation costs involved because the otherwise expensive second
recognition is avoided. However, since the quality of the F-MLLR depends on the number
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of adaption data available for estimating the transformation matrix, this approximation
can lead to a suboptimal solution.

Restriction on Word Graphs

A refinement to the incremental F-MLLR is the F-MLLR restricted on word graphs.
Instead of performing a full acoustic search on the transformed feature vectors, the search
can be restricted to the hypotheses stored in a word graph that was obtained during the
first recognition pass. If the time boundaries of the word hypotheses are also kept, the
acoustic search is equivalent to an acoustic rescoring on word graphs. This significantly
reduces the time needed for the second recognition pass. Doing this, we can apply the
F-MLLR starting with the first user utterance. Note that we obtain the incremental
F-MLLR algorithm if we do not perform an acoustic rescoring.
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5.5 Results

For both the TelDir and the Taba task, the automatic speech recognition system
uses a time-synchronous Viterbi beam search algorithm based on the concept of word-
conditioned tree copies [Ney & Welling` 98]. The acoustic model is based on maximum
likelihood-trained Gaussian mixture models. We use 6 state hidden Markov models
(HMM) in Bakis topology modeling triphones where two contiguous states are identi-
cal. With a frame shift of 10ms, the average length of such a triphone is 60ms, which
approximately corresponds to the average length of a phoneme. A single globally pooled
diagonal covariance matrix is employed.

For the language model a class-based trigram model was integrated into the Viterbi
beam search. The estimation and smoothing method applied for training the language
model is absolute discounting with leaving one out. A summary of the models used is
given in Table 5.5.

Table 5.5: Summary of the models used for the TelDir and the Taba speech recognition
system. For an acoustic observation vector (feature vector), “cmp” refers to the number
of mel frequency cepstral coefficients (MFCC), “1st deriv” refers to the first derivativ
of these coefficients, and “2nd deriv” refers to the second derivativ of the first MFCC
component, which corresponds to the energy of the signal.

TelDir corpus Taba Corpus
dimension of feature vector
(cmp + 1st deriv + 2nd deriv)

12 + 12 + 1 = 25 12 + 12 + 1 = 25

frame shift [ms] 10 10
LDA window, dimension ˘1 frame, 75 ˆ 33 ˘1 frame, 75 ˆ 33
CART leafs + silence state 400 ` 1 800 ` 1
HMM 6 state Bakis, within-word 6 state Bakis, within-word

triphone models triphone models
Gaussian mixture models gender independent gender independent

19 779 densities 89 490 densities
1 pooled variance 1 pooled variance

Search Viterbi beam search Viterbi beam search
integrated class trigram integrated class trigram

Language model class-based trigram class-based trigram
absolute discounting absolute discounting
with leaving one out with leaving one out
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Figure 5.3: Word and graph error rates in course of realtime factors for the TelDir and
Taba development corpus. The measurement points for both tasks where obtained using
a Pentium IV processor with a clock rate of 2.8GHz and a first level cache size of 512KB.
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5.5.1 Realtime Speech Recognition

Because a spoken dialogue system must satisfy certain realtime constraints, we have
to adjust various search and pruning parameters for the automatic speech recognition
module, which may result in additional search errors.

To document the performance loss, Figure 5.3 depicts word error rates as well as graph
error rates in course of the realtime delay. The values for both tasks were obtained using
a Pentium IV, 2.8GHz processor with a first level cache of 512kByte. As shown in the
graphs, the performance loss for the TelDir task is around 0.4% in terms of word error
rate and 0.9% in terms of graph error rate if the realtime factor is in the range 1.1 -
2.0. For the Taba task, the performance falls by 0.6% in terms of word error rate and
1.1% in terms of graph error rate, respectively. We have adjusted the search and pruning
parameters such that a realtime factor of 1.1 is obtained on both tasks where the additional
0.1 delay is caused by a mean normalization step that uses an asymmetric window that is
shifted over the incoming audio data. The curves shown in Figure 5.3 already include the
generation of word graphs and the computation of confidence measures. Table 5.6 and
5.8 document recognition results under these settings.

5.5.2 Realtime Speaker Adaptation

The rows in Table 5.6 and Table 5.8 describe different strategies for collecting adaptation
data during a dialogue transaction. The “incremental F-MLLR” incrementally adds
adaptation data from a user’s utterances and applies the estimated transformation matrix
on subsequent utterances. The “incremental F-MLLR on word graphs” applies the affine
transformation within an acoustic rescoring step starting with the user’s first utterance.
The last row lists results for the 2-pass F-MLLR where we use all utterances for adaptation
that were input by a user during a dialogue transaction. This strategy is of course not
feasible for a spoken dialogue system and is listed here as a contrastive result. Because
an F-MLLR transformation is an unsupervised adaptation technique, it is not guaranteed
that the 2-pass F-MLLR described in the previous section always outperforms the iterative
variant.

An important point when applying an incremental F-MLLR is to use confidence mea-
sures in order to decide which user utterances shall be used for adaptation, once the
recognition step has finished. The motivation for this is that if the recognition result for
the first utterance already contains recognition errors, the transformed observation vectors
may trigger further errors in subsequent user utterances because they were adjusted to
wrong transcriptions during the estimation process. This effect is usually mitigated
in a two-pass recognition approach where all user utterances are used for adaptation
because on average, the correctly recognized utterances outweigh the wrongly recognized
utterances, given that the baseline word error rate is ! 50%. In an incremental approach,
the transformation matrix is affected by the previous estimation. Therefore, erroneous
recognitions in early utterances can have a much higher impact on the overall performance
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Table 5.6: Recognition and confidence measure results for the TelDir corpus. The F-
MLLR rows describe results using different strategies for collecting adaptation data during
a dialogue transaction.

corpus TelDir-Speech SER [%] WER [%] GER [%] CER [%] CER [%]
development baseline

baseline 38.5 13.7 6.2 11.9 10.3
with incr. F-MLLR 37.3 12.4 6.2 10.9 8.9
with incr. F-MLLR on WG 35.6 12.3 6.0 10.8 10.3
with 2-pass F-MLLR 34.3 12.2 5.9 10.6 8.5

corpus TelDir-Speech SER [%] WER [%] GER [%] CER [%] CER [%]
evaluation baseline

baseline 45.1 14.9 8.3 12.5 10.4
with incr. F-MLLR 42.5 13.6 7.5 11.2 9.4
with incr. F-MLLR on WG 41.2 13.5 7.2 11.1 9.5
with 2-pass F-MLLR 41.2 13.7 7.4 10.9 8.3

and sometimes may even underperform the baseline result. For the TelDir task, a
confidence value of 0.6 was chosen, that is, whenever a word hypothesis of the first best
sentence hypothesis falls below this threshold the word is discarded and not used for
adaptation. This parameter is corpus and performance-dependent and was optimized
on the development set beforehand. For the Taba task, using confidence measures in
adaptation did not yield better results. Thus, the threshold was set to 0.0.

In order to reduce the computation time, the incremental F-MLLR in combination with
acoustic rescoring on word graphs uses a cache for edges that share the same word index
and the same boundary times but occur in different language model contexts. However,
since this F-MLLR approach gave only a slight improvement in terms of word error rate
compared to the incremental F-MLLR, we chose the incremental F-MLLR without the
additional rescoring step and used this as baseline result for the following experiments.

5.5.3 Word Graphs and N -best Lists

Word graphs are constructed during beam search. The word graphs produced are an
exact representation of all hypotheses that remain valid at the end of the search process.
An edge in a word graph is called valid, if there is a path from the source to the sink
containing this edge. Table 5.7 and 5.9 present word graph statistics for the TelDir and
the Taba corpus.

After computing the confidence scores, a forward-backward pruning on the word graphs
is applied. This pruning step significantly reduces the word graph density. The reduced
word graphs are used in order to extract N -best lists using an A˚ search. Figure 5.4
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Table 5.7: Word graph and N -best list statistics for the TelDir corpus. The table
contains statistics before and after applying a forward-backward pruning.

corpus TelDir-Speech WER [%] GER [%] WGD NGD 100-best ER [%]
development

baseline 12.4 6.2 1218 262 6.2
with F/B pruning 12.4 6.2 301 101 6.3

corpus TelDir-Speech WER [%] GER [%] WGD NGD 100-best ER [%]
evaluation

baseline 13.6 7.4 1187 256 7.7
with F/B pruning 13.6 7.5 300 100 7.8

Table 5.8: Recognition and confidence measure results for the Taba corpus. The F-MLLR
rows describe results using different strategies for collecting adaptation data during a
dialogue transaction.

corpus Taba-Speech SER [%] WER [%] GER [%] CER [%] CER [%]
development baseline

baseline 20.7 13.0 7.4 11.2 9.2
with incr. F-MLLR 20.3 12.3 7.1 10.6 8.9
with incr. F-MLLR on WG 20.3 12.1 7.1 10.5 9.3
with 2-pass F-MLLR 19.4 11.8 7.0 10.1 8.5

corpus Taba-Speech SER [%] WER [%] GER [%] CER [%] CER [%]
evaluation baseline

baseline 19.2 12.8 7.6 11.0 9.2
with incr. F-MLLR 18.6 12.5 7.4 10.7 9.0
with incr. F-MLLR on WG 18.6 12.4 7.5 10.6 9.1
with 2-pass F-MLLR 17.7 12.1 7.4 10.3 8.5

shows the effect of the average N -best list length on the N -best error rate. Note that
by using a 1000-best list we can get very close to the graph error rate. This effect is not
caused by search errors. The plots in Figure 5.3 describe the search errors we obtain by
pruning more hypotheses due to realtime constraints. For both tasks, this is less than 1%
in terms of word error rate. However, the large difference between the first-best sentence
hypothesis and the oracle sentence hypothesis determined on the word graph indicates
that our baseline models are still to weak in order to find the correct word sequence.
Therefore, we will use additional knowledge sources in the next chapter and analyze their
influence on the word error rate.
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Table 5.9: Word graph and N -best list statistics for the Taba corpus. The table contains
statistics before and after applying a forward-backward pruning.

corpus Taba-Speech WER [%] GER [%] WGD NGD 100-best ER [%]
development

baseline 12.3 7.1 723 269 7.3
with F/B pruning 12.3 7.2 131 40 7.4

corpus Taba-Speech WER [%] GER [%] WGD NGD 100-best ER [%]
evaluation

baseline 12.5 7.4 730 276 7.5
with F/B pruning 12.5 7.4 131 41 7.5

The exceptionally high word and node graph densities for the TelDir corpus are
mainly caused by two reasons. First, the speech recognizer performs a word-conditioned
tree search, that is, many equally labeled edges occur multiple times within different
language model contexts. Second, the speech recognition vocabulary also contains entries
for non-speech effects like hesitations and noise. In contrast to the silence word, these
words are not penalized by forward transitions. Thus, the search space is parqueted
by small short non-speech words. After applying forward-backward pruning, most of
these edges are eliminated. In contrast to the TelDir pronunciation lexicon, the Taba
lexicon provides less non-speech models. Therefore, the initial edge and node densities
are much smaller. With the forward backward pruning the word and node graph densities
significantly decrease whereas the graph and N -best error rates deteriorate only slightly.

5.5.4 Confidence Measures

According to Section 5.3, the definition of confidence measures for speech recognition is
based on posterior probabilities. The posterior-based confidence measures are computed
before the forward-backward pruning is applied. As shown in Table 5.6 and 5.8, posterior-
based confidence measures perform very well, even after applying an F-MLLR. Rescaling
acoustic and language model scores is vital when computing posterior-based confidence
measures. For both tasks, the language model score was set to 1.0. The acoustic scaling
factor was set to 1

15
for the TelDir task and to 1

9
for the Taba task, respectively. Both

values have been optimized on the development sets beforehand. In order to classify
a word hypothesis to be correct or wrong, a task-specific threshold was used that was
optimized on the development set as well. The optimal thresholds for the evaluation sets
differ only slightly compared to the optimal thresholds adjusted on the development sets.
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Figure 5.4: Effect of the N -best list size on the N -best error rate for the TelDir and
Taba evaluation corpus. The N -best lists were extracted from the word graphs described
in Tables 5.7 and 5.9. The horizontal dashed lines denote the lower boundaries defined
by the corresponding graph error rates.
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Figure 5.5: Detection error tradeoff curve for the full TelDir and Taba test corpus. The
points of intersection with the diagonal line define the equal error rate, that is, the point
where both error types are equal.

5.6 Summary

In this chapter, we have defined the corpora used and described an algorithm for confidence
measures based on word-conditioned word graphs. The word graphs were pruned using a
modified forward-backward pruning algorithm. The modified forward-backward algorithm
has several useful properties that make it well suited for realtime recognition tasks.
Furthermore, we presented and analyzed different strategies for F-MLLR adaptation that
are suitable for realtime speech recognition systems. We compared their performance on
the Taba and the TelDir task and provided recognition results together wtih realtime
analyses. We reported word graph and N -best list results that we shall use as baseline
results for some of the investigations presented in the next chapters.
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Chapter 6

Natural Language Understanding

In this chapter, we compare two approaches to natural language understanding that
are based on statistical machine translation.1 The first approach employs the source-
channel paradigm whereas the other uses the maximum entropy framework. Starting
with an annotated corpus, we describe the problem of natural language understanding as
a translation from a source sentence to a formal language target sentence. We analyze
the quality of different alignment models and feature functions and show that the direct
maximum entropy approach outperforms the source channel-based method. Furthermore,
we investigate how both methods perform if the input sentences contain speech recognition
errors. Finally, we investigate a new approach for combining automatic speech recognition
with natural language understanding using the minimum error criterion.

6.1 A General View of Natural Language Understanding

The objective of natural language understanding (NLU) is to extract all the information
from a natural language-based input that is relevant to a specific task. Often, stochastic
grammars are used for this task requiring handcrafted rules, that is, dependencies between
words and concepts must be modeled explicitly. Although partial parsing techniques are
well suited to parse ungrammatical sentences, the sole usage of rule-based methods can
turn out to be inflexible. Especially, when extending the application scenario or the
application domain itself, many rules must be rewritten by hand to adjust them to new
phrases and keywords, thus, leading to the problem of reusability. Therefore, the question
is how this process can be simplified and whether the complex dependencies between
words and concepts can be learned automatically by just providing pairs of sentences and
concept strings.

To achieve this goal, we will take a closer look at the natural language understanding
problem. Basically, natural language understanding can be viewed as a translation from
a source language to a formal target language, that is, given a natural language source
sentence wN

1 “ w1, . . . , wN we choose the formal language target sentence ĉM
1 “ ĉ1, . . . , ĉM

among the space of all possible translations that has the highest probability, leading to

1 A part of the work presented here was done in cooperation with Franz Josef Och and Oliver Bender.
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the following decision rule:

ĉM
1 “ argmax

cM
1

 

prpcM
1 |wN

1 q
(

(6.1)

“ argmax
cM
1

"

prpcM
1 q ¨ prpwN

1 |cM
1 q

prpwN
1 q

*

“ argmax
cM
1

 

prpcM
1 q ¨ prpwN

1 |cM
1 q

(

. (6.2)

Here, the argmax operation denotes the search problem, that is, the generation of the
most likely sequence of formal semantic concepts in the target language. Using Bayes’
theorem, Equation 6.1 can be rewritten to Equation 6.2, where the denominator can
be neglected. Equations 6.1 and 6.2 induce two different approaches: either we can
directly optimize the posterior probability prpcM

1 |wN
1 q using, for example, the maximum

entropy framework or we can employ the classical source-channel approach using Bayes’
theorem and decompose the posterior probability into two probability distributions: the
translation probability prpwN

1 |cM
1 q and the concept language probability prpcM

1 q. Once we
have substituted these probability distributions with suitable model distributions, we can
learn the model parameters with supervised learning techniques. Before we describe the
methods in more detail we will first discuss the concept language used and review some
basic ideas from machine translation, such as alignment models, that we employ for both
approaches in order to automatically align words to concepts.

6.2 Concept Language

A concept c is defined as the smallest unit of meaning that is relevant to a specific task
[Levin & Pieraccini 95]. Concept representations are sometimes used in a hierarchical
manner [Miller & Bobrow` 94b], that is, concepts can be nested and subsume other
concepts. Here, we use non-hierarchical concepts, which we call flat concepts. By using
flat concepts as formal target language, the annotation of the input sentences can easily
be provided because for a human annotator no structural knowledge about concepts and
their interplay is necessary. Additionally, only a small set of sentence pairs is needed for
training in order to obtain useful results. Although not a strict requirement, we assume
that the concepts occur in the same order as given by the source text. An example
is provided in Figure 6.1. The links between the sentences indicate to which concepts
the words are aligned. Note that these alignments between words and concepts are not
given explicitly but must be determined automatically from the training data, which is
provided as pairs of source sentences and concept strings. Each concept is associated with
a (possibly empty) set of attributes and each attribute is associated with a more or less
complex rule describing how to extract the value from the words aligned to the concept.
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(a)

@origin @destination@want_question @going

(b)

@origin @destination@want_question @going

{} {Koeln} {Muenchen} {}

{} {???} {Muenchen} {}

ich würde gerne

ich würde gerne

von Köln

von Köln

nach München

nach München

fahren

fahren

Figure 6.1: Example of a correctly and wrongly aligned word sequence for the utterance
“I would like to go from Cologne to Munich”. For each concept, its attribute values are
enclosed in braces. In (a), the phrase ‘from Cologne’ is correctly aligned to the concept
@origin. In (b), the city name ‘Cologne’ is wrongly aligned to the concept @destination.
If each concept together with its associated words is considered separately, it will be
impossible to extract the attribute value for the concept @origin in case (b).

6.3 Alignment Models and Local Context Dependencies

As depicted in Figure 6.1, the meaning of a word and thus its alignment to the correct con-
cept depends on its context. For example, the allocation of the city name Köln (Cologne)
to the concept @origin is only apparent when looking at the preceding preposition von
(from) in the source sentence. Although the sequence of concepts is identical in both
cases, only case (a) allows for a correct extraction of the attribute values. If each concept
together with its aligned words is considered independently from all the other concepts,
it will be impossible to extract the correct attribute value from the concept @origin

in case (b). Therefore, finding correct alignments automatically is essential for both
approaches. In the following, we will briefly review different alignment models that are
used in machine translation and that we will use for either approach. A consequence
of words and concepts having the same order is that the generated alignments will be
monotonic. Also, we enforce that every word is aligned to exactly one concept. This might
be problematic if the source language contains compounds that could be aligned to more
than one concept. For example, the German compound “Privatadresse (home address)”
as opposed to employer’s address could be aligned to two target concepts @private and
@address to distinguish it from “Büroadresse (office address)”, which could be mapped
to @office and @address. To enforce the one-word-to-one-concept constraint, we can
design the target language appropriately and shift the distinction between home and
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office address into the attributes of the @address concept. Words not contributing to the
meaning of a sentence are aligned to filler concepts.

For the introduction of the alignment models, we switch our notation and identify a
word sequence wN

1 with fJ
1 and a sequence of concepts cM

1 with eI
1 in order to use the same

notation that is common in machine translation. If we rewrite the translation probability
prpfJ

1 |eI
1q by introducing a hidden alignment aJ

1 “ a1, . . . , aj, . . . , aJ , with aj P t1, . . . , Iu,
we obtain the following identity:

prpfJ
1 |eI

1q “
ÿ

aJ
1

prpfJ
1 , aJ

1 |eI
1q (6.3)

“ prpJ |eI
1q ¨

ÿ

aJ
1

J
ź

j“1

prpfj, aj|f
j´1
1 , aj´1

1 , eI
1q (6.4)

“ prpJ |eI
1q

looomooon

length probability

¨
ÿ

aJ
1

J
ź

j“1

prpaj|a
j´1
1 , f j´1

1 , eI
1q

looooooooooomooooooooooon

alignment probability

¨ prpfj|f
j´1
1 , aj

1, e
I
1q

looooooooomooooooooon

lexicon probability

. (6.5)

The different translation models result from different decompositions of Equation 6.5. In
the following, we will briefly introduce these translation models, which were proposed
in [Brown & Della Pietra` 93] and [Vogel & Ney` 96], and are the basis for extracting
word-concept phrase pairs.

Model 1

By replacing the dependency in Equation 6.5 from aj´1
1 to j, we obtain a zero-order hidden

Markov model. Assuming a uniform alignment probability ppi|j, Iq “ 1
I
, we obtain the

much simpler model 1, which we use as starting point:

prpfJ
1 |eI

1q “
ppJ |Iq

IJ
¨
ÿ

aJ
1

J
ź

j“1

“

ppfj|eaj
q
‰

. (6.6)

Due to the uniform alignment probability, model 1 cannot take into account where words
appear in both strings. This very simple model has the important property that its
training criterion is a convex function, which has only one maximum. Therefore, we can
find the global maximum from any non-zero starting point.

HMM Alignment

If we assume a first-order dependence for the alignment aj in Equation 6.5, restrict the
dependent quantities of the translation probability only to aj, and assume a simple length
model prpJ |eI

1q “ ppJ |Iq, we arrive at the HMM alignment [Vogel & Ney` 96]:

prpfJ
1 |eI

1q “ ppJ |Iq ¨
ÿ

aJ
1

J
ź

j“1

“

ppaj|aj´1, Iq ¨ ppfj|eaj
q
‰

. (6.7)
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As starting point, we use the solution to model 1. In this thesis, the HMM alignment is
used instead of model 2 proposed by [Brown & Della Pietra` 93].

Model 3, Model 4, and Model 5

Since a detailed description of models 3-5 would go beyond the scope of this thesis we
only sketch some basic ideas. For further details, see [Brown & Della Pietra` 93]. In
model 3 and 4, fertilities of target words are introduced. The fertility φi of a target word
in position i is the number of source words it can generate,

φi “

J
ÿ

j“1

δpi, ajq . (6.8)

Here, δp¨, ¨q denotes the Kronecker-function. Similar to model 2, model 3 is a zero-order
alignment model including additional fertility parameters. A problem that occurs in both
model 3 and 4 is their deficiency, that is, the same position can be chosen twice in the
source string. Also, a position before the first or beyond the last position may be chosen in
model 4. The deficiency problem is solved in model 5 by keeping track of vacant positions
in the source string. Models 3-5 are alignment models with increasing complexity. Their
exact definitions can be found in [Brown & Della Pietra` 93] but are not important for
the basic ideas presented in this chapter. Starting from model 1, the sequential application
of the more complex alignment models together with a search process finally yields the
Viterbi alignment aJ

1 between words and concepts.

6.4 Natural Language Understanding Using the
Source-Channel Paradigm

According to Equation 6.2, the source-channel approach decomposes the posterior prob-
ability prpcM

1 |wN
1 q into two different probability distributions: the translation probability

prpwN
1 |cM

1 q and the language probability prpcM
1 q. Both probability distributions are

combined during a search process, which leads to the architecture depicted in Figure 6.2.
For the source channel-based approach, we use a phrase-based translation system based
on so-called alignment templates [Och & Tillmann` 99]. Alignment templates have been
proven to be very effective in statistical machine translation because they allow many-to-
many alignments between source and target words.

Due to aj P t1, . . . , Iu, the basic alignment models introduced in the previous section
can capture only 1-to-many alignments. A phrase-based translation system goes one step
further and allows many-to-many alignments by providing a two-level alignment: a phrase
level alignment and a within-phrase many-to-many word-level alignment. The key idea
for obtaining many-to-many word alignments is to symmetrize the training directions. By
performing a training in both translation directions (from source to target and from target
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• Lexicon Model
• Alignment Model

Figure 6.2: Architecture of the natural language understanding component using a
statistical machine translation approach based on the source-channel paradigm.

to source), we obtain two Viterbi alignments aJ
1 and bI

1 for each sentence pair, which can be
merged. Although 1-to-many alignments are sufficient because of the restriction that each
word must align to exactly one concept, alignments obtained through symmetrization and
merging show a higher precision with respect to the alignment quality [Och & Ney 03].
Let the source and target sentence be segmented into K word-groups describing the
phrases:

eI
1 “ reK

1 , rek “ eik´1`1, . . . , eik , k “ 1, . . . , K

fJ
1 “ rfK

1 , rfk “ fjk´1`1, . . . , fjk
, k “ 1, . . . , K .

By decomposing the translation probability with the above-mentioned definitions, we
arrive at the following first-order decomposition:

prpfJ
1 |eI

1q “
ÿ

raK
1 ,K

K
ź

k“1

pprak|rak´1q ¨ pp rfk|re
rak

q . (6.9)

With z “ pre 1, rf 1,ra 1q denoting an alignment template, we obtain pp rfk|re
rak

q “
ř

z ppz|re
rak

q ¨

pp rfk|z, re
rak

q. The phrase translation probability pp rfk|z, re
rak

q is then decomposed according
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@destination

@origin

@train determination

@need question

@hello

@yes

ja guten
T
ag

ich
bräuchte
eine
V
erbindung

von
K

öln
nach
M

ünchen

Figure 6.3: Phrase-based translation with alignment templates for the utterance “yes,
hello, I need a connection from Cologne to Munich”. The words on the x-axis denote
the source words, the words on the y-axis are the concepts. The rectangles mark phrase
boundaries, the solid boxes within the rectangles describe word-to-concept alignments.

to the following equation:

pp rfk|pre 1, rf 1,ra 1
q, re

rak
q “ δpre

rak
, re 1

q ¨ δp rfk, rf
1
q ¨

jk
ź

j“jk´1`1

ppfj|ra
1, re

rak
q . (6.10)

The Kronecker functions δp¨, ¨q ensure that only those alignment templates z are chosen

that are consistent with rfk and re
rak

. The probability ppfj|ra
1, req can be decomposed in the

following way:

ppfj|ra
1, req “

I
ÿ

i“1

ppi|j;ra 1
q ¨ ppfj|eiq (6.11)

ppi|j;ra 1
q “

ra 1
pi, jq

ÿ

i 1

ra 1
pi 1, jq

, (6.12)

ra 1
pi, jq –

"

1 if pi, jq are linked in the merged alignment
0 otherwise.

(6.13)

The merged alignment in Equation 6.13 is computed from the alignment sets A “

tpaj, jq|aj ą 0u and B “ tpi, biq|bi ą 0u that are combined into one alignment matrix
A by applying the intersection of both alignments. This intersection is afterwards refined
by adding further alignment links that satisfy certain neighborhood constraints. Details
can be found in [Och & Ney 03]. Doing this, we can explicitly model many-to-many
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alignments. Figure 6.3 depicts an example of a phrase-based translation for the input
sentence “yes, hello, I need a connection from Cologne to Munich”. The rectangles
describe possible alignment templates. The solid boxes within the rectangles mark word-
to-word alignments.

6.4.1 Training

In machine translation, source words that have no correspondence on the target side are
mapped onto the empty word. In contrast to translations between natural languages, we
do not allow empty words, that is, each word of the source sentence must be aligned to
a concept of the target sentence since words that do not contribute to the meaning of a
sentence are explicitly modeled by a filler concept. The same holds if we exchange source
and target language. This results in the following training procedure:

1. The fertility for the empty word is explicitly set to 0.

2. We compute the Viterbi alignment for each sentence of the training corpus using
14H4344454 as sequence of alignment models2, that is, we first apply 4 iterations
of model 1 training and continue with 4 iterations of HMM alignment and so on.
Finally, we stop after 4 iterations of model 5. This is done for both directions, source
to target and target to source. For computing the alignments we use the publicly
available Giza++ toolkit [Och & Ney 03].

3. We compute the alignment matrices using intersections with refinements as combi-
nation method.

Further details concerning the training of alignment templates can be found in [Och 02a].

6.4.2 Search

According to Equation 6.2, both probability distributions are combined during a search
process, which leads to the architecture depicted in Figure 6.2. If we plug in the phrase-
based translation model together with a standard left-to-right trigram language model
into the source-channel approach, we obtain the following search criterion in maximum
approximation, which is used in combination with beam search:

2 This sequence of alignment models turned out to be optimal for Taba. TelDir uses a slightly different
sequence (see Section 6.9 for details).
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êI
1 “ argmax
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6.5 Natural Language Understanding Using Maximum
Entropy

Alternatively to the source-channel approach, we can directly model the posterior prob-
ability prpcM

1 |wN
1 q in Equation 6.1. A well-founded framework for doing this is maximum

entropy (ME). This framework allows for integrating information from many heteroge-
neous information sources for classification. The data for a classification problem is
described as a number of problem-specific features hl, l “ 1, . . . , L. Each feature hl

corresponds to a constraint of the model and is associated with a model parameter
λl. Among all possible models that satisfy these constraints, the model with maximum
entropy is computed during the training phase [Berger 97], that is, the resulting model
is consistent with the features observed on the training data, but otherwise makes the
fewest possible assumptions about the distributions. Within this framework, the posterior
probability can be modeled as follows:

prpcM
1 |wN

1 q “ pλL
1

pcM
1 |wN

1 q “

exp

„ L
ÿ

l“1

λlhlpc
M
1 , wN

1 q



ÿ

c1M
1

exp

„ L
ÿ

l“1

λlhlpc
1M
1 , wN

1 q



. (6.16)

The architecture of the ME approach is depicted in Figure 6.4. The feature functions in
Equation 6.16 depend on full sentences. Similar to [Papineni & Roukos` 97], we could
generate a set of candidate translations and apply the ME framework on top of this
candidate set, so that the λl parameters can be estimated such that we obtain better
translations. This step would require a separate decoder to generate the candidate
translations, which we want to avoid. If we can formulate the NLU task directly within
the ME framework we will not depend on an additional classifier generating lists of
candidate translations, but would define feature functions on the basis of words and
phrases and apply them directly on the source sentences. Furthermore, we do not just
want to combine the knowledge sources from the previous section in a log linear way,
but also want to overcome some shortcomings of the alignment templates approach. A
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Figure 6.4: Architecture of the natural language understanding component using a
statistical machine translation approach based on the maximum entropy framework.

shortcoming of the alignment templates approach is that each word can be used in at
most one template. Overlapping templates are not allowed due to the segmentation
into K word groups. For the ME approach, we still want to assign each word to one
concept, but we also want to use the context of each word in a more flexible way such
that each word can be used in more than one feature function. To solve this problem
in the ME approach, we proceed as follows. We slightly modify the NLU task such
that source and target sentence are of the same length (N “ M), yielding a one-to-
one correspondence between words and concepts.3 As discussed in Section 6.3, mapping
compounds to concepts is not a problem. A case that occurs more frequently is that
several contiguous words are mapped onto a single concept. Therefore, we distinguish
whether a word belongs to an initial or a non-initial concept. This modeling was explicitly
required in shallow parsing tasks [Tjong Kim Sang & Buchholz 00]. In the context of NLU
it was introduced in [Bender & Macherey` 03]. With these changes, our classification
model becomes very similar to maximum entropy Markov models (MEMMs), which are

3 Because a concept can cover multiple words, this will turn the notion of a concept into a fractional
concept that we call a concept tag. Thus, a consecutive sequence of similar concept tags then forms
a concept. For ease of terminology we will continue to speak of concepts rather than of tags.

76



6.5 Natural Language Understanding Using Maximum Entropy

i
n
i
n
i
n
i
n
i
n
i
n

@destination

@origin

@train determination

@need question

@hello

@yes

ja guten
T
ag

ich
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Figure 6.5: Example of a sentence-to-concept mapping for the utterance “yes, hello, I
need a connection from Cologne to Munich” using maximum entropy. Each concept
starts with an initial concept marked by ‘i’ and optionally continues with a non-initial
concept denoted by ‘n’.

often used in information extraction tasks [McCallum & Freitag` 00]. The difference to a
standard information extraction problem is that for the NLU task described in this thesis,
we do not know the correct alignment between words and concepts during training, that
is, word and concept sequences have different lengths. Thus, MEMMs are not directly
applicable here. We solve this problem by first computing the Viterbi alignment between
words and concepts on our training data and then by keeping the alignment fixed for all
subsequent training steps. Figure 6.5 depicts a one-to-one mapping applied to a sentence
concept string pair from the German Taba corpus. We assume that the decisions only
depend on a window wn`2

n´2 “ wn´2, . . . , wn`2 around word wn and on the predecessor
concept. Thus, we can factorize the posterior probability of Equation 6.1 and obtain the
following first-order model:

prpcN
1 |wN

1 q “

N
ź

n“1

prpcn|cn´1
1 , wN

1 q (6.17)

“

N
ź

n“1

pλL
1

pcn|cn´1, w
n`2
n´2q . (6.18)

Because of the distinction between initial and non-initial concepts, we must ensure that
a non-initial concept only follows its corresponding initial one, which can be guaranteed
by appropriate transition features.
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6.5.1 Feature Functions

In the following, we describe a set of binary valued feature functions that are used for
text-based NLU. Elements d, dk P D “ t´2, . . . , 2u refer to positions in the source string.
We shall introduce additional feature functions when we apply the ME framework on
speech-based inputs.

Lexical Features

The lexical feature hw,d,c employs lexical information. The parameter d allows for taking
context words into account. Formally, the feature is defined as follows:

hw,d,cpc
n
n´1, w

n`2
n´2q “ δpwn`d, wq ¨ δpcn, cq d P t´2, ..., 2u . (6.19)

It will only fire if the word wn`d matches w and if the prediction for the current concept
cn is equal to c. Here, δp¨, ¨q denotes the Kronecker-function.

Prefix and Suffix Features

In case that a test corpus contains words that were not observed in the training corpus
(unknown words), the necessity for vocabulary independent features arises. To achieve
this, we generalize the words by looking at their prefixes or suffixes. Let wn “ αβ be a
decomposition of word wn such that α is a prefix of wn and β is its suffix. If the prefix
(suffix) of wn is equal to a given prefix (suffix), these features will fire:

hα,cpc
n
n´1, w

n`2
n´2q “

"

1 if Dα, β : wn “ αβ ^ α “ α ^ cn “ c
0 otherwise.

(6.20)

hβ,cpc
n
n´1, w

n`2
n´2q “

"

1 if Dα, β : wn “ αβ ^ β “ β ^ cn “ c
0 otherwise.

(6.21)

Capitalization Features

A capitalization feature will fire if wn starts with a capitalized letter, has an internal
capital letter, or is all capitalized:

hcap,cpc
n
n´1, w

n`2
n´2q “

"

1 if wn starts with a capital letter ^ cn “ c
0 otherwise.

(6.22)

hint,cpc
n
n´1, w

n`2
n´2q “

"

1 if wn has an internal capital letter ^ cn “ c
0 otherwise.

(6.23)

hall,cpc
n
n´1, w

n`2
n´2q “

"

1 if wn is all capitalized ^ cn “ c
0 otherwise.

(6.24)

Capitalization features can be used to detect new proper names that were not observed
during training.
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Transition Features

Transition features model the dependence on the predecessor concept:

hc1,0,cpc
n
n´1, w

n`2
n´2q “ δpcn´1, c

1
q ¨ δpcn, cq . (6.25)

This feature will fire if the prediction cn of the current class is equal to c and the
predecessor concept cn´1 is equal to c1.

Prior Features

The single concept priors are incorporated by prior features. The prior feature hc describes
the prior knowledge of the concept c on the training corpus and is the concept’s unigram
count:

hcpc
n
n´1, w

n`2
n´2q “ δpcn, cq . (6.26)

Compound Features

The feature functions defined so far produce only features that refer to single words or
concepts. To enable word phrases and word-concept combinations, we introduce the
following compound features:

htzK
1 ,dK

1 u,c pcn
n´1, w

n`2
n´2q “

K
ź

k“1

hzk,dk,c pcn
n´1, w

n`2
n´2q

zk P tw, c1
u , dk P t´2, ..., 2u ,

(6.27)

where K defines the length of a compound feature. For zk “ w the compound feature is
constructed of lexical features. For zk “ c1 it corresponds to multiple transition features
with the additional constraint that dk “ 0 so that it matches Equation 6.25.

6.5.2 Training

The objective function of maximum entropy is a convex function. The convexity of the
objective function prohibits the incorporation of hidden variables. Thus, it is not possible
to introduce the alignment as a hidden variable as we did in Section 6.4. Therefore, we
will determine the alignment beforehand and keep it fixed during training. For training,
we consider the set R of aligned training sentences to form a single long sentence. As
training criterion, we use the maximum class posterior probability criterion:

λ̂L
1 “ argmax

λL
1

#

R
ÿ

r“1

Nr
ÿ

n“1

log pλL
1

pcn|cn´1, w
n`2
n´2q

+

. (6.28)

This corresponds to maximizing the likelihood of the ME model. The direct optimiza-
tion of the posterior probability in Bayes’ decision rule is referred to as discriminative
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training since we directly discriminate the numerator expression modeling the correct
class against the denominator expression modeling all competitive classes including the
correct one. Thus, we directly take into account the overlap between the probability
distributions, which is the main cause for classification errors. Since the optimization
criterion is convex, there is only a single optimum and no convergence problems occur.
To train the model parameters λL

1 we use the generalized iterative scaling (GIS) algorithm
[Darroch & Ratcliff 72].

Models trained within the maximum entropy framework tend to overfit on training data.
To avoid overfitting, [Chen & Rosenfeld 99] have suggested a smoothing method where
a Gaussian prior on the parameters is applied. Instead of maximizing the probability of
the training data, we now maximize the probability of the training data times the prior
probability of the model parameters:

λ̂L
1 “ argmax

λL
1

#

log ppλL
1 q `

R
ÿ

r“1

Nr
ÿ

n“1

log pλL
1

pcn|cn´1, w
n`2
n´2q

+

, (6.29)

where

ppλL
1 q “

L
ź

l“1

1
?

2πσ
exp

„

´
λ2

l

2σ2



(6.30)

with the standard deviation σ as the smoothing parameter.

6.5.3 Search

For decoding a sequence of words wN
1 , we perform a breadth-first search where all hypothe-

ses are expanded position-synchronously, that is, we start with expanding hypotheses for
word w1 at position 1, then continue with hypotheses for word w2 at position 2, and
so on. To solve the search problem in maximum approximation (Viterbi search) we
define the auxiliary quantity Qmaxpn, cq as the maximal probability of the best partial
path covering positions 1, . . . , n and ending in concept c [Bender 02]. This leads to the
following recursive equations, which are solved using dynamic programming

Qmaxp0, $q “ 1 (6.31)

Qmaxpn, cq “ max
c1

!

Qmaxpn ´ 1, c1
q ¨ pλM

1
pc|c1, wn`2

n´2q

)

. (6.32)

Here, $ denotes the sentence start symbol. If no pruning is applied, the Viterbi search
is guaranteed to find the most likely sequence of concepts with respect to the underlying
models [Borthwick & Sterling` 98].
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6.6 Search Variants and Implementation

In Section 6.5, we have defined NLU as a tagging problem, that is, we assign each word
to a concept tag. With the Markov model assumption from Equation 6.18 we can look
at the sequence of concept tags as a Markov chain (Markov model tagging). Here, the
tags correspond to the states of the Markov model. Although, we have determined the
training tag sequence in an unsupervised manner by using different alignment models, we
keep the tag sequence fixed during training. Therefore, the states of the Markov model
are visible during training. For decoding, we can keep this perspective and assign each
word a tag. Thus, we have a Markov model in decoding where the sequence of states is
not hidden. Since we a more interested in the sequence of concepts rather than a sequence
of concept tags, we obtain the concepts by reducing the tag sequence to its initial start
tags, which is done in a post-processing step, and by aligning each word that was tagged
with the corresponding continue tag to the start tag.

Alternatively, we can organize the search such that the output of the decoder is directly
a sequence of concepts. This can be achieved by using a hidden Markov model decoder
where the tag sequence remains hidden. Each concept is then modeled by a Markov
automaton consisting of two states (see Appendix B.3). For both decoders, the Viterbi
algorithm is used in order to find the most probable sequence.

Because the concept language consists of only 22 concepts for the TelDir corpus and
27 concepts for the Taba corpus respectively we could basically perform a full search in
order to find the global optimum.4 For offline experiments this is acceptable. However,
due to realtime constraints we have to constrain the search. Note that we do not perform
natural language understanding for only the first best recognition result but for a full
N -best list when we combine speech recognition and natural language understanding (see
Section 6.9.6). Thus, the actual time complexity plays an important role. The search and
pruning parameters can be adjusted such that we do not encounter any search errors on
the test sets while avoiding to perform a full search, which leads to a significant reduction
in decoding time.

From an implementation point of view, there is not much difference between a de-
coder for speech recognition and a decoder for natural language understanding. In
fact, both decoders are m ´ 1th order decoders, that is, they take into account the
decision of m ´ 1 predecessor words or concepts. The set of flat concepts used for
natural language understanding defines a dictionary similar to a pronunciation dictionary
used in speech recognition. Here, each concept is composed of initial and continue
tags, which corresponds to a sequence of phonemes in a pronunciation dictionary. The
language models used for both decoders are m-gram models. The scorer changes from
a Gaussian mixture model to an exponential model. Because the above listed items are
all knowledge sources provided to the decoder in some parameterized form, this means

4 Due to initial and continue tags this means 43 tags for TelDir and 53 tags for Taba in the maximum
entropy approach. Here, the filler concept is represented by only one tag for both tasks.
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that the decoder for speech recognition can be reused for tagging, which significantly
simplifies software development. For the implementations done for this thesis, the speech
recognition module and the language understanding module inherit a templatized tree
search class where knowledge sources like dictionaries or language models are provided
as templates and, thus, can be easily replaced. As a side effect, the natural language
understanding component inherits all methods, such as pruning techniques, extraction of
graphs and N -best lists, computation of confidence measures, and so on.

6.7 Confidence Measures for Natural Language
Understanding

In this section, we introduce confidence measures for natural language understanding
that shall provide a score for the reliability of each concept being produced by the
NLU module. Confidence measures for natural language understanding can be defined
in a similar way as confidence measures for speech recognition. The concept posterior
probability pprc; ν, ns|wN

1 q of a concept c with starting position ν and ending position
n, given the sequence of input words wN

1 , can directly be interpreted as a confidence
measure.5 According to Equation 6.18, the maximum entropy framework assigns posterior
probabilities to concept tags, which we could use as confidence measure. However, this
would condition the posterior probability of a concept tag to only a small window of
words. Furthermore, we are more interested in the confidence of concepts rather than
individual concept tags. We could circumvent this by computing the average posterior
probability of all contiguous concept tags that form a single concept and interpret this
value as a confidence score, but for the cost of losing the normalization property.

A more suitable approach is to use a hidden Markov model decoder in order to produce
concept graphs on which we can then apply the same techniques described in Section 5.3
for speech recognition tasks. Denote rc; nsM1 “ rc1; n0 ` 1, n1s, . . . , rcM ; nM´1 ` 1, nM s

a sequence of concept hypotheses where n0 “ 0 and nM “ M . Further, define νm –

nm´1 ` 1. Then we define the posterior probability of a concept c with starting and
ending position pν, nq as follows:

pprc; ν, ns|wN
1 q “

ÿ

rc;nsM1

M
ÿ

m“1:
rc;νm,nms“rc;ν,ns

pprc; ns
M
1 |wN

1 q . (6.33)

Likewise to Section 5.3, this quantity can be efficiently computed using a forward-backward
algorithm. By relaxing start and end position of a concept, we arrive at the final definition
for the concept-based confidence measure:

CNLU – rpprc; ν, ns|wN
1 q “ max

ñ:νďñďn

ÿ

pν1,n1q:ν1ďñďn1

pprc; ν 1, n1
s|wN

1 q . (6.34)

5 For the case of concept tags, ν is equal to n.
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The reason for relaxing start and end positions is that a concept may occur in slightly
different positions. Another way to account for this when calculating concept posterior
probabilities is to determine the Levenshtein alignment between the sentence cM

1 under
consideration and all other concept sentences [Macherey & Bender` 03]. In the context
of machine translation, this approach was investigated in [Ueffing 06]. The summation
is then performed over all sentences containing concept c in position m or in a position
Levenshtein-aligned to m. Denote LpcM

1 , c̃M̃
1 q the Levenshtein-alignment between sen-

tences cM
1 and c̃M̃

1 , and LmpcM
1 , c̃M̃

1 q that of concept c in position m in cM
1 . Then, the

concept posterior probability of concept c occurring in a position Levenshtein-aligned to
m is given by

pm,Levpc|wN
1 , cM

1 ,Lq “
pm,Levpc, wN

1 , cM
1 ,Lq

ÿ

c1

pm,Levpc1, wN
1 , cM

1 ,Lq
, (6.35)

where
pm,Levpc, wN

1 , cM
1 ,Lq “

ÿ

M̃,c̃M̃
1

δpc,LmpcM
1 , c̃M̃

1 qq ¨ ppwN
1 , c̃M̃

1 q . (6.36)

In [Macherey 98, Wessel 02], it is shown that for speech recognition tasks, word posterior
probability-based confidence measures estimated on word graphs clearly outperform con-
fidence measures estimated on N -best lists. In [Ueffing 06], it is shown that for machine
translation tasks, there is no significant difference between posterior-based confidence
measures estimated on word graphs and N -best lists, given that the reference class labels
are determined with respect to word error rate or position independent word error rate.
Because we consider natural language understanding as a translation problem with a
monotonicity constraint, it is not clear whether graph-based estimations will outperform
the N -best list approach. Therefore, we will investigate both variants and compute
confidence measures on graphs as well as on N -best lists.

For natural language understanding, we define the confidence error rate by means of
the slot error rate, similar as we based the confidence error rate for speech recognition
on the word error rate. Thus, we define the confidence error rate (CER) as the number
of incorrectly assigned confidence class labels divided by the total number of generated
concepts. Likewise, the baseline CER is given by the number of substitutions and
insertions divided by the total number of generated concepts.

6.8 Combining Speech Recognition and Natural
Language Understanding

As discussed in Section 2.2, the sequential application of speech recognition and language
understanding can turn out to be suboptimal. Therefore, we need an approach that
allows for a tighter coupling between both components. Furthermore, the approach
used should allow us to easily integrate additional knowledge sources. The automatic
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speech recognition module is based on the source-channel paradigm. Since it is difficult
to integrate additional knowledge sources into this framework, we will use N -best lists for
representing the most likely word hypotheses that are promising candidates for the natural
language understanding task, and perform all following investigations on this structure.

Using N -best lists rather than word graphs has the advantage that also sentence-based
features can be employed. The features will be combined in a log-linear model and the
corresponding feature weights are trained in a discriminative manner using the minimum
error rate criterion. We will proceed as follows: we briefly review the minimum error
rate criterion and describe the optimization of the feature weights λL

1 using the Line
Sweep algorithm. The optimization is an iterative procedure that is applied on an N -best
repository. As error criterion to be minimized we will use both the slot error rate and the
word error rate. Thus, we can investigate whether for a given set of feature functions the
natural language understanding component can benefit from speech recognition features
and, vice versa, whether the automtatic speech recognition component can benefit from
features derived from the language understanding component.

6.8.1 Minimum Error Criterion

Minimum error criteria have a wide range of applications in pattern recognition tasks.
In the field of automatic speech recognition, minimum error criteria were for example
employed in [Juang & Chou` 95, Evermann 99]. In [Beyerlein 00], the acoustic scores are
combined with multiple language models in a log-linear approach yielding a significant
reduction in terms of word error rate for a state-of-the-art speech recognition system.
In the context of machine translation, it was first used in [Och 03]. To the best of our
knowledge minimum error criteria have not been applied to SLU tasks. Since we regard
NLU as a translation task, we can define the minimum error criterion similar to the
approach proposed in [Och 03] with the extension that we aim at minimizing both the
word error rate and the slot error rate. The challenging task is then to find appropriate
feature functions that result in a reduction of both error rates.

Denote x “ xT
1 the sequence of acoustic observation vectors, w “ wN

1 the sequence
of words, and c “ cM

1 the sequence of concepts, then we want to find that sequence of
parameters λ̂L

1 that minimizes the number of errors denoted by an error function Ep¨, ¨q

λ̂L
1 “ argmin

λL
1

#

S
ÿ

s“1

E
`

pcs,wsq, pĉ, ŵqpxs; λ
L
1 q
˘

+

(6.37)

where

pĉ, ŵqpxs; λ
L
1 q “ argmax

pc,wqPRs

#

L
ÿ

l“1

λlhlpc,w,xsq

+

. (6.38)

Here, s denotes the sentence index and pĉ, ŵq denotes the maximizing concept and word
sequence, respectively. Rs defines the repository of candidates, which for each utterance
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Algorithm 2 Minimum Error Training

Input: initial weights λL
1

Output: optimized weights λ̂L
1

repeat
Generate N -best repositories with current λL

1

for all dimensions l do
for all sentences s do

Compute upper envelope and error statistics
end for
Merge error statistics
Search for optimal γ and determine error reduction ∆el

λ1
l Ð λl ` γ

end for
λl Ð λ1

l̂
with l̂ “ argmin

l
t∆elu

until convergence

s is the product of the N -best candidates from the ASR module times the N -best list
of concept strings for each recognized sentence candidate. For ease of terminology, we
will refer to pairs pc,wq of translation and sentence hypotheses as candidate translations.
Once produced by the two decoding steps they are kept fixed throughout the algorithm.

6.8.2 Line Sweep Algorithm

The sum of weighted feature functions can be expressed as a scalar product:

L
ÿ

l“1

λlhlp¨, ¨q “
`

λL
1

˘J
¨
`

hL
1

˘

. (6.39)

In each iteration we try to change the weight vector λL
1 such that the total number of

errors is minimized. This is an L-dimensional optimization problem. For simplicity, we
loop over all dimensions and optimize each dimension separately. Let γ denote the change
of weight λl for a given dimension l. Then this change can be expressed as:

glpγq :
`

λL
1 ` γ ¨ dL

1

˘J
¨
`

hL
1

˘

“
`

dL
1

˘J `

hL
1

˘

looooomooooon

slope a

¨ γ `
`

λL
1

˘J `

hL
1

˘

looooomooooon

offset b

(6.40)

where
`

dL
1

˘

is the L-dimensional unit vector with component l “ 1. For each utterance
xs there is a repository Rs of candidate translations. Each candidate translation defines
a line gl with slope a and offset b, and is associated with its error with respect to the
reference translation. For the one-dimensional optimization problem, the goal is now to
adjust parameter λl such that the error is minimal. From a geometric point of view the
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Score

Error
count

γ

γ

Figure 6.6: Upper envelope and error counting. The bold red line segments define the
upper envelope of the set of solid blue lines. The dashed black colored lines are parallel
lines that have a lower score than the blue lines and can be discarded for the computation
of the upper envelope. Each segment of the upper envelope defines an area of constant
errors. By projecting the upper envelope to the x-axis, we obtain a histogram of the total
number of errors. The total number of errors can only change at phase transitions, that
is, at the points of intersections of the line segments.

intersection points of the lines divide each line into at most |Rs| line segments. The line
segments form polyhedrons partitioning the plane into regions of equal numbers of errors.
However, due to the argmax decision rule we only need to consider those line segments
with maximal scores, that is, which belong to the upper envelope. A line segment belongs
to the upper envelope if a vertical upward ray starting at this line segment does not hit
any other line. Since each line is associated with its error rate we can search for that
segment along the upper envelope that minimizes the error. By projecting the points of
intersections of the corresponding line segments together with their error counts onto the
x-axis, we obtain a histogram of the total error counts. The phase transitions mark the
positions where the total error may change. The basic principle is depicted in Figure 6.6.

The upper envelope can be efficiently computed using the line sweep algorithm, which
was introduced in [Bentley & Ottmann 79]. A vertical line is moved from the far left
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to the far right of the plane, and the exact order of the intersections with the segments
is maintained as the line sweeps along. All vertices in the arrangement of segments are
detected in this process. From the point of view of the sweep line, the segments can be
viewed as points that move up and down the line [Basch & Guibas` 97]. If we compute the
error counts for all sentences and merge the projected points of intersections together with
their error counts, we obtain a finite sequence of λl values together with their associated
error change. A linear search in this sequence yields the optimal parameter λl. The
pseudo code for this procedure is given in Algorithm 2, which is guaranteed to converge
to a local optimum. Once we have determined the optimal parameter set λL

1 , we can
determine the optimal sequence of words and concepts in a rescoring step. Depending
on whether we want to find the optimal word sequence, the optimal concept sequence, or
both, we define the following decision rules:

ŵpĉ,x; λL
1 q “ argmax

w

#

L
ÿ

l“1

λlhlpc,w,xq

+

(6.41)

ĉpŵ,x; λL
1 q “ argmax

c

#

L
ÿ

l“1

λlhlpc,w,xq

+

(6.42)

pĉ, ŵqpx; λL
1 q “ argmax

pc,wq

#

L
ÿ

l“1

λlhlpc,w,xq

+

(6.43)

Note that for each case, the parameter set is optimized with respect to the corresponding
decision rule.

6.8.3 Feature Functions

We introduce a new set of sentence-based feature functions in order to take ASR and
NLU features into account. The features are computed on N -best lists and are log-
linearly combined using the minimum error criterion. The N -best lists are annotated with
concepts using the maximum entropy-based approach. When taking speech recognition
effects into account, it is straightforward to directly employ the source channel-based
knowledge sources of a speech recognition module as additional feature functions. Note
that in general these feature functions are non-binary features. Furthermore, we omit
the one-to-one correspondence between words and initial-continue concepts and use the
pcM

1 , wN
1 q notation where wN

1 denotes a speech recognition sentence hypothesis stored in
an N -best list, and cM

1 denotes a candidate translation from the NLU module stored
in a corresponding N -best list, that is, each recognition result stored in an N -best list
produces a set of N -best translations. Thus, a user utterance is represented by a total of
N ˆN sentence pair hypotheses. For ease of notation we will not distinguish between N
and N in the following, but rather use the term N -best list. Using these conventions, we
can define the following sentence-based feature functions:
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Language Model features

The language model feature assigns each candidate sentence derived from an N -best list
its language model probability. Here, we use trigram language models and define feature
functions for both class-based and non class-based language models. Thus, we obtain the
following two feature functions:

hLMpcM
1 , wN

1 , xT
1 q “

N
ź

n“1

ppwn|wn´1
n´2q (6.44)

and

hclassLMpcM
1 , wN

1 , xT
1 ;Kq “

N
ź

n“1

ppwn|knq ¨ ppkn|kn´1
n´2q , (6.45)

where K denotes the set of word classes k for the class-based language model.

Acoustic Model Features

Similar to the language model features we use the acoustic score of a sentence hypothesis
as additional feature. This yields the following feature function:

hAMpcM
1 , wN

1 , xT
1 q “

N
ź

n“1

ppxt
τ |wnq , (6.46)

where xt
τ denotes the sequence of acoustic vectors assigned to word hypothesis wn.

ASR Sentence Length

The length of an ASR sentence hypothesis is defined as the number of evaluation words
contained in this sentence, disregarding silence and noise words. The weight for the
sentence length is usually referred to as word penalty. Formally, the feature function is
defined as follows:

hLengthASR
pcM

1 , wN
1 , xT

1 q “ N . (6.47)

ASR Posterior Probabilities

The posterior probabilities defined in Section 5.3 can be used as additional features. By
defining the posterior probability of a sentence hypothesis as the product of its word
posterior probabilities, we arrive at the following definition:

hPostASR
pcM

1 , wN
1 , xT

1 q “

N
ź

n“1

pprwn; τ, ts|xT
1 q . (6.48)
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ASR Confidence Measures

Word posterior probabilities introduced in Section 5.3 are also the basis for word-based
confidence measures. Since we consider only sentence-based feature functions, we have to
aggregate the word-based confidence measures to a sentence-based confidence measure.
For a sentence-based feature function, we define the geometric mean of the word-based
confidence values p̃ contained in a sentence hypothesis as the sentence confidence value.
This yields the following feature function:

hCASR
pcM

1 , wN
1 , xT

1 q “

˜

N
ź

n“1

p̃prwn; τ, ts|xT
1 q

¸1{N

. (6.49)

NLU Model Features

The NLU model feature is the factorized posterior probability obtained from the maximum
entropy model defined in Equation 6.18 for a given input sentence wN

1 . This is the first
feature function that takes NLU-related knowledge source into account. It is defined as
follows:

hNLUpcM
1 , wN

1 , xT
1 q “

M
ź

m“1

pλL
1

pcn|cn´1, w
n`2
n´2q . (6.50)

NLU Sentence Length

Similar to the ASR sentence length we use the NLU sentence length as an additional
feature in order to penalize sentence hypotheses that are too short or too long. The NLU
sentence length feature function can be interpreted as a concept penalty and is defined as
follows:

hLengthNLU
pcM

1 , wN
1 , xT

1 q “ M . (6.51)

Concept Language Model

A trigram language model trained on concepts is used as additional feature function. The
concept language model uses absolute discounting with backing off as smoothing variant.
The feature function is defined as follows:

hLMNLU
pcM

1 , wN
1 , xT

1 q “

M
ź

m“1

ppcm|cm´1
m´2q . (6.52)

NLU Confidence Measures

Similar to the sentence-based speech recognition confidence measures, we define sentence-
based confidence measures for natural language understanding using again the geometric
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mean of the concept-based confidence measures. This yields the following feature function:

hCNLU
pcM

1 , wN
1 , xT

1 q “

˜

M
ź

m“1

p̃prcm; ν, ns|wN
1 q

¸1{M

. (6.53)
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6.9 Results

In this section, we investigate the proposed approaches on the TelDir and Taba task.
In Section 6.9.4, we report experiments using reference transcriptions, that is, the input
sentences do not contain recognition errors. In Section 6.9.5, we use transcriptions
produced by an automatic speech recognition system as input. Finally, we report results
for combining speech recognition and natural language understanding.

6.9.1 Evaluation Metrics

To evaluate the quality of the different approaches, we use the following error criteria:

• Sentence Error Rate
The sentence error rate (SER) for natural language understanding tasks is defined as
the number of wrongly translated sentences that contain concept errors, normalized
by the total number of sentences. Thus, it is similarly defined as the sentence error
rate criterion used in speech recognition except that we use concepts (slots) instead
of words.

• Slot Error Rate (a.k.a. Concept Error Rate)
The slot error rate (Slot-ER) is similar defined to the well known word error rate
and is the ratio of the sum of deleted, inserted, and substituted concepts (slots),
normalized by the total number of reference concepts.

• Attribute Error Rate
The attribute error rate (AER) measures the number of falsely assigned or missed
attributes normalized by the total number of attributes. Besides the slot error rate,
this measure is the most important criterion because it measures to what extent a
certain approach is able to extract the correct values from the input sentences.

• Word-based Slot Error Rate
The word-based slot error rate (word-based Slot-ER) is defined as the number of
words that have been aligned to wrong concepts normalized by the number of all
words. In statistical machine translation, alignments of words between natural
language sentence pairs are often ambiguous due to idiomatic expressions or missing
function words [Melamed 98]. Therefore, [Och 02b] introduced the notion of sure
and possible alignments in order to measure the quality of automatically determined
alignments. Within the scope of natural language understanding, we assume that
there is only one correct alignment, which is provided by the corpora used. Since
we disallow empty words, each word must be aligned to a concept. Thus, we can
measure the quality of alignments as the number of words that have been mapped
onto the correct concepts (slots). The word-based Slot-ER is a useful measure
because quantifying the number of words that have been mapped onto the wrong
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Table 6.1: Excerpt of word categories. In a preprocessing step all source word occurrences
are mapped onto the corresponding word categories.

Category Examples Category Examples

$CITY ‚ Aachen $MONTH ‚ Januar
‚ Köln ‚ Februar

$DAYTIME ‚ Morgen $CARDINAL ‚ erster
‚ Vormittag ‚ zweiter

$WEEKDAY ‚ Montag $NUMBER ‚ null
‚ Dienstag ‚ eins

$SURNAME ‚ Schlegel $FUZZY ‚ circa
‚ Wagner ‚ gegen

concepts is beyond the scope of the AER. Since the attribute values are extracted for
each concept separately from its aligned words, a correct alignment is essential for
this step. The AER only measures the proportion of erroneous attributes and gives
no hint whether this is caused by an insufficiently designed extraction algorithm or
simply a result of wrongly aligned words.

6.9.2 Preprocessing

Each source sentence is preprocessed before the sequence of concepts is determined. Some
preprocessing steps are only necessary if speech is used as input modality. However, since
these steps leave the text input unaffected, they are included in the following list as well.
For both approaches the preprocessing consists of the following steps:

1. Removal of no-word entities
This step mainly affects transcriptions derived from the automatic speech recogni-
tion module. In this step, all no-word entities, such as silence, hesitations, and other
noise occurrences, are removed.

2. Normalization of pronunciation variants
Similar to the first step, this step only affects transcriptions obtained from the
automatic speech recognition module. Pronunciation variants are mapped onto the
first pronunciation variant, which is determined by the order the words occur in the
pronunciation lexicon.

3. Categorization
To reduce the number of unseen events, proper names, numbers, and date ex-
pressions are mapped onto categories. Categories for proper names can easily be
obtained from the entries of the database the dialogue system is connected with.
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6.9.3 Postprocessing

No postprocessing steps are applied for the ME approach. However, an additional filler-
sequence penalty is used for decoding that avoids chains of filler concepts. This filler-
sequence penalty is similar to the word penalty in ASR. For the source-channel approach,
special postprocessing steps are applied for unknown words. Unknown words are words
that do not have an entry in the phrase table and are translated by their identity. The
steps are applied in the following order:

1. Unknown words
Unknown words that occur at the beginning of a translated sentence are mapped
onto the filler concept. Unknown words that occur after the first position in a
translated sentence are assigned to the same concept as their predecessor words.

2. Sequence of equal concepts
A Sequence of equal concepts is reduced to a single concept.

6.9.4 Comparison of Alignment Templates and Maximum Entropy
Approach Using Text Input

We first determine the alignments between source and target sentences for the TelDir
training corpus using 13H3344351 as sequence of models for the source-channel approach
(i.e., we apply 3 iterations of model 1, continue with 3 iterations of the HMM model,
etc.) and 14H4344454 for the ME approach. For the Taba corpus, the sequence of model
iterations used is 14H4344454 for both the source-channel and the ME approach. The
optimal training sequences were determined with respect to the error rates obtained on
the development sets.

Feature Selection, Count Cutoffs, Model Order, and Smoothing

Feature selection for the feature functions described in the previous section is done on
the development corpus of each task. The selection is always done for complete feature
types rather than for individual features. For the lexical features, the count cutoff is
set to 1, that is, we keep all triples pw, d, cq observed during training. For prefix and
suffix features, we additionally require that a word must consist of at least 10 characters
in order to generate a feature. The smoothing parameter σ is set to 3 for all corpora.
The following experiments were carried out using a first-order model. Switching from a
first-order model to a second-order model is investigated in Section 6.9.4.

Preprocessing using Categorizations

A problem that often occurs in NLU tasks is that many semantically relevant words are
not covered by the training corpus. For example, it is unlikely that all proper names
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are observed during training. To improve the results we use categorizations for both
approaches and map words, such as proper names and numbers, onto categories. Such
categories can easily be obtained from the entries of the database a dialogue system is
connected with. Table 6.1 shows an excerpt of the categories used in the TelDir and
Taba corpus. Because the database does not contain all named entities, a large proportion
of proper names occurring in the test data remains unobserved.

Effect of Alignment Models

Tables 6.2 and 6.4 summarize results for both the alignment templates approach and
the maximum entropy framework using different alignment models. Both tables present
results with and without categorizations. Unlike translations between natural language
pairs, word reorderings do not occur in natural language understanding tasks investigated
in this thesis. Therefore, we disallow word reorderings for the alignment templates
approach by penalizing possible reorderings with additional costs set to infinity. Because
the maximum entropy-based approach basically works similar to a tagger the monotonicity
of the word-concept alignment is guaranteed for this method.

The maximum entropy results presented in Tables 6.2 and 6.4 are based on the 6 feature
types listed in Tables 6.3 and 6.5. Starting with only lexical features, we successively
extend the model by including additional feature functions. The results show that the
maximum entropy models clearly outperform the alignment templates approach. The
quality of the alignment templates approach is achieved within the maximum entropy
framework by just including lexical and transition features, and is significantly improved
by adding further features.

Another interesting effect when looking at the results obtained without categorizations
is that the maximum entropy framework suffers less from unknown words compared to
the alignment templates approach. The problem can be mitigated but not eliminated if
more training data is available as is the case for the Taba corpus. The reason is that
the ME model can use variable-length contexts flexibly. Whereas the alignment template
approach either has an appropriate template or has not, and each word can occur in at
most one template, the ME model can reuse contexts flexibly for various adjacent words,
that is, the same word in position n of the input sentence can be used in multiple feature
functions. Furthermore, the ME framework directly models the posterior probability
and allows for integrating structural information by using appropriate feature functions
in a very simple way as opposed to a source channel-based approach where integrating
additional knowledge sources is often very complicated.

Comparing the performance on both the TelDir and the Taba task, we see that the
error rates are much lower for the Taba task than for the TelDir task, which is caused
by the very small number training data available for the TelDir task. However, we still
achieve good results using the maximum entropy framework, even if the training corpus is
very small. For both approaches, the length of the local word context plays an important
role that shall be investigated in the following.
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Table 6.2: Effect of different alignment models on the slot error rate for the TelDir
corpus. Error rates are presented with and without categorizations for the alignment
templates (AT) approach and the maximum entropy (ME) framework. The ME results
were obtained using a first-order model.

corpus TelDir AT ME
development Slot-ER [%] Slot-ER [%] Slot-ER [%] Slot-ER [%]

+ Categ. + Categ.

Model 1 41.4 26.2 23.4 21.6
HMM 21.4 10.9 9.9 4.5
Model 3 20.4 7.4 7.1 3.4
Model 4 19.9 6.4 7.0 2.6
Model 5 19.6 5.8 6.9 2.5

corpus TelDir AT ME
evaluation Slot-ER [%] Slot-ER [%] Slot-ER [%] Slot-ER [%]

+ Categ. + Categ.

Model 1 32.9 21.9 24.3 21.2
HMM 15.7 10.7 9.8 4.4
Model 3 14.4 8.1 7.3 4.3
Model 4 13.2 6.5 6.7 3.1
Model 5 13.2 6.3 6.5 3.1

Table 6.3: Dependence of different error rates on the number of included feature types for
the TelDir corpus. The source sentences are preprocessed using categorizations. The
results were obtained using a first-order model.

corpus TelDir total SER [%] Slot-ER [%] word-based AER [%]
development # features Slot-ER [%]

lexical 60,287 10.7 5.5 5.7 2.7
+ prior 60,330 10.2 5.0 5.6 2.6
+ transition 62,179 7.2 3.2 5.6 2.3
+ pre- & suffixes 91,290 6.0 2.7 5.3 2.3
+ compound 130,893 5.5 2.5 5.3 2.1
+ capitalization 130,936 5.7 2.5 5.3 1.8

corpus TelDir total SER [%] Slot-ER [%] word-based AER [%]
evaluation # features Slot-ER [%]

lexical 60,287 10.1 5.5 6.6 3.4
+ prior 60,330 9.7 5.3 6.4 3.3
+ transition 62,179 7.8 3.5 6.6 2.2
+ pre- & suffixes 91,290 7.1 3.3 6.4 1.6
+ compound 130,893 6.5 3.1 6.3 1.7
+ capitalization 130,936 6.8 3.1 6.4 1.6
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Table 6.4: Effect of different alignment models on the slot error rate for the Taba
corpus. Error rates are presented with and without categorizations for the alignment
templates (AT) approach and the maximum entropy (ME) framework. The ME results
were obtained using a first-order model.

corpus Taba AT ME
development Slot-ER [%] Slot-ER [%] Slot-ER [%] Slot-ER [%]

+ Categ. + Categ.

Model 1 13.6 8.8 12.0 12.4
HMM 13.3 8.7 6.6 4.0
Model 3 11.3 7.8 6.4 2.9
Model 4 10.8 6.0 6.2 2.6
Model 5 10.8 5.2 6.2 2.5

corpus Taba AT ME
evaluation Slot-ER [%] Slot-ER [%] Slot-ER [%] Slot-ER [%]

+ Categ. + Categ.

Model 1 13.0 8.3 11.6 11.5
HMM 12.3 7.4 5.7 3.4
Model 3 11.3 6.9 5.3 3.1
Model 4 11.0 5.5 4.9 2.7
Model 5 11.1 5.2 4.8 2.6

Table 6.5: Dependence of different error rates on the number of included feature types
for the Taba corpus. The source sentences are preprocessed using categorizations. The
results were obtained using a first-order model.

corpus Taba total SER [%] Slot-ER [%] word-based AER [%]
development # features Slot-ER [%]

lexical 226,152 10.1 7.5 5.1 6.7
+ prior 226,205 8.5 5.8 4.0 6.1
+ transition 229,014 4.5 3.0 3.4 3.6
+ pre- & suffixes 229,226 4.5 3.0 3.4 3.6
+ compound 827,861 3.6 2.5 2.6 3.3
+ capitalization 827,914 3.6 2.5 2.6 3.3

corpus Taba total SER [%] Slot-ER [%] word-based AER [%]
evaluation # features Slot-ER [%]

lexical 226,152 8.6 6.8 4.8 6.4
+ prior 226,205 6.5 4.8 3.6 5.8
+ transition 229,014 4.0 2.8 3.1 4.0
+ pre- & suffixes 229,226 4.0 2.8 3.1 4.0
+ compound 827,861 3.8 2.7 2.7 3.9
+ capitalization 827,914 3.8 2.6 2.7 3.9
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Figure 6.7: Effect of the maximal allowed context length on the slot error rate for both
the alignment templates approach and the maximum entropy-based framework. The plot
shows error rates for the Taba development corpus using categorizations.

Effect of Context Lengths

Both the alignment templates approach as well as the feature functions defined for the
maximum entropy framework make use of local word contexts, that is, predecessor and
successor words are explicitly taken into account. For the alignment templates approach,
we have chosen a maximum template length of 7 for both corpora. This value was selected
empirically from the Taba corpus in Figure 6.7. As can be derived from the figure, a
larger value does not improve the slot error rate. The feature functions for the maximum
entropy model use a shorter context of 5 consecutive words. Augmenting the context
length slightly deteriorates the performance and results in an overfitted model.

First-Order versus Second-Order Model

The ME results reported in Tables 6.2 - 6.5 were obtained using a first-order model.
Switching from a first-order model to a second-order model is done by using additional
transition features that take the appropriate concept histories into account. This yields
the results reported in Table 6.6. The results obtained with a second-order model slightly
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Table 6.6: Error rates obtained from a first order model and a second order model using
the maximum entropy approach with categorizations. All features reported in Table 6.3
and 6.5 were used for this experiment plus additional second order transition features.

corpus TelDir Slot-ER [%] AER [%]
development

1st order model 2.5 1.8
2nd order model 3.1 2.3

corpus TelDir Slot-ER [%] AER [%]
evaluation

1st order model 3.1 1.6
2nd order model 3.3 2.0

corpus Taba Slot-ER [%] AER [%]
development

1st order model 2.5 3.3
2nd order model 2.6 3.2

corpus Taba Slot-ER [%] AER [%]
evaluation

1st order model 2.6 3.9
2nd order model 2.8 4.0

deteriorate due to overfitting on the training data. Therefore, we will restrict all further
ME results on a first-order model.

Effect of Number of Training Data on Error Rate

The number of training data used for the TelDir and the Taba corpus differs roughly
by a factor of 40. Since the source sentences need to be annotated manually by sequences
of formal concepts in order to apply supervised learning techniques, the question is what
degradation in error rate we have to expect if we reduce the number of training data used.
This is important if a natural language component is to be trained for a new domain
where only little data is available. Because additional training data should be collected
from dialogue transactions of real users interacting with a fully functional and running
dialogue system, a curve plotting the natural language understanding performance against
the number of training data gives some hints on how much training data should be used
for setting up a new system. Figure 6.8 shows the performance of the natural language
understanding component in the course of the number of training data used. Both plots
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Figure 6.8: Effect of number of training data on the slot error rate for the TelDir and
Taba evaluation corpus using the maximum entropy-based approach.
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Figure 6.9: Attribute error rate in course of slot error rate for the TelDir and Taba
evaluation corpus using the maximum entropy-based approach.
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use the full set of feature functions described in Section 6.5.1. In order to get a reasonable
slot error rate, it is sufficient to have around 1000 training tokens for the TelDir task.
The Taba task is more complex because it contains time and date expressions. Here,
a slot error rate of around 6% can be achieved with 10, 000 training samples. Although
both tasks differ in their complexity, they almost have the same slope.

Effect of Slot Error Rate on Attribute Error Rate

Each concept is associated with a (possibly empty) set of attributes.6 Because a wrongly
assigned concept also affects the attribute error rate, we want to analyze this effect more
thoroughly. Figure 6.9 plots the attribute error rate in course of the slot error rate using
the maximum entropy approach for the TelDir and Taba evaluation corpus. Increasing
slot error rates were obtained by successively reducing the number of training data (see
Figure 6.8). For both tasks, the attribute error rate is proportional to the slot error rate.
This effect results in part from the categorizations used, which yield a good generalization
even if only a few training samples have been used.

6.9.5 Comparison of Alignment Templates and Maximum Entropy
Approach Using Speech Input

So far, we have presented results for text-based inputs. If the input modality is speech,
inputs to the natural language understanding component can contain speech recognition
errors. Furthermore, spontaneous speech effects, such as disfluencies (e.g., repeated words,
false starts, or repairs), hesitations, and stressed speech, can deteriorate the performance
of the speech recognition module and, thus, the quality of the natural language under-
standing component.7 Therefore, we want to investigate how both approaches perform
if the input modality is speech. For this purpose, both models were trained on sentence
pairs using reference transcriptions. Table 6.7 summarizes slot error rates and attribute
error rates for both tasks. For comparison with Section 6.9.4, the first row contains error
rates for text-based results.

If we compare the source-channel approach with the direct model, we see that the
maximum entropy approach clearly outperforms the alignment templates approach, which
is in accordance to the results obtained from text data input. However, compared to the
Taba corpus the attribute error rate for the TelDir corpus deteriorates much more from
erroneous input data. Apart from fewer training data, this effect results from erroneous
recognitions of spelling sequences. The TelDir domain allows users to spell names, which
is modeled by a spelling concept. The attribute of a spelling concept is the sequence of
letters uttered by a user. If this sequence contains only one wrong letter, the concept
remains most likely a spelling concept, but the attribute value is considered to be wrong,

6 For a complete list of concepts and attributes see Appendix B.
7 Because the text-based results presented in Section 6.9.4 use transcriptions of spontaneous speech

recordings, some of these effects may also be observed on text input.
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Table 6.7: Speech understanding results for the TelDir and the Taba corpus.
corpus TelDir-SLU AT ME

development WER [%] Slot-ER [%] AER [%] Slot-ER [%] AER [%]
+ Categ. + Categ.

text reference – 5.8 4.1 2.5 1.8
baseline 13.7 11.3 22.1 7.8 20.4
with incr. F-MLLR 12.4 10.6 20.6 6.8 19.1

corpus TelDir-SLU AT ME
evaluation WER [%] Slot-ER [%] AER [%] Slot-ER [%] AER [%]

+ Categ. + Categ.

text reference – 6.3 4.6 3.1 1.6
baseline 14.9 15.2 26.0 11.8 23.0
with incr. F-MLLR 13.6 14.1 22.7 10.6 20.6

corpus Taba-SLU AT ME
development WER [%] Slot-ER [%] AER [%] Slot-ER [%] AER [%]

+ Categ. + Categ.

text reference – 5.2 7.9 2.5 3.3
baseline 13.0 14.5 18.9 11.8 15.2
with incr. F-MLLR 12.3 14.0 18.5 11.4 14.4

corpus Taba-SLU AT ME
evaluation WER [%] Slot-ER [%] AER [%] Slot-ER [%] AER [%]

+ Categ. + Categ.

text reference – 5.2 6.9 2.6 3.9
baseline 12.8 13.6 16.1 11.6 13.6
with incr. F-MLLR 12.5 13.4 16.0 11.6 13.4

independent of the total number of letters that may were recognized correctly. To mitigate
this effect, we can use the proper names contained in the application database as an
additional knowledge source. The idea is to extract all proper names from the database
and decompose them into characters sequences. Doing this we can match a recognized
spelling sequence with the character sequence obtained from proper names contained in
the database. If a sufficiently high number of characters matches a decomposed database
entry, we assume that the remaining unmatched characters resulted from an erroneous
recognition and replace the sequence by the best matching database entry. The number of
sufficiently matching characters must be chosen such that on the one hand we benefit from
using the database as additional knowledge source while on the other hand we allow for
accepting new spelling sequences that are not contained in the database. The threshold
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Table 6.8: Speech understanding results for the TelDir corpus using automatic spelling
correction. The threshold for the mutual error rate between a hypothesized spelling
sequence and a database entry was set to 1

3
. This value was optimized on the development

set.
corpus TelDir-SLU AT ME

development WER [%] Slot-ER [%] AER [%] Slot-ER [%] AER [%]
+ Categ. + Categ.

baseline 12.4 10.6 20.6 6.8 19.1
with spelling correction 12.4 10.6 19.1 6.8 17.3

corpus TelDir-SLU AT ME
evaluation WER [%] Slot-ER [%] AER [%] Slot-ER [%] AER [%]

+ Categ. + Categ.

baseline 13.6 14.1 22.7 10.6 20.6
with spelling correction 13.6 14.1 20.7 10.6 18.4

for the mutual error rate between a hypothesized spelling sequence and a database entry
was optimized on the development set and is set to 1

3
. Results are listed in Table 6.8.

Effect of Using Maximum Entropy-based Segmentations

As described in Section 6.4.1, the alignments between words and concepts are trained using
a sequence of alignment models with increasing complexity. Once this alignment has been
determined it is kept fixed during training of the maximum entropy model. To obtain
a refined alignment we can proceed as follows: since decoding a source sentence into a
sequence of concepts with a trained maximum entropy model also provides a segmentation
of the source sentence, we can use this information to extract a new alignment and train a
new maximum entropy model based on this alignment. That is, by decoding our training
data with a maximum entropy model for natural language understanding, we obtain a
new alignment that can be used to train a new maximum entropy model.

Results are listed in Table 6.9. Except for a small gain in terms of slot error rate for the
TelDir development set we mostly observe a similar performance or small degradations
in terms of concept and attribute error rates. Figure 6.10 plots the discourse of the concept
and attribute error rates over the number of iterations. Since these refined alignments
did not yield better results, we did not further investigate this direction.

Concept Graphs and N -best Lists

Similar to the word graph generation described in Section 5.2 we can generate concept
graphs as the final result of the decoding phase for the natural language understanding

102



6.9 Results

 1

 2

 4

 8

 16

 0  1  2  3  4  5

Iteration

Slot-ER
AER

Slot-ER

AER TelDir

er
ro

r
ra

te
[%

]

 2

 4

 8

 16

 0  1  2  3  4  5

Iteration

Slot-ER

AER

Slot-ER

AER

Taba

er
ro

r
ra

te
[%

]

Figure 6.10: Attribute error rate and slot error rate in course of maximum entropy-based
alignments for the development corpora. The points at iteration 0 denote the baseline
error rates. Note that the error axis is logarithmically scaled for display purposes. The
upper two curves in each graph represent results obtained from speech data, the lower
two curves describe results obtained on text data.
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Table 6.9: Effect of using maximum entropy-based segmentations on both the slot error
rate (Slot-ER) and the attribute error rate (AER) for the TelDir and the Taba corpus.
All table entries use the full set of feature functions described in Section 6.5.1 together
with categorizations.

corpus TelDir development evaluation
Slot-ER [%] AER [%] Slot-ER [%] AER [%]

baseline 2.5 1.8 3.1 1.6
text

ME-based alignment 2.3 1.9 3.4 2.0
baseline 6.8 17.3 10.6 18.4

speech
ME-based alignment 6.7 17.2 11.0 18.4

corpus Taba development evaluation
Slot-ER [%] AER [%] Slot-ER [%] AER [%]

baseline 2.5 3.3 2.6 3.9
text

ME-based alignment 3.2 3.9 2.7 4.1
baseline 11.4 14.4 11.6 13.4

speech
ME-based alignment 12.2 15.7 11.3 13.5

Table 6.10: Oracle error rates for the spoken language understanding component. Concept
graphs are produced by applying the ME approach on the first best results from the ASR
component. The 100-best lists are directly extracted from the concept graphs whereas
the 100-best˚ lists are obtained by merging 10-best concept lists derived from 10 concept
decodings. Each decoding uses one candidate from a 10-best ASR list as input.

corpus TelDir-SLU baseline graph 100-best 100-best˚

Slot-ER [%] Slot-ER [%] Slot-ER [%] Slot-ER [%]

development 6.8 1.9 2.4 1.7
evaluation 10.6 2.6 2.8 2.3

corpus Taba-SLU baseline graph 100-best 100-best˚

Slot-ER [%] Slot-ER [%] Slot-ER [%] Slot-ER [%]

development 11.4 2.5 3.9 3.1
evaluation 11.6 2.7 4.0 3.5

component. Again, each node of the graph represents the language model history of
its outgoing edges. For the maximum entropy model approach, an edge of the graph
represents a concept. With an A˚ search we can extract N -best lists from concept graphs,
which are then used for computing confidence measures and for combining speech recog-
nition with natural language understanding. Because the first-best speech recognition
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sentence hypothesis may contain recognition errors, we extract a 10-best list from the
word graphs of the speech recognition decoding and compute a 10-best concept list for
each hypothesis contained in the ASR list, resulting in a 100-best concept list for each
utterance. Table 6.10 shows graph and N -best list error rates for the natural language
understanding component using both text and speech as input modality.

Confidence Measures for Spoken Language Understanding

According to Section 6.7, we compute confidence measures on N -best lists. In contrast
to the work presented in [Ueffing 06] our machine translation task is always monotone.
Furthermore, we do not allow empty words. Therefore, one might expect that the concept
graph-based approach will always outperform the N -best list approach. Table 6.11 lists
confidence error rates computed on a 100-best list for the spoken language understanding
component. The optimal threshold for the evaluation set was adjusted on the development
set beforehand. The performance of the NLU confidence measures does not reach the
performance of their speech counterparts. However, the results clearly show that the N -
best list approach together with a Levenshtein alignment clearly outperforms the graph-
based approach. A possible explanation for this is that a concept has in general much
fewer word positions then a word hypothesis has time frames. Because of that, the
notion of overlapping concept edges within a concept graph is less distinctive than the
overlapping word hypothesis edges that we observe in a word graph. As a result the
Levenshtein-aligned concept hypotheses derived from N -best lists perform much better.

6.9.6 Combining Speech Recognition and Language Understanding

To combine speech recognition with language understanding we proceed as follows: we
first generate ASR word graphs for all utterances and compute confidence values for each
hypothesis in a word graph. We then extract N -best lists from the word graphs and
process them each N -best entry with the ME approach, thus enriching the N -best lists
with the additional features described in Section 6.8.3. The enriched N -best lists are then
inserted into a repository on which the minimum error rate training algorithm is applied.

A problem with this approach is that the ASR decoder cannot produce better results in
subsequent iterations because the new features are not integrated into the ASR decoding
process, but are added after the N -best lists have been extracted. Since the decoder
cannot use the new knowledge sources directly, it cannot produce new entries for the
repository. Therefore, we have to make sure that word graphs and N -best lists contain a
sufficiently large number of hypotheses after the first iteration. According to Figure 5.4
and Table 6.10, a 10 ˆ 10-best list provides enough sentence alternatives from which we
can select promising candidates in order to lower the error rate. Furthermore, selecting
a candidate out of a small N -best list might be more realistic than striving to find the
oracle-best candidate in a huge N -best list. The motivation behind this is that the
additional features should rather aim at reranking candidates whose scores are very close
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Table 6.11: Comparison of concept posterior probability-based confidence measures
determined on concept graphs and N -best lists. Here, CER denotes the confidence error
rate. The 100-best list is directly extracted from the concept graph whereas the 100-best˚

list accumulates concept 10-best lists derived from concept decodings computed from the
10 candidates of the ASR list.

corpus TelDir-SLU baseline baseline graph 100-best 100-best˚

Slot-ER [%] CER [%] CER [%] CER [%] CER [%]

development 6.8 4.8 4.6 4.1 4.7
evaluation 10.6 8.4 7.5 7.1 7.5

corpus Taba-SLU baseline baseline graph 100-best 100-best˚

Slot-ER [%] CER [%] CER [%] CER [%] CER [%]

development 11.4 8.7 8.7 8.4 8.7
evaluation 11.6 8.6 8.6 8.4 8.6

to each other, than trying to move a very low-ranked candidate to the first position.
The final repository contains a 10 ˆ 10 N -best list for each utterance where each N -best
entry consists of three streams together with the associated error counts: the word stream
obtained from ASR decoding, the concept stream obtained from NLU decoding, and the
attribute stream obtained from the attribute extraction. The N -best lists do not contain
duplicates. The hypothesized word-concept segmentation is kept for the concept stream
in order to simplify the attribute extraction.

Minimizing the Word Error Rate

We first investigate whether NLU features can help reducing ASR errors. Table 6.12
presents results for combining ASR with NLU. The feature weights were optimized on the
development set according to the algorithm described in Sec. 6.8.2. The objective function
used is minimizing the WER. The first line in each table is the baseline WER obtained
under realtime recognition constraints, which is equal to the ASR performance reported
in Tables 5.6 and 5.8. To measure the effect of newly added features, we first optimize the
weights for the ASR baseline features on the development N -best repository and apply
those weights on the evaluation N -best repository. The ASR baseline features comprise
the acoustic model, the language model, and the word penalty. For the TelDir task this
gives a small improvement of 0.2% on the development set, which does not generalize to
the evaluation set. For the Taba task, the baseline optimization reduces the WER much
more on both the development and the evaluation corpus. Due to realtime constraints
we cannot use the optimized feature weights directly during speech decoding since this
would require larger beam settings. Therefore, applying the optimized baseline feature
weights on the N -best repository is similar to a second-pass decoding, where we rescore
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Table 6.12: Combination of speech recognition and natural language understanding for
the TelDir and Taba task. The feature weights were optimized on the development set.
The objective function used is minimizing the word error rate.

corpus TelDir-Speech development evaluation
Features WER [%] WER [%]

Baseline (acu + lm + word-penalty) 12.4 13.6
Baseline (optimized on Repository) 12.2 13.8
+ concept score 11.7 12.9
+ spellingCorrection 10.9 12.3
+ concept penalty 10.7 12.4
+ asr posterior 10.9 12.3
+ asr confidence 10.9 12.3
+ concept LM 11.0 13.1

corpus Taba-Speech development evaluation
Features WER [%] WER [%]

Baseline (acu + lm + word penalty) 12.3 12.5
Baseline (optimized on Repository) 11.8 11.7
+ concept score 11.7 11.4
+ concept penalty 11.7 11.4
+ concept LM 11.6 11.5

the candidates from the first pass with optimized weights.
The first added feature is the NLU concept score. With this feature, the WER is

reduced by 0.6% on the TelDir development set and by 0.5% on the evaluation set. The
improvements on the Taba task are smaller but consistent.

A special feature that we can use for the TelDir corpus is the spelling correction
feature. We already showed in Sec. 6.9.5 that this feature reduces the AER by comparing
the actual attribute values with the values stored in the application database. We can
use the same knowledge source here and use the Levenshtein distance of a hypothesized
spelling sequence with respect to the closest database entry as additional feature. Because
only a fraction of the spelled proper names is covered by the database, we leave it to the
minimum error rate training framework to find a tradeoff between covered and uncovered
proper names.

Minimizing the Slot Error Rate

In the previous section, the objective was to minimize the word error rate by adding NLU-
related knowledge sources. Now, we investigate if we can reduce the Slot-ER by adding
ASR-related features to the NLU features. Table 6.13 presents results for combining ASR
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Table 6.13: Combination of speech recognition and natural language understanding for
the TelDir and Taba task. The feature weights were optimized on the development set.
The objective function used is minimizing the slot error rate.

corpus TelDir-Speech development evaluation
Features Slot-ER [%] Slot-ER [%]

Baseline (conceptScore) 6.8 10.6
Baseline (1st best on Repository) 9.9 13.9
+ acoustic model 8.3 11.7
+ language model 6.3 10.8
+ word penalty 6.3 10.1

corpus Taba-Speech development evaluation
Features Slot-ER [%] Slot-ER [%]

Baseline (conceptScore) 11.4 11.6
Baseline (1st best on Repository) 17.1 17.7
+ acoustic model 14.9 15.6
+ language model 11.0 11.3
+ word penalty 10.6 10.7

with NLU when minimizing the Slot-ER. The baseline Slot-ER is equal to the Slot-ER
reported in Table 6.10. Note that this is a single feature that employs all the feature
functions described in Sec. 6.5.1. Therefore, no baseline optimization on the N -best
repository is necessary. However, the first-best result determined on the repository might
actually be worse compared to the baseline result given that we use only the concept score
as a single feature. The reason is that the baseline result is computed from the first best
ASR sentence hypothesis, for which the ASR features, such as the acoustic model weight
and the language model weight, are already fixed. If we take only the concept score into
account and rescore the repository, we decouple the concept feature function from the
ASR knowledge sources and allow choosing much shorter sentence hypotheses that might
have more deletion errors but produce lower concept scores. As soon as we add more ASR
feature functions, we observe a reduction in terms of Slot-ERs. Optimizing the weights
for all standard ASR feature functions, that is, adding acoustic scores, language model
scores, and word penalties, significantly reduces the Slot-ER.

Minimizing Word and Slot Error Rate simultaneously

By combining the error counts for ASR and NLU and by using all features defined pre-
viously, we can minimize both WER and Slot-ER simultaneously. The unweighted error
counts are combined by summation. Table 6.14 lists results obtained when minimizing
the combined error counts. For comparison reasons, the table also contains the results

108



6.10 Summary

Table 6.14: Combination of speech recognition and natural language understanding. The
objective function used is minimizing the slot and the word error rate simultaneously.
The approach uses all features defined previously. For comparison reasons, the results
obtained with optimizing the word error rate or slot error rate independently are included
as well.

corpus TelDir-Speech development evaluation
Features WER [%] Slot-ER [%] WER [%] Slot-ER [%]

Baseline 12.4 6.8 13.6 10.6
optimized for WER + Slot-ER 10.9 6.7 12.3 9.6
optimized for WER 10.7 – 12.4 –
optimized for Slot-ER – 6.3 – 10.1

corpus Taba-Speech development evaluation
Features WER [%] Slot-ER [%] WER [%] Slot-ER [%]

Baseline 12.3 11.4 12.5 11.6
optimized for WER + Slot-ER 11.6 10.3 11.4 10.2
optimized for WER 11.6 – 11.5 –
optimized for SlotER – 10.6 – 10.7

from the previous tables. An interesting effect is that the slot error rate can be further
reduced for both tasks if we minimize the joint error counts. Although we would expect
that optimizing for the slot error rate explicitly should give lower slot error rates, this
indicates that the error function to be optimized is not convex. Furthermore, the minimum
error training algorithm used contains a gready step at the end of the outermost for loop
where we select the feature weight with the biggest gain that shall be updated. Overall,
combining the error counts helps to further improve the system and generalizes well on
unseen test data.

6.10 Summary

In this chapter, we have proposed two different approaches to natural language under-
standing based on statistical machine translation. The main difference between both
approaches is that the ME framework directly models the posterior probability in a
discriminative manner whereas the source channel-based approach applies Bayes’ the-
orem resulting in two distributions: the translation probability and the language model
probability. We have evaluated both approaches on two language understanding tasks,
which are derived from different domains, and have shown that the ME approach clearly
outperforms the source channel-based approach within these settings.

One of the advantages of the ME approach results from the property that the ME
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framework directly models the posterior probability and allows for integrating structural
information by using appropriate feature functions. Furthermore, the ME approach is
consistent with the features observed on the training data, but otherwise makes the fewest
possible assumptions about the distribution. Since the optimization criterion is convex,
there is only a single optimum and no convergence problems occur.

We also analyzed the performance of both approaches when speech is used as input
modality and investigated several effects, for example, the effect of categorizations, dif-
ferent context lengths, and the relation between slot error rates and attribute error rates.
Furthermore, we defined confidence measures for natural language understanding that are
inspired by posterior probability-based approaches used in speech recognition.

Finally, we showed how ASR and NLU-based knowledge sources can be log-linearly
combined such that the overall error criterion is minimized. This allows for a tighter
coupling between speech recognition and natural language understanding. We have
employed the minimum error rate training framework in order to determine an optimal
set of feature weights and showed that the WER can be reduced using NLU-based feature
functions and that, vice-versa, the Slot-ER can be reduced using ASR-based feature
functions.
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Dialogue Management

Ideally, dialogue managers should be application-independent in order to avoid a redesign
of the dialogue system when changing the application domain. In this chapter, we
propose a new dialogue management system that employs trees as fundamental data
structure. Based on several feature functions, all operations of the dialogue manager,
such as collecting information and deciding the next dialogue action are formulated as
cost functions that operate directly on nodes, paths, and trees.

7.1 Construction of a Domain-Independent Dialogue
Manager

If several tasks and domains are to be treated by a single dialogue system without replacing
or rewriting parts of the system, the need for an application-independent dialogue manager
arises. In order to separate the dialogue manager from a concrete application, we have
to provide the task knowledge in the form of parameterizable data structures and distill
those steps that are common for many domains. These steps include:

• information request,

• information collection and evaluation,

• error detection and error handling,

• ambiguity resolution, and

• information retrieval.

Parameterizable data structures must be derived from the knowledge of each domain,
and all other operations, such as integrating concept-attribute pairs derived from user
utterances, ambiguity detection and resolution as well as determining the subsequent
dialogue action should be based on this structure. Here, the fundamental data structures
used are trees. Their hierarchical structure allows for a natural distinction between
different dialogue goals. In the next sections, we will describe this data structure and
its employment in a dialogue management task.
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@want question{I would like} @connect{to speak with} @person{Mr. Miller}

Figure 7.1: Tree-based knowledge representation for the telephone directory assistance
task TelDir. The sentence “I would like to speak with Mr. Miller” is transformed into
a concept representation using statistical machine translation. After that, each concept
together with its associated attributes is incorporated into the corresponding tree nodes.

7.1.1 Tree-based Representations

In order to obtain domain-independent representations, we use trees as the fundamen-
tal data structure. An example is depicted in Figure 7.1. The tree is a knowledge
representation for the telephone directory assistance task TelDir. Users can ask for
information about telephone numbers, email addresses, and fax numbers of persons as well
as companies. The tree is an overspecification of the given domain. The upper part of each
tree node describes the part of the dialogue that is processed by the corresponding subtree.
The lower part of each node consists of a list of concepts that are associated with that
specific node.1 Each path of the tree describes a separate dialogue goal. As depicted in
the figure, the root node’s name is “inquiries”, and the associated list consists of concepts
that are related to different kinds of request verbalizations. The successor nodes are

1 For presentation reasons, only the concept names and attribute values are included in the figure.
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specifications of the corresponding parent node. For the given example, the specifications
are requests for email addresses, fax numbers, and phone numbers, respectively. For
a given utterance, the sequence of concepts is produced using the methods described
in Chapter 6. The machine translation approach translates the input sentence into a
sequence of concepts and provides an alignment between words and concepts. In the
example, the word sequence “I would like” is aligned to the concept @want question, the
word sequence “to speak with” is aligned to the concept @connect, and so on. These
alignments are used in order to extract the attributes for each concept out of the aligned
words. Each concept together with its attributes is then incorporated into all nodes of the
tree in which the concept’s name occur. In Figure 7.1, the concept @person{Mr. Miller}
is incorporated into two nodes. A tree being instantiated with the attribute values derived
from user input is called an instance tree.

7.1.2 Basic Dialogue Framework

The basic framework of the dialogue system is depicted in Figure 7.2. The XML-based
dialogue description consists of different dialogue states, subdividing a dialogue into
smaller sections. Each dialogue state may again be subdivided into several action states.
During a dialogue transaction, the dialogue manager incorporates the knowledge from
user input into the knowledge tree. If the subsequent dialogue state is not explicitly given
by the dialogue description, the dialogue manager will determine the next state-action
pair by analyzing the tree’s information content. Depending on the chosen state-action
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Knowledge Tree Dialogue Description

Dialogue
Manager

<dialogue>
  <dstate name="start">
    <action name="collect">
      <greetings/> 
      <recognize/>
      <nlu/>
    </action>
  </dstate>
     .
     .
     .
  <dstate name="end"
    <action name="present">
      <tts/>
    </action>
    <action name="failure">
      <tts/>
    </action>
  </dstate>
</dialogue>

Figure 7.2: Basic structure of the dialogue system: The dialogue manager reads in an
XML-based dialogue description and a task specific knowledge tree. During a dialogue
transaction, the dialogue manager incorporates information gained from user inputs into
the knowledge tree and determines the next dialogue state-action by analyzing the tree’s
information content.
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pair, the dialogue manager will execute only those dialogue commands that are specified
in the dialogue description for the chosen pair.

7.1.3 Dialogue Course Management

During a dialogue transaction, instance trees are built from the original knowledge tree.
Concept-attribute pairs that have been retrieved from user input are incorporated into
these instance trees. If there is only one path from the root to a leaf satisfying the
property that all necessary concept-attribute pairs from nodes along that path are filled
(illustrated by the green path in Figure 7.1), the user’s request can be answered by the
dialogue system. If more than one completely filled path exists, the data retrieved from
the user is ambiguous and the user is asked to provide more information so that the
dialogue system can further reduce the set of candidates.2 If there is no path from the
root to a leaf such that all concepts along that path have attribute values, some of the
nodes are still empty. In this case the system must ask for additional information in
order to fill the remaining nodes. In general, there are several possibilities to continue
a dialogue. Therefore, we introduce a cost function that computes a score for all nodes,
paths, and trees. Starting from the root node, the dialogue manager chooses that node,
whose corresponding subtree has minimal cost. Besides choosing the subsequent dialogue
state, the dialogue manager also chooses the next dialogue action, which can be verifying
information stored in a node in case of low confidence of the recognized word sequence,
resolving ambiguities, asking for additional information, or answering the user’s request.
The decision rule for choosing the next dialogue state-action pair is given in the following
equation:

pŝt`1, âtq “ argmax
st`1,at
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Similar to the problem of natural language understanding described in Section 6.1, Equa-
tions 7.1 and 7.2 induce two different approaches: we could either try to model the
posterior probability of the joint event pst`1, atq directly or decompose the joint event
into two probability distributions, a task model that describes the state transitions and
a dialogue management model that describes the allowed dialogue actions. The first
approach requires an S ˆ A ˆ S lookup table. If a dialogue state explicitly encodes all

2 Of course, this simple strategy is not able to detect other kinds of ambiguities that may occur during
a dialogue session. For example, ambiguities caused by homophones are not covered by this strategy.
Additional methods for handling ambiguities are described in Section 7.2.
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the information a dialogue system has collected so far, the corresponding lookup table
will become huge, depending on the number of different states and actions. In the second
approach, we have to model and estimate two different probability distributions: a task
model that might use a reduced S ˆ A ˆ S lookup table and the much smaller S ˆ A
table for the dialogue management model. At this point it is not entirely clear which
approach would lead to a more robust dialogue system. Another problem is how to
collect a reasonable number of training data in order to estimate the models’ parameters.
Especially when building a dialogue system for a new domain, getting samples of dialogue
transactions is often hard if not impossible. Training samples should ideally be collected
during actual human-machine interactions, which already requires the implementation of
a reasonable strategy. Therefore, we discard the probability function in Equation 7.1 and
use a decision tree for determining the next state-action pair. In order to reduce the
number of states, we introduce meta-states that describe the tree’s information state on a
more coarse level. For example, if the dialogue system must decide whether it can answer
the user’s request it is sufficient to know whether a fully informed path from the root to a
leave exists, which is a binary information. The actual values of the nodes can be ignored.

7.2 Feature Functions

For the cost function, different features and knowledge sources can be taken into account.
We will use the following node-specific features.

7.2.1 Word Confidence Measures

The confidence measure described in Section 5.3 is probabilistic and exploits only in-
formation that is contained in the output word graph of the speech recognition system.
After computing the confidence, each recognized word is tagged as either correct or wrong,
depending on whether its confidence exceeds a given threshold τ . Denote Wpcq the set
of words that are assigned to a concept c. Then, the first feature for node n is defined as
follows:

v1pnq – min
cPCpnq

"ˆ

ź

wPWpcq

rppwq

˙
1

|Wpcq|
*

, (7.3)

where Cpnq is the set of concepts for node n and Wpcq is the multiset of words that are
aligned to concept c. The feature function v1pnq computes the minimal geometric mean
of the word confidence values for concepts c in node n.

7.2.2 Importance and Degree of Concept and Attribute Instances

The importance of a concept c and of an attribute a depends on the given domain. For
the telephone directory example, the last name of a person is more important than its
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first name. Therefore, we introduce a ranking r describing the relevance of concepts and
attributes. Consequently, a person’s last name is mandatory (rpaq “ 1) whereas the
first name is supplementary (rpaq “ 0). The ranking of concepts and attributes is taken
into account by summing over all concepts and attributes, respectively, for which the
associated attribute value is required but has not yet been instantiated by user input. For
an attribute a of a concept c, we compute:

fpaq ÞÝÑ

"

1 if attribute a is assigned a value
0 otherwise.

v2pnq –
ÿ

cPCpnq

ÿ

aPApcq

δprpaq, 1q ¨ δpfpaq, 0q ,
(7.4)

where Cpnq is the set of concepts of a node n and Apcq is the set of attributes belonging
to a concept c. v2pnq counts the number of mandatory attributes for node n that still
have no value. Here, δp¨, ¨q denotes the Kronecker function. The importance rpcq of a
concept c can be derived from the maximum ranking of its related attributes. However,
for some nodes, it is more convenient to fix a concept’s rating independently of the related
attributes. Therefore, we compute the third feature for node n as follows:

gpcq ÞÝÑ

"

1 if concept c is sufficiently instantiated
0 otherwise.

v3pnq –
ÿ

cPCpnq

δprpcq, 1q ¨ δpgpcq, 0q .
(7.5)

Again, δp¨, ¨q denotes the Kronecker function. A concept c is sufficiently instantiated if
all its related attributes with ranking rpaq “ 1 have already been assigned values, that
is, |ta P Apcq|rpaq “ 1, fpaq “ 1u| “

ř

aPApcq
rpaq. The feature function v3pnq counts the

number of concepts for node n that are insufficiently instantiated.

7.2.3 Degree of Ambiguity

Ambiguities within a spoken dialogue system can result from several sources: misrecog-
nized utterances, errors during the natural language understanding step, or ambiguous
user language [Ammicht & Potamianos` 01]. In the context of a telephone directory
assistance, ambiguities may also occur from proper names that can be used as both first
names and last names. Another source of ambiguities are homophones, that is, proper
names that have the same pronunciation but different spellings can result in additional
ambiguities that must be detected and resolved by the dialogue system. In the latter
case, the speech recognition system simply constructs a list of all possible sentences with
different homophone names and leaves it to the dialogue manager to resolve this kind of
ambiguity. The dialogue manager constructs an instance tree for every sentence hypothesis
that is delivered by the recognition system. If an ambiguity has been detected in node n,
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this is annotated in the cost vector:

ambpnq ÞÝÑ

"

1 if node n has ambiguous information
0 otherwise.

v4pnq – ambpnq .

(7.6)

The feature function v4pnq keeps a record of detected ambiguities for node n. If the
ambiguity is resolved by the dialogue system, the ambpnq flag is reset to 0.

7.2.4 Contradictory Information

A node n contains contradictory information if an already instantiated attribute is over-
written by a new value that is inconsistent with the old one. In this case, the following
feature is set to 1:

cntpnq ÞÝÑ

"

1 if node n has contradictory information
0 otherwise.

v5pnq – cntpnq .

(7.7)

The feature function v5pnq keeps a record of nodes that contain contradictory informa-
tion. Note that the number of SQL results for a database query of a node containing
contradictory information is always 0.

7.2.5 Number of SQL Results

If the number of database entries returned from a database query is too large, the user
should refine his request. If no database entry has been returned, the answer to the user’s
request is not covered by the database or the request should be less restrictive. The
number of SQL results is taken as an additional feature for the cost vector. Let tpqq be a
table returned by a database query q. Then, feature v6pnq is defined as follows:

v6pnq – |tpqnq| , (7.8)

where | ¨ | describes the number of table entries. Thus, the feature function v6pnq simply
counts the number of returned table entries.

7.2.6 Verification of Information

Since automatic speech recognition is error-prone, it seems reasonable to allow for verifi-
cation questions in order to verify the attribute values of some concepts, particularly, if
the confidence of the aligned words is low. Verification of node information is taken as an
additional feature for the cost vector:

verfpnq ÞÝÑ

"

1 if information in n has been verified
0 otherwise.

v7pnq – verfpnq .

(7.9)
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The feature function v7pnq keeps a record of whether the information stored in node n
has been verified by the system.

7.3 Computing Dialogue Costs

For each input sentence, a semantic analysis is performed. The concept-attribute pairs
are extracted and inserted into temporary arrays for all tree nodes that are associated
with these pairs. Temporary arrays are used in order to detect contradictory information.
Dialogue costs are then computed on different levels: local node costs, path costs, and
tree costs.

7.3.1 Node Costs

For a node n, the computation of node costs is done by applying the feature functions
described in Section 7.2. For a tree t, this yields node-specific cost vectors vtpnq consisting
of feature values computed from the user input and the available knowledge sources:

vtpnq “

¨

˚

˚

˚

˝

v1pnq

v2pnq

...
v7pnq

˛

‹

‹

‹

‚

, n P nodesptq . (7.10)

Here, nodesptq is the set of nodes for an instance tree t. The node costs are local costs and
are computed independently from each other. Although not expressed in the formulae,
some cost function values depend on the input modality used. For example, when using
text input via keyboard in contrast to speech input, the confidence is always set to 1.0,
and the verification function is set to 1, accordingly.

7.3.2 Path Costs

For many applications, a knowledge tree has only a moderate number of leaves. Since a
tree has as many paths as leaves, there is no need to combine the costs of different paths
within all parent nodes. Instead, all paths of a tree are treated separately. For computing
the costs of a path π for an instance tree t, we simply add the node costs for all nodes
along this path π.

vtpπq “
à

nPπptq

vtpnq . (7.11)

The combination function ‘ for combining node-specific cost vectors is defined as follows:
most of the feature values are added component-wise, except the confidence feature and
the feature that computes the number of SQL results. Here, the confidence of a path is
defined as the minimum of the confidence values of all its nodes. For the SQL feature, we
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internally expand the SQL query by additional “where” constraints that are given by the
information stored in the nodes along the path. At the end of the computation, each path
is assigned a cost vector corresponding to the costs that arise for continuing the dialogue
along that path.

7.3.3 Tree Costs

At the end of the path costs computation, each path is assigned a cost vector corresponding
to the costs that arise for continuing the dialogue along that path. If there are different
possible paths that may conclude the dialogue, the dialogue manager will choose the
optimal scored path in order to proceed the dialogue. This requires a comparison function,
for which we use a decision tree. The decision tree determines the optimal scored path of
an instance tree. By equating a tree’s costs with its optimal scored path, we can use the
decision tree also for determining the optimal scored instance tree.

7.4 Selection of Dialogue State-Action Pairs

There are different dialogue actions that can be chosen by the dialogue manager in order
to continue a dialogue. Typical dialogue actions are collecting information and presenting
database query results to the user. The choice of the subsequent dialogue action depends
on the costs that have been computed for each path of a tree. Since the best-scored path
as well as the subsequent dialogue action are determined by decision trees, the structure of
the decision trees has an immediate influence on the dialogue strategy. A partial decision
tree for choosing the subsequent dialogue action is shown in Figure 7.3. If the confidence
of some information is lower than a given threshold, the information stored in the node
with the lowest confidence is explicitly verified by additional system requests. If the best-

.

.

.
action: verify

action: ask for information

action: disambiguate

y n

y n

y n

y n

=0 =1

action: failure

sql_size?

action: present

is_contradictory?

is_confident?

is_complete?

is_ambiguous?

>1

action: constrain

Figure 7.3: Partial decision tree for determining the subsequent dialogue action.
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Table 7.1: Recognition results of the speech recognition module integrated into a former
version of the spoken dialogue system. This version was used during the field tests where
humans interacted with a fully functional spoken dialogue system.

corpus TelDir-Speech WER [%] CER [%] CER [%]
baseline

development 15.7 14.3 10.5
evaluation 16.4 14.1 9.4

scored path includes ambiguous information (which is marked by the ambiguity function,
cf. Equation 7.6) that cannot be resolved by the system, the user is asked by the system
to solve this ambiguity. If the best-scored path is incomplete because at least one node
is empty, the system asks for additional information in order to complete this path. If
there is a complete path with a moderate number of SQL answers, the system replies to
the user’s request.

7.5 Results

Experiments were performed using a spoken dialogue system developed for the telephone
directory assistance task TelDir. The feature functions described in Section 7.2 were
implemented and integrated into a former version of the dialogue system. The evaluation
was done in a field test where humans interacted with a fully functional system. The
speech recognition module was trained on a subset of the TelDir corpus excluding
spelling units. Furthermore, no speaker-adaptive techniques or normalization methods
were applied. Table 7.1 lists recognition results for the development and evaluation test
set of the speech recognition module used for this field test. Word posterior probabilities
were employed as confidence measures and were computed on bigram-decoded word
graphs. All confidence measure-related free parameters, that is, the acoustic scaling
factor, the language model scaling factor, and the tagging threshold, were optimized on
the development test set beforehand. Table 7.1 summarizes the corresponding confidence
error rates. The detection error tradeoff curve is depicted in Figure 7.4.

The natural language understanding component was based on statistical machine trans-
lation using the alignment templates approach [Macherey & Och` 01]. The underlying
database contained approximately 500 German and foreign proper names as well as
personal-related data, including office phone numbers, home phone numbers, the position
of a person in a company, and so on. For evaluating the performance of the dialog
management module, a set of 40 dialogue transactions of humans interacting with the
dialogue system was recorded and analyzed. These dialog transactions were judged by
a human who decided whether the dialog manager chose the correct or wrong action
depending on the user’s query. In 88% of all cases, the dialog manager was able to choose
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the correct subsequent action and finished the dialog successfully. For text input, the
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Figure 7.4: Detection error tradeoff curve for the TelDir corpus with the settings used
for the field test. The point of intersection between the diagonal and the detection error
tradeoff curve corresponds to the equal error rate.

attribute error rate was lower than 5%. Therefore, the more interesting input modality
is speech. Despite the high word error rate, the concept translation proved to be robust
against recognition errors. Table 7.2 summarizes the results for the 40 speech-based dialog
sessions. In case of poor recognition performance, the low confidence values often caused
the dialog manager to verify erroneous data explicitly.

The following two examples describe typical dialog sessions as they occurred during the
logging of the 40 dialogs that were evaluated. Recognized words that were rejected due to
low confidence values are underlined. The output of the natural language understanding
component is given as a sequence of concepts for every input sentence. The tree’s state
and the chosen dialog action are listed explicitly in the examples, but were kept hidden
from the users interacting with the dialogue system. The first example is a dialog
where no recognition errors occurred. The second dialog covers the case, where the
confidence measure caused the dialog manager to verify some information explicitly. For
understanding purposes, the dialog sessions are translated into English.
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System: Hello. This is the RWTH telephone directory assistance. You can ask questions about
telephone numbers, fax numbers, and email addresses of persons as well as companies.
How may I help you?

User: Uhm, what shall I do now?

recog: [hesitation] what shall I do now

nlu: @FILLER{what shall I do now}

tree: all tree nodes empty Ñ select action: ask for information

System: Do you need a telephone number, a fax number, or an email address?

User: Can you give me the number of Mr. Macherey?

rec: can you give me the number of [pause] Mr. Macherey

nlu: @can question{can you give me} @telnum{the number of} @person{Mr. Macherey}

tree: found path with completely filled nodes, SQL-size ą 1
Ñ select action: disambiguation

System: I have more than one person entries with the name Macherey in my database. Please
refine your request.

User: Mr. Wolfgang Macherey

rec: Mr. Wolfgang Macherey

nlu: @person{Mr. Wolfgang Macherey}

tree: found path with completely filled nodes, SQL-size “ 1 Ñ select action: present

System: The telephone number of Mr. Wolfgang Macherey is 80 21613. Shall I repeat the
number?
. . .

Figure 7.5: First example of a real human-machine dialogue transaction that was logged
during the field test of the TelDir dialogue system.

The two example dialogues from Figures 7.5 and 7.6 show some interesting properties of
the tree-based dialogue management.

• Mixed initiative dialogue system
The dialogue system is per construction a mixed-initiative system. The first example
shows an inexperienced user who does not know how to use the dialogue system.
As a result his first response leaves the knowledge tree in its initial state and the
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System: Hello. This is the RWTH telephone directory assistance. You can ask questions about
telephone numbers, fax numbers, and email addresses of persons as well as companies.
How may I help you?

User: I need the number of Mrs. Hummel

recog: [noise] need the number of Mrs. Mail

nlu: @need question{need the} @telnum{number of} @person{Mrs.} @FILLER{Mail}

tree: last name required, confidence low Ñ select action: verification

System: Excuse me but I did not understand the last name. Please repeat.

User: Hummel

rec: Hummel

nlu: @person{Hummel}

tree: found path with completely filled nodes, SQL-size “ 1 Ñ select action: present

System: The telephone number of Mrs. Hummel is . . .

Figure 7.6: Second example of a real human-machine dialogue transaction that was logged
during the field test of the TelDir dialogue system.

dialogue system continues with asking whether the user wants a phone number, a
fax number, or an email address. In contrast to this, the second example shows an
experienced user who puts more information into his first utterance (phone number
+ person name). Although the last name was not understood, the dialogue system
extracts the information and continues the transaction with a request for the missing
information.

• Ambiguity resolution
The first example shows a simple case of ambiguity resolution. The SQL database of
the application contains two entries of people having the same last name. Therefore,
the number of retrieved SQL results is larger than 1 and the path in the tree is
considered to be ambiguous. As a result the user is asked to refine his request.

• Error handling and recovery strategy
The second example shows a situation where a speech recognition error occurs. The
person’s last name is misrecognized, which results in a low confidence value for the
last name. Independent of the speech recognition confidence value the language
understanding module maps the misrecognized word onto the filler concept, which
leaves the attribute value for the last name of the concept @person empty. Thus, the
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Table 7.2: Dialogue evaluation using speech as input modality. As evaluation criteria,
the attribute error rate (AER), the percentage of correct chosen successor states, and the
percentage of successfully finished dialog sessions are used.

domain TelDir AER [%] choice of best successful sessions [%]
# dialogues successor state [%]

40 18.4 88.4 90.0

dialogue manager receives two signals: (1) a low confidence and (2) an incomplete
path caused by the missing attribute value. According to the decision tree depicted
in Figure 7.3 the dialogue manager first checks the confidence of the tree’s nodes
before testing for the completeness of the paths. As a result, the verification action
is chosen.

7.6 Summary

In this chapter, we described the framework for an application-independent dialogue
management system. We proposed several feature functions for spoken dialog course
management and investigated whether the proposed cost functions are able to select those
dialog states during a dialog session that lead as quickly as possible to a final state that
is likely to meet the user’s request. In 88% of all cases, the dialog manager was able to
choose the best successor state during a dialog session. Despite a relatively high word
error rate, the statistical natural language understanding component proved to be robust
against recognition errors.

One of the advantages of this approach is that the features do not depend on the given
domain. For a concrete task, the domain-specific knowledge is provided by XML-based
dialogue descriptions. The strict separation between application-dependent knowledge
sources and the general feature-based dialogue management system makes it easy to
change the application domain. Thus, the dialog management module can be used for
different domains without the necessity to change the core implementation.

Another advantage is that the proposed tree-based dialogue system is a mixed-initiative
system by construction because a user can always provide additional information without
being explicitly asked for. In each dialogue turn, all extracted information is incorporated
into the tree’s knowledge base, which then affects the selection of the next dialogue action.
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Chapter 8

Error Handling in a Tree-based Spoken
Dialogue System

In spoken dialogue systems, errors can occur on different levels of the system’s architec-
ture. Because errors cannot be avoided in general, each component should have means
of detecting errors. In this chapter, we take a closer look at how errors can be detected
within a tree-based spoken dialogue system and what strategies can be implemented to
correct errors.

8.1 Detecting Errors in a Spoken Dialogue System

One of the principal causes for errors during a dialogue transaction are erroneous recog-
nitions, which often lead to incorrect semantic interpretations. Even if the speech input
signal has been correctly recognized, the natural language understanding component can
produce error-prone sentence meanings due to the limitations of its underlying model.
Because errors cannot be avoided in general, the dialogue manager should at least be
“aware” of such errors when they occur. To cope with this problem, we aim at detecting
errors in those stages where they occur and propagate them through the next stage up
to the dialogue manager. To measure the certainty of the components’ outputs, we need
confidence measures for both speech recognition and natural language understanding. The
confidence measures are passed to the dialogue manager who then determines whether
the collected information provided by the user must be confirmed or if another dialogue
action should be chosen.

The distinction whether the speech recognition output or the language understanding
output is likely to be wrong is of less importance for the dialogue manager. Therefore, the
values from both confidence types are assigned to one out of two classes, correct or wrong,
depending on the confidence thresholds, and then are combined using the logical and
operator. However, in response to the modification of the dialogue strategy introduced in
Section 8.3 we keep the actual confidence values and use the above described combination
only when computing tree-costs and storing information in meta-states.

A shortcoming of passing confidence values directly to the dialogue manager is that
intermediate components, such as the language understanding module, cannot benefit
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from the error assessment of the preceding components. Therefore, we want to investigate
in the following section how speech recognition confidence values can be integrated into
the language understanding module. For this, we refine the language understanding
module by incorporating speech recognition confidence values as an additional feature
function, thus, making the language understanding module dependent on the certainty
of the recognition output. Note that this is a different approach compared to the com-
bination proposed in Section 6.8. While in Section 6.8, the combination was performed
as a rescoring step using optimal weights, we directly integrate the speech recognition
confidence values as an additional feature into the language understanding model and
train the model parameters using the GIS algorithm.

8.2 Confidence-Dependent Natural Language
Understanding

During a dialogue transaction, the dialogue manager collects information provided by
the automatic speech recognition and natural language understanding components and
decides on the subsequent dialogue action. In case of recognition errors, the question is,
whether the language understanding component can benefit from the confidence scores
provided by the speech recognition module. Instead of just forwarding the speech recog-
nition confidence scores to the dialogue manager, we want to incorporate the confidence
values into the language understanding module. Because we have defined the language
understanding approach within the maximum entropy framework, we can easily integrate
the confidence scores of the speech recognition module by defining an appropriate feature
function. For this purpose, we use the speech recognition confidence measures introduced
in Section 5.3. Although the maximum entropy training is in general not restricted to
binary valued feature functions, we use the confidence threshold in order to preclassify a
word-confidence pair. The feature functions defined in Section 6.5.1 are defined for text-
based input. However, the speech recognition confidence value of a hypothesized word
depends on the acoustic observations and the hypothesized time boundaries for this word.
Therefore, we extend the notation of a feature function by adding acoustic feature vectors
and time boundaries to the argument list. Note that the original framework for text-based
feature functions is a special case of this more general framework that we obtain if we
replace the time boundaries by position indices and if use an empty observation vector.
Using this extension, we can define the following binary feature function:

hCASR,τ,cpcn´1, cn, rw; tsn`2
n´2, x

T
1 q “

"

1 if p̃prwn; tn´1 ` 1, tns|xT
1 q ě τ ^ cn “ c

0 otherwise.
(8.1)

Here, rw; tsn`2
n´2 “ rwn´2; tn´3 ` 1, tn´2s, . . . , rwn`2; tn`1 ` 1, tn`2s denotes the sequence of

words together with the time boundaries, and τ denotes the speech recognition confidence
threshold, which has been determined on the development test set beforehand. In contrast
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to the combination proposed in Section 6.8, where we combined speech recognition with
language understanding knowledge sources on a sentence level by rescoring an N -best list
repository with an optimal set of feature weights, we now directly incorporate a speech
recognition knowledge source into the underlying model of the language understanding
component. Because the new feature function requires a speech recognition confidence
measure, we have to decode the training corpus in order to derive speech recognition
confidence values. Details and experimental results can be found in Section 8.4.

8.3 Refined Confirmation Strategy

We shall refine the decision tree-based dialogue strategy introduced in Section 7.4 by al-
lowing explicit and implicit verification questions. To accomplish this, the is confident?

node is modified such that the speech recognition confidence value is assigned to one out
of three classes: correct, unsure, and wrong. The classification is based on two different
thresholds τ1 and τ2, with 0 ď τ1 ă τ2 ď 1, separating the interval r0, 1s into three disjoint
sets r0, τ1q, rτ1, τ2q, and rτ2, 1s. If the confidence of the recognized utterance falls into the
first interval r0, τ1q, an explicit confirmation dialogue is started. If the confidence value is
an element of the second interval rτ1, τ2q, the dialogue manager will continue the dialogue
with an implicit confirmation question. In the third case, no confirmation strategy is used.
To also handle language understanding errors, we always choose an explicit confirmation
strategy if the language understanding-based confidence value exceeds a given threshold.
For each user input, a semantic analysis is performed. The concept-attribute pairs are

.
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Figure 8.1: Refined decision tree for determining the subsequent dialogue action. The
is confident? node uses two confidence thresholds τ1 and τ2, thus, allowing for implicit
and explicit verification questions.

extracted and inserted into temporary arrays for all tree nodes that are associated with
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these pairs. Temporary arrays are used in order to detect contradictory information. Cost
vectors are computed for all nodes and paths of an instance tree according to Section 7.3.
If there are several paths that may continue the dialogue, the dialogue manager will
choose the path with the best score in order to proceed the dialogue. Note that the
refined strategy of choosing an implicit confirmation question can affect the user’s next
utterance. At this point it is not clear whether allowing implicit confirmation questions
is actually useful.

8.4 Results

Experiments for confidence-based natural language understanding were performed for
both tasks TelDir and Taba. The refined dialogue strategy was evaluated in a second
field test using a former version of the TelDir spoken dialogue system.

8.4.1 Confidence-Dependent Natural Language Understanding

Training a feature weight for the confidence-dependent feature function defined in Equa-
tion 8.1 requires a decoding step during training in order to obtain the confidence mea-
sures. However, decoding the training data with the same prototype vectors that we
obtained from the acoustic model training would yield error rates that are too optimistic.
Therefore, we split the training corpus into five partitions and estimate new prototype
vectors in a round-robin fashion, that is, we train on four partitions and use the fifth
partition as held-out set. By shifting the partitions five times, we can decode the training
corpus and obtain error rates that are closer to the error rates we expect from the test
corpora.

Because we want to preserve the correct sequence of concept tags, we keep only those
speech-decoded source sentences that produce the same number of tokens as the reference
source sentences. Thus, the new training corpus consists of two parts. The first part
consist of the reference transcriptions and is equal to the corpus used in Chapter 6, that
is, it contains no errors. The second part consists of the now speech-decoded training
sentences. The so augmented training corpus is used to train a new model using the
maximum entropy framework. The number of GIS iterations for the augmented training
set was set to 1000.

Table 8.1 lists results for both language understanding tasks. For comparison reasons
the table includes both the baseline results that were obtained using the training reference
sentences as well as the baseline results that were obtained when using the augmented
training corpus. The table presents results with and without categorization. The results
show small improvements for the Taba task. However, for the TelDir task, the perfor-
mance slightly deteriorates, which might be caused by the fact that the overall number of
training data for TelDir is much smaller compared with Taba. Thus, the results show
that on top of the baseline system, adding speech recognition-based confidence features
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Table 8.1: Confidence-dependent natural language understanding. The “augmented
training corpus” row lists slot error rates for a model trained on the augmented training
corpus. The last row in each table shows results for the augmented natural language
understanding (NLU) model that contains the automatic speech recognition (ASR)
confidence value-based feature function.

corpus TelDir-Speech Slot-ER [%] Slot-ER [%] + Categ
development evaluation development evaluation

Features

Baseline 10.3 12.7 6.8 10.6
augmented training corpus 10.3 12.7 6.9 10.9
+ ASR confidence values 10.4 12.6 6.8 11.1

corpus Taba-Speech Slot-ER [%] Slot-ER [%] + Categ
development evaluation development evaluation

Features

Baseline 13.7 12.6 11.4 11.6
augmented training corpus 13.5 12.7 11.1 11.2
+ ASR confidence values 13.5 12.6 11.2 11.2

do not generalize well for the TelDir task.

Table 8.2: Dialogue evaluation using a refined confirmation strategy. As evaluation
criteria, the slot error rate, the attribute error rate, and the percentage of successfully
finished dialogue sessions are used.

domain TelDir Slot-ER [%] AER [%] successful sessions [%]
# dialogues

35 17.0 15.0 88.6

8.4.2 Refined Dialogue Strategy

In a second field test, we have recorded 35 dialogue sessions of users interacting with a
former version of the TelDir spoken dialogue system that did not include spelling units.
The recorded dialogues were evaluated manually by comparing the system’s decisions
with human judged decisions. The results are listed in Table 8.2. The percentage of
successful sessions is with 88.6% smaller than the success rate of 90.0% that was achieved
in the first field test. Although the number of evaluated dialogue sessions is too small
in order to draw conclusions, it seems that implicit confirmation strategies may more
often lead to confusion because in case of an error the user gets the impression that
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the dialogue system tries to continue the dialogue with a wrong knowledge base, which
negatively affects subsequent user responds compared to the case where information is
explicitly confirmed. Therefore, explicit confirmation strategies may be more suitable for
error-tolerant spoken dialogue systems.

8.5 Summary

In this chapter, we used confidence measures based on posterior probabilities for both
modules the automatic speech recognition component and the natural language under-
standing component. The confidence scores of both components are passed as features to
the dialogue manager who then determines the subsequent dialogue action. We refined
the confirmation strategy by using implicit and explicit verification questions. The refined
dialogue strategy was tested within a field test where we logged and analyzed 35 dialogue
sessions.

We also extended the language understanding framework by directly taking the speech
recognition-based confidence measure into account. For this, the speech recognition-
based confidence values were preclassified into one out of two classes and integrated as
an additional feature function into the maximum entropy-based language understanding
component.
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Chapter 9

Summary and Outlook

This chapter summarizes the main contributions of this thesis and presents an outlook on
interesting and promising extensions of the work presented in the previous chapters.

9.1 Summary

In this thesis, we proposed and investigated statistical methods for natural language
understanding and spoken dialogue systems. The main contributions are summarized in
the following itemization.

• Natural language understanding is a machine translation problem
We defined the problem of natural language understanding as a special instance of
a machine translation problem where we translate from a natural language sentence
into a formal concept language. We investigated two approaches that result from
rewriting the decision rule for natural language understanding: the first approach is
based on the source-channel paradigm and factorizes the posterior probability into
two separate distributions, the translation probability and the lexicon probability;
the second approach is based on maximum entropy and directly models the posterior
probability.

• Effect of alignments, categorizations, and contexts on slot errors
We investigated the effect of different alignment models and categorizations on the
slot error rate and proposed several feature functions that are suitable for natural
language understanding. We showed the importance of local context dependencies
and analyzed the effect of maximum entropy-based segmentations. Furthermore,
we investigated how both approaches perform if speech input is used as opposed to
text input.

• Confidence measures for natural language understanding
We defined posterior-based confidence measures for natural language understanding
that are computed on concept graphs and alternatively on N -best lists. Together
with the speech recognition-based confidence measures, the language understanding
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confidence measures are passed to the dialogue manager who takes these values into
account when determining the next dialogue action.

• Combining speech recognition and natural language understanding
We provided an efficient framework for combining speech recognition with natural
language understanding. Using the minimum error training framework we defined
several feature functions derived from speech recognition and natural language
understanding and showed significant improvements when combining all knowledge
sources in a log linear manner. We showed that a fixed repository of N -best lists is
sufficient in order to determine the feature weights. Furthermore, we showed that
the word error rate can be reduced using language understanding-based feature
functions, and that, vice-versa, the slot error rate can be reduced using speech
recognition-based feature functions. We also showed that both error types can
be minimized simultaneously if the error counts are combined. To the best of our
knowledge this is the first time that the minimum error training framework is applied
to the problem of natural language understanding using speech as input modality.

• Domain-independent dialogue management
We proposed and implemented a domain-independent dialogue manager that uses
trees as fundamental data structure. Based on several feature functions, the dialogue
manager analyses the tree’s information content and decides about the next dialogue
action depending on a cost function. The proposed dialogue architecture is per
construction a mixed initiative system. We showed that it is easy to integrate
additional knowledge sources into the system and evaluated the overall performance
of the dialogue system in two field tests.

• Error-tolerant dialogue modeling
We extended the set of feature functions used for the maximum entropy-based
natural language understanding component by confidence-based features derived
from automatic speech recognition. For both tasks except for the TelDir evaluation
corpus this lead to a slight deterioration in terms of slot-error rate. Furthermore,
we refined the confirmation strategy of the dialogue system by introducing implicit
and explicit verification questions depending on the current confidence level. The
refined dialogue strategy was evaluated within a field test for the TelDir task.

• Efficient computation of confidence measures for speech recognition
We have described an efficient algorithm for computing confidence measures based
on word-conditioned word graphs. The algorithm described is suitable for online
recognitions under realtime constraints. In contrast to methods described in the
literature that are based on time-conditioned word graphs we showed that a com-
putation based on word-conditioned graphs significantly reduces the computational
effort because no additional language model lookups are necessary. We also de-
scribed and analyzed various strategies for applying an F-MLLR online adaptation

132



9.2 Outlook

that is suitable for realtime recognition systems. We described a modified forward-
backward pruning algorithm for word-conditioned word graphs that has many useful
properties suitable for realtime recognition systems.

• Implementation and overall system architecture
For the investigations reported in this thesis, the author has implemented a full
dialogue system including the online realtime speech recognition system, the nat-
ural language understanding component, and the dialogue system. The code base
consists of around 65K lines of mainly C++ code, excluding third party software or
tools provided by others. The speech recognition training environment as well as the
decoding environment for offline tests were fully parallelized and distributed over an
SGE cluster. The speech recognition and the language understanding module were
designed such that they share the same decoder core as well as the implementation
of graphs, N -best lists, confidence measures, and so on. In addition to the dialogue
management system, a dialogue description language based on XML was developed
that is described in part in the appendix of this thesis.

9.2 Outlook

There are many promising extensions and interesting alternatives to the work presented
in this thesis from which some are listed in the following.

• Natural language understanding as an information retrieval task
In this thesis, the task of natural language understanding was defined as a special
translation problem where we translate from a natural language input to a formal
target language that consists of concepts. This approach requires a bilingual training
corpus. Although we used flat concepts and avoided to provide explicit alignments
between words and concepts, which makes the annotation cheap, an approach where
no intermediate meaning representation is necessary would be even more appealing.
A first step towards this goal could be to define natural language understanding as a
special information retrieval task. Instead of transforming sequences of concepts into
SQL queries, the application database could be defined as a large set of documents
where each valid dialogue goal together with the answer defines one document. The
goal would then be to retrieve the document that satisfies all the constraints the user
has given. If too many documents remain the user is asked for more information in
order to further narrow down the number of retrieved documents. This could define
a first approach where the input sentence itself is used as meaning representation.

• Episode features for spoken language understanding
The combination of speech recognition and natural language understanding could
be further refined. In the context of spoken dialogues systems one could also
introduce episode and discourse features that take previous user utterance and
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derived concepts into account. For example, if during a dialogue transaction,
the value of a concept was explicitly confirmed, this information could be directly
integrated into the language understanding model as an additional feature function.

• Maximum entropy-based dialogue strategies
The decision tree-based dialogue strategy described in this thesis employs several
feature functions that are derived from the current information state of the dia-
logue system. This could be easily replaced by a maximum entropy-based classifier
where the dialogue actions define the classes. In order to derive a sufficiently large
number of training examples, dialogue simulations would be necessary in order to
train the maximum entropy-based model. This would also allow a comparison of
different dialogue strategies based on decision trees, maximum entropy models, and
reinforcement learning approaches.
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Appendix A

Symbols and Acronyms

A.1 Mathematical Symbols

A˚ adjoint matrix of A
AJ transposed matrix A
cM
1 sequence of concepts

fJ
1 source sentence

eI
1 target sentence

fj source word in position j of the sentence
ei target word in position i of the sentence
aJ

1 word alignment mapping from source to target positions
`i N -best list entry
η hidden Markov model
hp. . . q feature function
λL

1 feature weights
CASR confidence measure for automatic speech recognition
CNLU confidence measure for natural language understanding

LpcM
1 , c̃M̃

1 q Levenshtein alignment between sentences cM
1 and c̃M̃

1

V vocabulary
Fd feature space
K set of word classes
Q auxiliary function
rc; ν, ns concept hypothesis with start- and end position
rw; τ, ts word hypothesis with start- and end time
wN

1 sequence of words
xT

1 sequence of acoustic vectors
τ start time or threshold
Φp. . . q forward probability
Ψp. . . q backward probability
pr general distribution
p model distribution
δp¨, ¨q Kronecker delta
π path or policy
Vπpsq state value function
Qπps, aq state-action value function
rt reward at time t
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A.2 Acronyms

AER attribute error rate
ASR automatic speech recognition
AT alignment template
ATIS air travel information services
BGD boundary graph density
CAS common answer specification
CER confidence error rate
CRIM Centre de Recherche Informatique de Montréal
DET detection error tradeoff
DARPA Defense Advanced Research Projects Agency
DET detection error tradeoff
F-MLLR feature space maximum likelihood linear regression
EM expectation maximization
GER graph error rate
GIS generalized iterative scaling
HMM hidden Markov model
LDA linear discriminant analysis
LDC linguistic data consortium
MDP markov decision process
ME maximum entropy
MFCC mel frequency cepstral coefficients
MLLR maximum likelihood linear regression
MT machine translation
NGD node graph density
NLG natural language generation
NLU natural language understanding
PCFG probabilistic context free grammar
POMDP partially observable markov decision process
SCT semantic classification tree
SDS spoken dialogue system
SER sentence error rate
SGE sun grid engine
Slot-ER slot error rate
SLU spoken language understanding
SQL structured query language
SLU spoken language understanding
TTS text to speech
WER word error rate
WGD word graph density
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Concept Inventory

B.1 Concepts and Attributes for the TELDIR Corpus
concept attribute concept attribute

name type name type

requests others
‚ @auskunft — ‚ @please —
‚ @brauchen Frage — ‚ @filler —
‚ @koennen Frage — ‚ @spelling sequence string
‚ @wollen Frage — objects
greetings ‚ @department name string
‚ @hello — ‚ @organization name string
‚ @introduction — ‚ @person surname string
conjunction forename string
‚ @and and bool gender string
‚ @or or bool occupation string
yes/no addresses
‚ @yes yes bool ‚ @address flag bool
‚ @no no bool result string
phone, fax, email ‚ @location location string
‚ @connect flag bool

result string
‚ @email flag bool

result string
‚ @faxnum flag bool

result string
‚ @phone numberFlag bool

officeFlag bool
homeFlag bool
mobileFlag bool
officeResult string
homeResult string
mobileResult string
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B.2 Concepts and Attributes for the TABA Corpus

concept attribute concept attribute
name type name type

requests ‚ @train time train time string
‚ @brauchen Frage — ‚ @arrival arrival time
‚ @koennen Frage — yes/no
‚ @kommen Frage — ‚ @yes yes bool
‚ @wann Frage — ‚ @no no bool
‚ @wollen Frage — others
‚ @wollen Aussage — ‚ @kommen —
‚ @Zugbestimmung — ‚ @umsteigen —
greetings ‚ @bitte —
‚ @guten Tag — ‚ @filler —
origin and destination ‚ @meaningful filler —
‚ @origin origin string
‚ @origin and destin origin string

destination string
‚ @destination destination string
‚ @destin and arrival arrivalTime time

destination string
‚ @lp origin and destin origin string

destination string
date and time expressions
‚ @complete time exactTime bool

startTime time
endTime time

‚ @date date date
‚ @day time startTime time

endTime time
‚ @time and date date date

startTime time
endTime time

‚ @time and date ao date date
exactTime bool
startTime time
trainTime string
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B.3 Concept Automata

@Filler

@email

@person

@phone

...

Figure B.1: Concept automata for the TelDir corpus.

@filler

@meaningful filler

@origin

@date

...

Figure B.2: Concept automata for the Taba corpus.
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Appendix C

An XML-based Dialogue Description
Language

The feature functions and selection criterion described in chapter 7 do not use any task-
specific knowledge and can therefore be used for different applications of spoken dialogue
systems. For a concrete task, however, some domain-specific knowledge must be defined
that is provided by three XML files. These files are the concept-attribute table defining
the concepts and attributes for the natural language understanding part, the knowledge
tree collecting and storing information provided by the natural language understanding
module, and the dialogue description specifying concrete dialogue actions.

C.1 Concept-Attribute Table

To represent the meaning of an utterance, a set of domain-specific concepts is used. A
concept is defined as the smallest unit of meaning that is relevant to a specific task. Each
concept may have several attributes. In order to derive the values from the concepts,
we assume that the attributes only depend on their associated concept and its aligned
words. Each attribute can have two rules: one for deriving the attribute values and one
for converting the values into a more formal SQL constraint. Figure C.1 shows a part of
the XML-based concept-attribute table for the telephone directory assistance task.

C.2 Knowledge Tree

This XML file specifies the structure of the knowledge tree. A knowledge tree stores infor-
mation extracted from the user utterances during a dialogue. Each node of the knowledge
tree contains a list of concepts that is associated with this specific node. Additionally,
each tree node has a link to a dialogue state as specified in the dialogue description file
(see Section C.3). For the dialogue manager, this link acts as a mediator between the
knowledge representation and the dialogue description. While the determination of the
subsequent dialogue action only depends on the analysis of the tree’s information content,
the concrete realization and execution of this action is not part of the tree specification
but of the dialogue description. If, for example, the dialogue manager has determined
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<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE concept_attribute_table SYSTEM "ca_table.dtd">

<concept_attribute_table>
<concept name="@person">
<attrib name="surname" type="str" value="" nlu=".." sql=".." rating="man"/>
<attrib name="forename" type="str" value="" nlu=".." sql=".." rating="sup"/>
<attrib name="gender" type="str" value="" nlu=".." sql=".." rating="sup"/>
<attrib name="occupation" type="str" value="" nlu=".." sql=".." rating="sup"/>

</concept>
...

</concept_attribute_table>

Figure C.1: Part of an XML-based concept-attribute table. Each concept may consist of
several attributes. An attribute is a tuple consisting of the attribute’s name, the type,
and its value. The rating specifies the importance of the attribute and can be either
mandatory or supplementary.

the best scored path and decides for the subsequent dialogue action, he will switch to the
next dialogue state as given by the node’s dialogue state name and executes the dialogue
commands of this dialogue state-action pair. A part of the knowledge tree specification
for the telephone directory assistance task is listed in Figure C.2.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE knowledge_tree SYSTEM "knowledge_tree.dtd">

<knowledge_tree name="telephone directory assistance" root="0">
<!-- node definitions -->
<node name="0" alias="Telephone Inquiries" dstate="0">
<concept name="@can_question"/>
<concept name="@want_question"/>
<concept name="@need_question"/>

</node>

<node name="0.1" alias="email" dstate="0.1">
<concept name="@email"/>

</node>

<node name="0.2" alias="fax" dstate="0.2">
<concept name="@faxnum"/>

</node>

<node name="0.3" alias="telephone number" dstate="0.3">
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<concept name="@number"/>
</node>

...
<node name="0.1.1" alias="person" dstate="0.1.1">
<concept name="@person"/>
<concept name="@spelling"/>
<concept name="@location"/>

</node>

<node name="0.1.2" alias="company/institute" dstate="0.1.2">
<concept name="@organization"/>
<concept name="@spelling"/>
<concept name="@location"/>

</node>

<!-- edge definitions -->
<edge> 0,0.1 </edge>
<edge> 0,0.2 </edge>
<edge> 0,0.3 </edge>
<edge> 0,0.4 </edge>

...
</knowledge_tree>

Figure C.2: Part of an XML-based knowledge tree representation. Each node of the tree
has a unique name, an alias, and a dstate referring to a dialogue state in the dialogue
description. A node’s child tags describe the list of concepts that are associated with the
node. The edges between the nodes are defined within the edge definitions section.
The attribute root of the tag knowledge tree defines the name of the tree’s root node.

C.3 Dialogue Description

The XML-based dialogue description consists of different dialogue states, subdividing a
dialogue into smaller sections. In addition to dialogue states for ordinary tasks, such as
greeting the user or presenting some introductory information, there are more specialized
dialogue states corresponding to the nodes of the knowledge tree. These dialogue states
will be chosen by the dialogue manager if the subsequent dialogue state is not explicitly
determined by the dialogue description itself. In the dialogue state START of Figure C.3,
for example, the subsequent dialogue state is explicitly determined by the next state
command, whereas for dialogue state 0 the following dialogue state must be determined
by the dialogue manager.
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<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE dialog_description SYSTEM "dialog_description.dtd">

<dialogue>
<dialogue_state name="START">
<action_state name="arbitrary">
<set variable="TTS_DIR" type="str" value=". . ." />
<next_state name="GREETINGS"/>

</action_state>
</dialogue_state>

<dialogue_state name="GREETINGS">
<action_state name="arbitrary">
<greetings time="0-17" text="Good morning." barge_in="0"/>
<greetings time="18-23" text="Good evening." barge_in="0"/>
<tts barge_in="1"> How may I help you? <tts/>
<nlu/>

</action_state>
</dialogue_state>

<dialogue_state name="0">
<action_state name="guidance">
<tts> Do you need a phone number, fax number, or email address? <tts/>
<nlu/>

</action_state>
</dialogue_state>

...
</dialogue>

Figure C.3: Part of an XML-based dialogue description. A dialogue description consists
of several dialogue states where each dialogue state is subdivided into different action
states. Only those dialogue commands occurring in an action state that corresponds to
the dialogue action as chosen by the dialogue manager are executed.

Since the actions that are performed during a dialogue turn depend on the tree’s
information content, the dialogue states are further subdivided into different action states.
Beside others, these action states include the collection and presentation of information
as well as disambiguation and verification of information. Only those dialogue commands
that occur within the action state chosen by the dialogue manager are executed. A special
action-state is the arbitrary state whose actions are always executed, regardless of the
current dialogue action chosen by the dialogue manager. Figure C.3 shows a part of the
dialogue description for the telephone directory assistance task.
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H. Ney, M. Pastor, D. Picó, A. Sanchis, E. Vidal, J.M. Vilar: Speech-to-Speech Translation
based on Finite-State Transducers. In IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 613–616, Salt Lake City, Utah, May 2001.

[Chen & Goodman 98] S.F. Chen, J. Goodman. An Empirical Study of Smoothing Techniques
for Language Modeling. Technical Report TR-10-98, Center for Research in Computing
Technology Harvard University, Cambridge, Massachusetts, 64 pages, 1998.

[Chen & Rosenfeld 99] S.F. Chen, R. Rosenfeld. A Gaussian Prior for Smoothing Maximum
Entropy Models. Technical Report CMU-CS-99-108, School of Computer Science Carnegie
Mellon University, Pittsburgh, PA, 25 pages, Feb. 1999.

148



Bibliography

[Chow & Roukos 89] Y.L. Chow, S. Roukos: Speech Understanding Using a Unification
Grammar. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp.
727–730, Glasgow, Scotland, May 1989.

[Chow & Schwartz 89] Y.L. Chow, R. Schwartz: The N-Best Algorithm: An Efficient Procedure
for Finding Top N Sentence Hypotheses. In DARPA Speech and Natural Language Workshop,
pp. 199–202, Cape Cod, Oct. 1989.

[Darroch & Ratcliff 72] J.N. Darroch, D. Ratcliff: Generalized Iterative Scaling for Log-Linear
Models. Annals of Mathematical Statistics, Vol. 43, pp. 1470–1480, 1972.

[Davis & Mermelstein 80] S.B. Davis, P. Mermelstein: Comparison of Parametric Representa-
tions for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Trans. on
Speech and Audio Processing, Vol. 28, pp. 357–366, Aug. 1980.

[Della Pietra & Epstein` 97] S. Della Pietra, M. Epstein, S. Roukos, T. Ward: Fertility Models
for Statistical Natural Language Understanding. In Proc. of the 8th Conf. of the European
Chapter of the Association for Computational Linguistics (EACL), pp. 168–173, Madrid,
Spain, July 1997.

[den Os & Boves` 99] E. den Os, L. Boves, L. Lamel, P. Baggia: Overview of the ARISE
Project. In Proc. of the 6th European Conf. on Speech Communication and Technology
(EUROSPEECH), pp. 1527–1530, Budapest, Hungary, Sept. 1999.

[Eckert & Levin` 97] W. Eckert, E. Levin, R. Pieraccini: User Modeling for Spoken Dialogue
System Evaluation. In IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 80–87, Santa Barbara, California, Dec. 1997.

[Epstein & Papineni` 96] M. Epstein, K. Papineni, S. Roukos, T. Ward, S. Della Pietra:
Statistical Natural Language Understanding Using Hidden Clumpings. In IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 176–179, Atlanta, Georgia,
May 1996.

[Evermann 99] G. Evermann. Minimum Word Error Rate Decoding. Master thesis, Churchill
College, University of Cambridge, Cambridge, England, Aug. 1999.

[Ferguson & Allen` 96] G.M. Ferguson, J.F. Allen, B.W. Miller, E.K. Ringger. The Design and
Implementation of the TRAINS-96 System: A Prototype Mixed-Initiative Planning Assistant.
Technical Report 96-5, University of Rochester, 164 pages, Oct. 1996.

[Fisher 36] R.A. Fisher: The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics, Vol. 7, pp. 179–188, 1936. reprinted in: Contributions to Mathematical Statistics,
1950.

[Gauvain & Bennacef` 97] J.L. Gauvain, S. Bennacef, L. Devillers, L. Lamel, S. Rosset. Spoken
Language Component of the MASK Kiosk. In K. Varghese, S. Pfleger, editors, Human
Comfort & Security of Information Systems, pp. 93–103. Springer Verlag, 1997.

[Goddeau & Pineau 00] D. Goddeau, J. Pineau: Fast Reinforcement Learning of Dialog
Strategies. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 2,
pp. 1233–1236, Istanbul, Turkey, June 2000.

149



Bibliography

[Hazen & Burianek` 00] T.J. Hazen, T. Burianek, J. Polifroni, S. Seneff: Integrating
Recognition Confidence Scoring with Language Understanding and Dialogue Modeling. In
Proc. of the 6th Int. Conf. on Spoken Language Processing (ICSLP), Vol. 2, pp. 1042–1045,
Beijing, China, Oct. 2000.

[He & Young 03a] Y. He, S. Young: A Data-Driven Spoken Language Understanding System.
In IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 583–588,
St. Thomas, U.S. Virgin Islands, Dec. 2003.

[He & Young 03b] Y. He, S. Young: Hidden Vector State Model for Hierarchical Semantic
Parsing. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1,
pp. 268–271, Hong Kong, China, April 2003.

[Issar & Ward 93] S. Issar, W. Ward: CMU’s Robust Spoken Language Understanding
System. In Proc. of the 3rd European Conf. on Speech Communication and Technology
(EUROSPEECH), Vol. 3, pp. 2147–2149, Berlin, Germany, Sept. 1993.

[Jelinek 69] F. Jelinek: A Fast Sequential Decoding Algorithm Using a Stack. IBM Journal of
Research and Development, Vol. 13, pp. 675–685, Nov. 1969.

[Juang & Chou` 95] B.H. Juang, W. Chou, C.H. Lee. Statistical and Discriminative Methods
for Speech Recognition. In A.J. Rubio Ayuso, J.M. López Soler, editors, Speech Recognition
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