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Abstract We present a novel confidence- and margin-
based discriminative training approach for model adap-
tation of a hidden Markov model (HMM) based hand-
writing recognition system to handle different hand-
writing styles and their variations.

Most current approaches are maximum-likelihood
(ML) trained HMM systems and try to adapt their
models to different writing styles using writer adaptive
training, unsupervised clustering, or additional writer
specific data. Here, discriminative training based on the
maximum mutual information (MMI) and minimum
phone error (MPE) criteria are used to train writer
independent handwriting models. For model adaptation
during decoding, an unsupervised confidence-based dis-
criminative training on a word and frame level within
a two-pass decoding process is proposed.

The proposed methods are evaluated for closed-
vocabulary isolated handwritten word recognition on
the IFN/ENIT Arabic handwriting database, where
the word-error-rate is decreased by 33% relative com-
pared to a ML trained baseline system. On the large-
vocabulary line recognition task of the IAM English
handwriting database, the word-error-rate is decreased
by 25% relative.
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1 Introduction

Most state-of-the-art single-pass and multi-pass [4, 8,
11] HMM based handwriting recognition systems are
trained using the maximum-likelihood (ML) criterion.

Typical training criteria for string recognition like
for example minimum phone error (MPE) and maxi-
mum mutual information (MMI) in speech recognition
are based on a (regularized) loss function. In contrast,
large margin classifiers - the de-facto standard in
machine learning - maximize the separation margin. An
additional loss term penalizes misclassified samples.

The MMI training criterion has been used in [30] to
improve the performance of an HMM based offline Thai
handwriting recognition system for isolated characters.
They propose a feature extraction based on a block-
based PCA and composite image features, which are
reported to better at discriminating Thai confusable
characters. In [5], the authors apply the Minimum
Classification Error (MCE) criterion to the problem of
recognizing online unconstrained-style characters and
words, and report large improvements on a writer-
independent character recognition task when compared
to a ML trained baseline system.

Similar to the system presented in [29], we apply
the MMI criterion, but modified by a margin term.
This margin term can be interpreted as an addi-
tional observation-dependent prior weakening the true
prior [18], and is identical with the SVM optimization
problem of log-linear models [16].

The most common way for unsupervised adap-
tation is the use of the automatic transcription of

http://www.springerlink.com
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a previous recognition pass without the application
of confidence scores. Many publications in automatic
speech recognition (ASR) have shown that the appli-
cation of confidence scores for adaptation can improve
recognition results. However, only small improvements
are reported for confidence-based maximum-likelihood
linear regression (MLLR) adaptation [12, 31, 33] or
constrained-MLLR adaptation [1]. In this work, we
present a novel unsupervised confidence-based discrim-
inative model adaptation approach.

This paper briefly reviews how the MMI/MPE
training criteria can be extended to incorporate the
margin concept, and that such modified training cri-
teria are smooth approximations to support vector ma-
chines with the respective loss function [16]. In addition
to the margin concept, the MMI/MPE training criteria
are extended by an additional confidence term [6] to
allow for novel unsupervised model adaptation.

The focus of this work shall be on offline handwrit-
ing recognition of closed-vocabulary isolated words and
large-vocabulary sentence recognition tasks in combi-
nation with m-gram language models. More explicitly,
the novelties of our investigation are as follows:

1. Direct evaluation of the utility of the margin term
in MMI/MPE based training. Ideally, we can turn
on/off the margin term in the optimization problem.

2. Direct evaluation of the utility of an additional
confidence term. Ideally, we improve over the best
trained system by retraining the system with unsu-
pervised labeled test data.

3. Direct evaluation of the amount of iterations and
confidence-thresholds during optimization. In ASR,
typically a low number of iterations is used in
optimization, and confidence-thresholds are opti-
mized on small subsets only. Here we allow for a
high number of iterations on large datasets, and
a detailed analysis of confidences in unsupervised
model adaptation.

4. Evaluation on state-of-the-art systems. Ideally,
we directly improve over the best discriminative
system, e.g. conventional (i.e., without margin)
MMI/MPE for handwriting recognition.

Due to the nature of the novel publicly available
RWTH OCR1 framework and databases, it can be
assumed that most results can be transferred to ASR
domains. Similar usage of features, lexica, and language
models on smaller corpora allow for a detailed analysis
of regularization, optimization iterations, as well as
impact of confidence-thresholds.

The proposed approach takes advantage of the
generalization bounds of large margin classifiers while

1 http://www.hltpr.rwth-aachen.de/rwth-ocr/

(a) (b)

Figure 1 Two examples where each column shows the same

Tunisian town name: large white-spaces (a) and elongation

(b) occurs often in Arabic handwriting. Therefore an adequate
modeling of white-spaces and state-transition penalties are im-

portant parts to be tuned in an HMM based Arabic handwriting

recognition system.

keeping the efficient framework for conventional dis-
criminative training. This allows us to directly eval-
uate the utility of the margin term for handwriting
recognition. So, our approach combines the advantages
of conventional training criteria and of large margin
classifiers.

2 System Overview

In offline handwriting recognition, we are searching
for an unknown word sequence wN1 := w1, . . . , wN ,
for which the sequence of features xT1 := x1, . . . , xT
fits best to the trained models. We maximize the
posterior probability p(wN1 |xT1 ) over all possible word
sequences wN1 with unknown number of words N . This
is described by the Bayes’ decision rule:

xT1 → ŵN1 (xT1 ) = arg max
wN

1

{
pκ(wN1 )p(xT1 |wN1 )

}
(1)

with κ being a scaling exponent of the language model.
In this work, we use a writing variant model refine-

ment [8] of our visual model

p(xT1 |wN1 )= max
vN
1 |wN

1

{
pαΛv

(vN1 |wN1 )pβΛe,t
(xT1 |vN1 , wN1 )

}
(2)

with vN1 a sequence of unknown writing variants, α
a scaling exponent of the writing variant probability
depending on a parameter set Λv, and β a scaling
exponent of the visual character model depending on
a parameter set Λe,t for emission and transition model.

Especially in Arabic handwriting with its position-
dependent shapes [23], large white-spaces can occur be-
tween isolated-, beginning-, and end-shaped characters
(see Figure 1 (a)). As a specific set of characters is only
connectable from the right side, such words have to be
cut into pieces (Part of Arabic Word (PAW)). Due to
ligatures and diacritics in Arabic handwriting, the same
Arabic word can be written in several writing variants,
depending on the writer’s handwriting style.

During training, a corpus and lexicon with super-
vised writing variants instead of the commonly used
unsupervised writing variants can be used, during

http://www.hltpr.rwth-aachen.de/rwth-ocr/
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Figure 2 Right-to-left sliding PCA window over input images
without any preprocessing for Arabic handwriting.

decoding, the writing variants can only be used in
an unsupervised manner. Obviously, the supervised
writing variants in training can lead to better trained
character models only if the training corpora have a
high annotation quality. Usually, the probability p(v|w)
for a variant v of a word w is considered as uniformly
distributed [7]. Here we use the count statistics as
probability p(v|w) = N(v,w)

N(w) where the writing variant
counts N(v, w) and the word counts N(w) are estimated
from the corresponding training corpora, and repre-
sent how often these events were observed. Note that∑
v′

N(v′,w)
N(w) = 1. The scaling exponent α of the writing

variant probability of Equation 2 can be adapted in the
same way as it is done for the language model scale κ
in Equation 1.

2.1 Feature Extraction

The aim of this work is to analyze the effect of discrim-
inative training and the incorporation of a margin and
a confidence term into the criteria. Therefore only few
preprocessing steps commonly applied in handwriting
recognition will be used: Deslanting as well as a size
normalization are used to compensate for variations in
Latin writing style as proposed by [20], no preprocessing
will be used with Arabic handwritten data.

After an optional preprocessing of the input im-
ages, the images are scaled down to 16 pixel height
while keeping their aspect ratio. We extract simple
appearance-based image slice features x′t at every time
step t = 1, . . . , T which are augmented by their spatial
derivatives in horizontal direction ∆ = x′t − x′t−1. Note
that many systems divide the sliding window itself
into several sub-windows and extract different features
within each of the sub-windows [2, 20,30,39]

In order to incorporate temporal and spatial context
into the features, we concatenate 7 consecutive features
in a sliding window with maximum overlap, which are
later reduced by a PCA transformation matrix to a
feature vector xt of dimension 30 (see Figure 2).

2.2 Visual Modeling

Our hidden Markov model (HMM) based handwrit-
ing recognition system is Viterbi trained using the

si 2 1 0 si

p(si|si)p(0|0)

p(1|0)

p(2|0)

p(1|1)

p(2|1)

p(2|2)p(si|si)

next si prev

p(si|si)

(a) (b)

Figure 3 Different HMM topologies and transition probabilities

are used for character models (a) and white-space models (b) in

Arabic and Latin handwriting recognition.

maximum-likelihood (ML) training criterion and a lex-
icon with multiple writing variants as proposed in [7,8].

Each character is modeled by a multi-state left-to-
right HMM with skip transitions and separate Gaussian
mixture models (GMMs). The parameters of all GMMs
are estimated with the ML principle using an expecta-
tion maximization (EM) algorithm, and to increase the
number of densities in the mixture densities, successive
splitting of the mixture densities is applied. Different
HMM topologies and transition probabilities are used
for character models (cf. Figure 3(a)) and white-space
models (cf. Figure 3(b)) in Arabic and Latin handwrit-
ing recognition, where the white-space model itself is
always modelled by a single GMM in all systems.
Arabic handwriting. Depending on the position of
the character in an Arabic word, most of the 28
characters can have up to 4 different shapes [23].
Here we use position-dependent character models to
model the different presentation forms, and due to
ligatures, a total of 120 character models and one
white-space model have to be estimated in training
(see Section 4). Each character model in our Arabic
handwriting recognition base system is modeled by a
3-state left-to-right HMM with three separate GMMs.
The position-dependent character-based model of our
ML trained baseline system includes 361 mixtures with
36k Gaussian densities (with up to 128 densities per
mixture) with globally pooled diagonal variances. Addi-
tionally, a large stretching of long drawn-out characters
occurs often in Arabic handwriting (see Figure 1 (b)).
Therefore, we use very low loop penalties but higher
skip penalties for our HMM state transitions (see
Figure 3 (a)).
Latin handwriting. The Latin handwriting is one
of the most common handwriting systems worldwide.
English handwriting uses the alphabets 26 basic char-
acters. As each letter can be written in lower- and
uppercase, and capitalized or cursive writing, and
additionally symbols for punctuations are used in the
IAM database (see Section 4), 78 character models and
one blank model have to be estimated in our ML trained
baseline system, where each character model is modeled
by a 10-state left-to-right HMM with five separate
GMMs, resulting in 391 mixtures with 25k Gaussian
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densities (with up to 128 densities per mixture) after
ML training and globally pooled diagonal variances.

2.3 Discriminative Training: Incorporation of the
Margin and Confidence Term

In this work, we use a discriminative training approach
based on the Maximum Mutual Information (MMI) and
Minimum Phone Error (MPE) criteria as presented in
[16, 17, 15]. In addition to the novel confidence-based
extension of the margin-based MMI training presented
in [6], the confidence concept has been incorporated in
the margin-based MPE criterion in this work. In the
following, we give a brief summary.

The two-dimensional representation of a handwrit-
ten image is turned into a string representation X =
x1, . . . , xT where xt is a fixed-length array assigned
to each column in the image (see Section 2.1 for
further details). The word sequence W = w1, . . . , wN
is represented by a character string.

Assume the joint probability pΛ(X,W ) of the fea-
tures X and the symbol string W . The model pa-
rameters are indicated by Λ. The training set consists
of r = 1, . . . , R labeled sentences, (Xr,Wr)r=1,...,R.
According to Bayes rule, the joint probability pΛ(X,W )
induces the posterior

pΛ,γ(W |X) =
pΛ(X,W )γ∑
V

pΛ(X,V )γ
. (3)

The likelihoods are scaled with some factor γ > 0,
which is a common trick in speech recognition to scale
them to the “real” posteriors [17]. The approximation
level γ is an additional parameter to control the
smoothness of the criterion.

Let pΛ(X,W ) be the joint probability and
L[pΛ(Xr, ·),Wr] a loss function for each training
sample r with · representing all possible hypotheses W
for a given lexicon, and Wr representing the correct
transcription of Xr. The general optimization problem
is now formulated as a minimization of the total loss
function:

Λ̂ = arg min
Λ
{C||Λ− Λ0||22 +

R∑
r=1

L[pΛ(Xr, ·),Wr]} (4)

and includes an `2 regularization term ||Λ − Λ0||22
(i.e. a prior over the model parameters), where the
constant C is used to balance the regularization term
and the loss term including the log-posteriors. Here, the
regularization is replaced by I-smoothing [37], which is a
useful technique to make MMI/MPE training converge
without over-training, and where the parameter prior
is centered for initialization at a reasonable ML trained
model Λ0 (see Section 2.2).

2.3.1 Margin-Based Maximum Mutual Information

In automatic speech recognition (ASR), maximum mu-
tual information (MMI) commonly refers to the maxi-
mum likelihood (ML) for the class posteriors. For MMI,
the loss function to be minimized is described by:

L(MMI)[pΛ(Xr, ·),Wr] = − log
pΛ(Xr,Wr)γ∑
V

pΛ(Xr, V )γ
. (5)

This criterion has proven to perform reasonably as long
as the error rate on the training data is not too low, i.e.,
generalization is not an issue.

The margin-based MMI loss function (M-MMI) to
be minimized is described by:

L(M-MMI)
ρ [pΛ(Xr, ·),Wr] =

− log
[pΛ(Xr,Wr) exp(−ρA(Wr,Wr))]γ∑
V

[pΛ(Xr, V ) exp(−ρA(V,Wr))]γ
, (6)

which has an additional margin-term including the
accuracy A(·,Wr) being maximal for the correct tran-
scription W = Wr. Note that the additional term can
be interpreted as if we had introduced a new posterior
distribution. In a simplified view, we interpret this as
a pseudo-posterior probability which is modified by a
margin term.

Compared with the true-posterior in Equation 3,
the margin pseudo-posterior includes the margin term
exp(−ρA(V,Wr)), which is based on the string accuracy
A(V,Wr) between the two strings V,Wr. The accuracy
counts the number of matching symbols of V,Wr

and will be approximated for efficiency reasons (see
Section 2.3.3) by the approximate word accuracy [35].

As explained in [17], the accuracy is generally
scaled with some ρ > 0, and this term weighs up the
likelihoods of the competing hypotheses compared with
the correct hypothesis [36]. On the contrary, this term
can be equally interpreted as a margin term.

This margin term can be interpreted as an addi-
tional observation dependent prior, weakening the true
prior [18]. Moreover, this training criterion is identical
with the SVM optimization problem for γ → ∞ and
log-linear models [16]. Keep in mind that Gaussian
HMMs with globally pooled variances are equivalent
to a log-linear model with first order features only [14].
The loss functions for MMI and M-MMI are compared
with the hinge loss function in Figure 4. The example
is given for a binary classification problem with single
observations (i.e. no symbol strings). The loss function
is plotted against the log-ratio of the posterior of the
correct class Wn to the posterior of the competing class
W̄n

d = log
(
pΛ(Xn,Wn)
pΛ(Xn, W̄n)

)
(7)
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Figure 4 Comparison of loss functions for a binary classification

problem with d as defined in Equation 7. Left: comparison of MMI
and M-MMI loss functions with the hinge loss function. Right:

comparison of MPE and M-MPE loss functions with the margin

error. Note that the margin term shifts the loss function such
that the inflection point is at d = 1 and not d = 0.

for γ = 1, ρ = 1, and A(V,W ) = δ(V,W ). MMI and
M-MMI differ by an offset d = 1, and M-MMI is a
smooth approximation to the hinge loss function (for
more details cf. [16, 17]).

2.3.2 Margin-Based Minimum Phone Error

The Minimum Phone Error (MPE) criterion is defined
as the (regularized) posterior risk based on the error
function E(V,W ), which is probably the training crite-
rion of choice in Large Vocabulary Continuous Speech
Recognition (LVCSR). For MPE, the loss function to
be minimized is described by:

L(MPE)[pΛ(Xr, ·),Wr] =∑
W∈·

E(W,Wr)
pΛ(Xr,Wr)γ∑
V

pΛ(Xr, V )γ
, (8)

which is based on the error function E(V,W ) like for
example the approximate phone error [35]. In OCR,
a phoneme unit usually corresponds to a character if
words are modeled by character sequences.

Analogously, the margin-based MPE loss function
(M-MPE) to be minimized is described by:

L(M-MPE)
ρ [pΛ(Xr, ·),Wr] =∑
W∈·

E(W,Wr)
[pΛ(Xr,Wr) exp(−ρA(W,Wr))]γ∑
V

[pΛ(Xr, V ) exp(−ρA(V,Wr))]γ
, (9)

It should be noted that due to the relation E(W,Wr) =
|Wr| − A(W,Wr) where |Wr| denotes the number of
symbols in the reference string Wr, the error E(W,Wr)
and the accuracy A(W,Wr) can be equally used in
Equation 8 and Equation 9. The accuracy for MPE
and for the margin term do not need to be the same
quantity [15].

Again, the loss functions for MPE and M-MPE are
compared for a binary classification problem with single

Table 1 Empirical optimization of the I-smoothing regulariza-
tion constant C for the IAM line recognition task: the Word Error

Rate (WER) and Character Error Rate (CER) results after five
Rprop optimization iterations.

WER [%] CER [%]

Regularization constant C Devel Test Devel Test

0.001 33.25 39.43 10.68 15.64

0.01 33.17 39.40 10.63 15.66

0.1 33.26 39.44 10.70 15.67
1.0 33.14 39.42 10.64 15.63

10.0 33.12 39.44 10.64 15.67

observations (for E(V,W ) = 1 − δ(V,W ), A(V,W ) =
δ(V,W ), γ = 3, ρ = 1) in Figure 4. The illustration
shows that M-MPE is a horizontally shifted version of
MPE, while M-MPE approximating the margin error.
Finally, it should be pointed out that other posterior-
based training criteria (e.g. MCE as used in [5]) can be
modified in an analogous way to incorporate a margin
term (for more details cf. [16, 17]).

2.3.3 Optimization

In [16] it is shown that the objective function
F (MMI)
γ (Λ) converges pointwise to the SVM

optimization problem using the hinge loss function for
γ → ∞, similar to [42]. In other words, F (M-MMI)

γ (Λ)
is a smooth approximation to an SVM with hinge
loss function which can be iteratively optimized with
standard gradient-based optimization techniques like
Rprop [16,42].

In this work, the regularization constant C, the ap-
proximation level γ, and the margin scale ρ are chosen
beforehand and then kept fixed during the complete
optimization. Note that the regularization constant C
and the margin scale ρ are not completely independent
of each other. Here, we kept the margin scale ρ fixed
and tuned the regularization constant C (see Table 1).
Previous experiments in ASR have suggested that the
performance is rather insensitive to the specific choice of
the margin [16], and the results in Table 1 furthermore
suggest that if the baseline error rate is relatively
high the choice of the I-smoothing constant C has less
impact in an Rprop based optimization than in an
Extendend Baum Welch (EBW) environment [37]. An
I-smoothing regularization constant C = 1.0 is used in
all results presented in Section 4.

In large-vocabulary handwriting recognition, word
lattices restricting the search space are used to make
the summation over all competing hypotheses (i.e.
sums over W ) efficient. The exact accuracy on char-
acter or word level cannot be computed efficiently due
to the Levenshtein alignments in general, although
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feasible under certain conditions as shown in [15].
Thus, the approximate phone/word accuracy known
from MPE/MWE [35] is used for the margin instead.
With this choice of accuracy, the margin term can be
represented as an additional layer in the common word
lattices such that efficient training is possible. More de-
tails about the transducer-based implementation used
in this work can be found in [15].

As in ASR, where typically a weak unigram lan-
guage model is used for discriminative training [40,41],
we use a unigram language model in our proposed
discriminative training criteria.

2.3.4 Confidences for Unsupervised Discriminative
Model Adaptation

Sentence or word confidences can be incorporated into
the training criterion by simply weighing the segments
with the respective confidence. This is, however, not
possible for state-based confidences. Instead of rejecting
an entire sentence or word the system can use state
confidence scores to select state-dependent data in
an unsupervised manner. State confidence scores are
obtained from computing arc posteriors from the lattice
output from a previous decoder pass.

Rprop is a gradient-based optimization algorithm.
The gradient of the training criterion under considera-
tion can be represented in terms of the state posteriors
prt(s|xTr

1 ). These posteriors are obtained by marginal-
ization and normalization of the joint probabilities
pΛ(xTr

1 , sT1 , w
Nr
1 ) over all state sequences through state

s at frame t. These quantities can be calculated effi-
ciently by recursion, cf. forward/backward probabili-
ties. Then, the state-based confidences are incorporated
by multiplying the posteriors with the respective confi-
dence before the accumulation. In summary, each frame
t contributes conf (t) · prt(s|xTr

1 ) ·xt to the accumulator
accs of state s.

Another way to describe the incorporation of the
confidence term is from a system point of view. The
accumulator accs of state s can be described by

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t · xt,

where the weight ωr,s,t, which corresponds to δ(st, s)
in ML training i.e. one or zero, is replaced for the
proposed M-MMI-conf / M-MPE-conf criteria (with
ρ 6= 0) by the corresponding margin pseudo-posterior.
With the additional confidence term for the proposed
M-MMI-conf criterion (cf. Equation 6), the new weight

can be described as follows:

ωr,s,t :=

∑
sTr
1 :st=s

[p(xTr
1 |s

Tr
1 )p(sTr

1 )p(Wr) e−ρA(Wr,Wr)]γ∑
V

∑
sTr
1 :st=s

[p(xTr
1 |s

Tr
1 )p(sTr

1 )p(V )

︸ ︷︷ ︸
posterior

e−ρA(V,Wr)︸ ︷︷ ︸
margin

]γ

· δ(cr,s,t ≥ τc)︸ ︷︷ ︸
confidence selection

(10)

Here, the selector function δ(cr,s,t ≥ τc) with the
threshold parameter τc controls the amount of adap-
tation data. The M-MPE-conf criterion can be defined
in a similar manner. Note that due to the quality
of the confidence metric, thresholding the confidence
scores after feature selection can often result in an
improved accuracy, as reported in [12]. On the one
hand, the experimental results for word-confidences in
Figure 12 and state-based confidences in Figure 16
suggest that the confidences are helpful, but on the
other hand that the threshold itself has little impact due
the proposed M-MMI-conf / M-MPE-conf approaches,
which are inherently robust against outliers.

Analogously, the weight ωr,s,t would correspond to
the true posterior (cf. Equation 3) in an MMI-conf /
MPE-conf criterion. Note that in informal experiments
these criteria lead to no robust improvements, i.e. only
the combination of margin and confidences makes the
proposed approaches robust against outliers.

3 Decoding Architecture

The recognition is performed in two passes. System 1
performs the initial and independent recognition pass
using the discriminatively trained models. The output
is required for the unsupervised text dependent model
adaptation in the next step.

For unsupervised adaptation, at test time, the
conditioning state sequence is derived from a prior
recognition pass. Although the prior transcript in that
case contains errors, adapting on that transcript dis-
regarding that fact generally still results in accuracy
improvements [12].

The model adaptation in the second pass is per-
formed by discriminatively training a System 2 on the
text output of the first-pass recognition system. Ad-
ditionally, the confidence-alignments generated during
the first-pass decoding can be used on a sentence-,
word-, or state-level to exclude the corresponding fea-
tures from the discriminative training process for unsu-
pervised model adaptation.

Out-of-vocabulary (OOV) words are also meant to
be harmful for adaptation [34] but even when a word is
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wrong, the pronunciation or most of the pronunciation
can still be correct, suggesting that a state-based and
confidence-based adaptation should be favored in such
cases.

3.1 Word Confidences

As we are dealing with isolated word recognition on
the IFN/ENIT database, the sentence and word con-
fidences are identical. The segments to be used in the
second-pass system are first thresholded on a word-level
by their word confidences: only complete word segments
aligned with a high confidence by the first-pass system
are used for model adaptation using discriminative
training.

3.2 State Confidences

Instead of rejecting an entire sentence or word, the
system can use state confidence scores to select state-
dependent data (cf. Section 2.3.4). State confidence
scores are obtained from computing arc posteriors from
the lattice output of the decoder. The arc posterior is
the fraction of the probability mass of the paths that
contain the arc from the mass that is represented by all
paths in the lattice. The posterior probabilities can be
computed efficiently using the forward-backward algo-
rithm as, for example, described in [21]. Then, the word
frames to be used in the second-pass system are first
thresholded on a state-level by their state confidences:
only word frames aligned with a high confidence by the
first-pass system, are used for model adaptation using
discriminative M-MMI-conf/M-MPE-conf training (see
Section 2.3).

An example for a word-graph and the corresponding
1-best state alignment is given in Figure 5: during the
decoding, the ten feature frames (the squares) can be
aligned to different words (long arcs) and their states.
In this example, the word-confidence of the 1-best
alignment is c = 0.7 (upper arc). The corresponding
state-confidences are calculated by accumulating state-
wise over all competing word alignments (lower arcs),
i.e. the state-confidence of the 1-best alignment’s fourth
state would stay 0.7 as this state is skipped in all other
competing alignments, all other state-confidences would
sum up to 1.0.

4 Experimental Results

The proposed approach is applied to isolated Arabic
handwriting and continuous English handwriting. The
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Figure 5 Example for a word-graph and the corresponding 1-

best state alignment: word-confidence of the 1-best alignment is

c = 0.7. The corresponding state-confidences are calculated by
accumulating state-wise over all other word alignments

experiments for isolated word recognition are conducted
on the IFN/ENIT database [32] using a closed lexicon,
experiments for continuous sentence recognition on the
IAM database [27] using a large-vocabulary lexicon
and additional external language model resources as
proposed in [3].

The IFN/ENIT database is divided into four train-
ing folds with an additional fold for testing [25]. The
current database version (v2.0p1e) contains a total of
32492 Arabic words handwritten by about 1000 writers,
and has a vocabulary size of 937 Tunisian town names.
Here, we follow the same evaluation protocol as for the
ICDAR 2005, 2007, and 2009 competitions [24] (see
Figure 6). The corpus statistics for the different folds
can be found in Table 2.

The IAM database was introduced by [27] in 2002
and contains a total number of 1,539 pages with 5,685
sentences in 9,862 lines. All words are build using only
79 different symbols which consist of both upper- and
lowercase characters, punctuation, quotation marks, a
special symbol for crossed out words, and a white-space
model (cf. Section 2.2). A comparison of the predefined
training, testing and evaluation folds is given in Table 3.
Here we focus on the large-vocabulary line recognition
task, which is one of the four tasks provided with the
database. For the large-vocabulary recognition task we
use as proposed in [3] the three additional text corpora
Lancaster-Oslo-Bergen, Brown and Wellington (LBW)
to estimate our language models and lexica. Note that
the IAM validation/test lines were excluded from the
Lancaster-Oslo-Bergen (LOB) corpus.

4.1 First Pass Decoding

In this section we compare our ML trained baseline
systems (cf. Section 2.2 for visual model details) to our
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Figure 6 IFN/ENIT corpora splits used for training and evalu-

ation in Arabic handwriting recognition competitions organized
at ICDAR 2005, 2007, and 2009, and ICFHR 2010.

Table 2 Corpus statistics for the IFN/ENIT Arabic handwriting

sub-corpora.

Folds #Observations [k]

Writers Words Characters Frames

a 0.1 6.5 85.2 452

b 0.1 6.7 89.9 459
c 0.1 6.5 88.6 452

d 0.1 6.7 88.4 451

e 0.5 6.0 78.1 404

f n.a. 8.6 64.7 n.a.
s n.a. 1.5 11.9 n.a.

Table 3 Corpus statistics for the IAM Latin handwriting corpus

using a 50k lexicon

Train Devel Eval LM

words 53,884 8,717 25,472 3,363,402

chars 219,749 31,724 96,637 13,871,031
lines 6,161 920 2,781 164,944

writers 283 57 162 -

OOV rate 1.07% 3.94% 3.42% 1.87%

discriminatively trained systems using the MMI and
MPE criteria and their margin-based extensions. The
discriminative training is initialized with the respective
ML trained baseline model and iteratively optimized
using the Rprop algorithm (cf. Section 2.3).
Isolated Word Recognition. For isolated Arabic
word recognition, we compare our ML trained baseline
system with MMI/M-MMI criteria only.

In general, the number of Rprop iterations and the
choice of the regularization constant C have to be cho-
sen carefully (cf. optimization Table 1 in Section 2.3),
and were empirically optimized in informal experiments
to 30 Rprop iterations and C = 1.0 (cf. detailed
Rprop iteration analysis and convergence without over-
training in Figure 8 and Figure 9).

The results in Table 4 show that the discriminatively
trained models clearly outperform the ML trained
baseline models, especially the models trained with the
additional margin term. The strong decrease in word
error rate (WER) for experiment setup abd-c might
be due to the training data being separable for the
given configurations, whereas the strong improvement

Table 4 Comparison of ML trained baseline systems, and

discriminatively trained systems using MMI and M-MMI criteria

after 30 Rprop iterations on the IFN/ENIT database.

Train Test WER[%]

ML MMI M-MMI

abc d 10.88 10.59 8.94

abd c 11.50 10.58 2.66

acd b 10.97 10.43 8.64
bcd a 12.19 11.41 9.59

abcd e 21.86 21.00 19.51

abcde e 11.14 2.32 2.95

Figure 7 Top: more complex characters should be represented

by more states. Bottom: after the GDL, frames previously aligned
to a wrong neighboring character model (left, black shaded) are

aligned to the correct character model (right, three sub-glyphs).

for experiment abcde-e was expected because of the test
set e being part of the training data.

In the following experiments, we additionally use
a glyph dependent model length estimation (GDL)
as described in [7, 8], resulting in an ML trained
baseline model with 637 mixtures and 48k densities
(cf. Section 2.2). The necessity of this model length
estimation is visualized in Figure 7, where we use R-
G-B background colors for the 0-1-2 HMM states (also
cf. Figure 3), respectively, from right-to-left: the bottom
row images visualize an alignment of our baseline sys-
tem (left) in comparison to the proposed GDL system
(right).

By estimating glyph dependent model lengths, the
overall mean of character length changed from 7.89
pixels (i.e. 2.66 pixels/state) to 6.18 pixels (i.e. 2.06
pixels/state) when downscaling the images to 16 pixels
height while keeping their aspect-ratio. Thus every
state of an GDL character model has to cover less pixels
due to the relative reduction of approx. 20% pixels.
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Figure 8 Decreasing word error rates (WER) for all different
training folds of the IFN/ENIT database over M-MMI Rprop

iterations (baseline with model length estimation).
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Figure 9 Decreasing character error rates (CER) for all different

training folds of the IFN/ENIT database over M-MMI Rprop
iterations (baseline with model length estimation).

In Figure 8 and Figure 9, detailed WER and
character error rate (CER) plots over M-MMI training
iterations are shown, respectively, with Figure 10 show-
ing a combined WER/CER plot over M-MMI training
iterations on the evaluation setup abcd-e. It can be
observed that both WER and CER are smoothly and
almost continuously decreasing with every Rprop iter-
ation, and that about 30 Rprop iterations are optimal
for the considered datasets.
Continuous Large-Vocabulary Line Recognition.
For the large-vocabulary line recognition task on the
IAM database, our system uses a Kneser-Ney smoothed
trigram language model [22] trained on the LBW text
corpora (cf. Section 2.2 for visual model details and
cf. [19] for a detailed description of the ML baseline
system). Note that for discriminative training a weak-
ened unigram language model is used as explained in
Section 2.3. The language model weighting factor κ =

 15
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Figure 10 Evaluation of the proposed M-MMI training on the
IFN/ENIT evaluation setup abcd-e over M-MMI Rprop iterations

(baseline with model length estimation).

Table 5 Word error rate (WER) and character error rate

(CER) results for the IAM line recognition task after 100 Rprop
iterations.

WER [%] CER [%]

Criterion Lexicon Devel Test Devel Test

ML [19] 20k 34.6 41.5 8.9 11.0

50k 31.9 39.0 8.4 11.8

MMI 50k 25.9 31.8 7.6 12.0

M-MMI 50k 25.8 31.6 7.6 11.8

MPE 50k 24.4 30.3 6.7 11.1
M-MPE 50k 24.3 30.1 6.9 10.9

25 (cf. Equation 1) and the word insertion penalty were
determined empirically on the validation set using the
ML trained models. Again, the discriminative training
is initialized with the respective ML trained baseline
model and iteratively optimized using the Rprop algo-
rithm (cf. Section 2.3).

Results for discriminative training in comparison to
our ML trained baseline system are shown in Table 5.
The lexicon size of 50k has been roughly optimized on
the ML trained baseline system and used for all further
experiments.

The results in Table 5 were obtained after 100 Rprop
iterations, as shown for M-MMI/M-MPE in Figure 11.
Note the smooth decrease of both WER and CER after
every iteration. Similar figures are obtained with the
unmodified MMI/MPE criteria. It can be observed that
the margin modified criteria always slightly outperform
their corresponding standard criteria, and that the
MPE based criteria outperform the MMI based criteria,
especially w.r.t. CER. However, the results in Table 5
support the hypothesis that the effect of the margin on
such highly competitive large-vocabulary systems used
for discriminative training is sometimes marginal [17].
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Figure 11 M-MMI/M-MPE training on the IAM database over

100 Rprop iterations with a smooth decrease in word error rate
(WER, left axis) and character error rate (CER, right axis).

4.2 Second Pass Decoding and
Unsupervised Model Adaptation

In this section we evaluate our discriminative training
for unsupervised model adaptation during a second pass
decoding step.

In a first experiment we used the complete first-
pass output of the M-MMI system for an unsupervised
model adaptation. The results in Table 6 show that
the M-MMI based unsupervised adaptation without
confidences cannot improve the system accuracy. With
every Rprop iteration, the system is even more biased
by the relatively large amount of wrong transcriptions
in the adaptation corpus.

The discriminative M-MMI-conf training is initial-
ized with the respective M-MMI trained model and it-
eratively optimized using the Rprop algorithm (cf. Sec-
tion 2.3). Using the word-confidences for M-MMI-conf
based model adaptation of our first-pass alignment to
reject complete word segments (i.e. feature sequences
XT

1 ) from the unsupervised adaptation corpus, the
results in Table 6 show a slight improvement only
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Figure 12 Results for word-confidence based M-MMI-conf
training on the IFN/ENIT database using different confidence

thresholds and their corresponding number of rejected segments
(baseline without model length estimation).

in comparison to the M-MMI trained system. Fig-
ure 12 shows the resulting WER for different confidence
threshold values and the corresponding number of
rejected segments. For a confidence threshold of c = 0.5,
more than 60% of the 6033 segments of set e are rejected
from the unsupervised adaptation corpus, resulting in
a relatively small amount of adaptation data.

Using the state-confidences for M-MMI-conf based
model adaptation of our first-pass alignment to decrease
the contribution of single frames (i.e. features Xt)
during the iterative M-MMI-conf optimization process
(cf. optimization in Section 2.3), the number of features
for model adaptation is reduced by approximately 5%
for a confidence threshold of cthreshold = 0.5: 375 446
frames of 396 416 frames extracted from the 6033
test segments are considered during the optimization,
only 20 970 frames are rejected based on confidence
thresholding (cf. also Figure 5). Note that also the CER
is decreased to 6.49%.

Interestingly, the supervised adaptation on test set
e, where only the correct transcriptions of set e are
used for an adaptation of the model trained using
set abcd, can again decrease the WER of the system
down to 2.06%, which is even better than an M-MMI
optimization on the full training set abcde (cf. Table 4).

In Figure 13 and Figure 14, detailed WER and
CER plots over M-MMI-conf training iterations are
shown, respectively, with Figure 15 showing a combined
WER/CER plot over M-MMI-conf training iterations
on the evaluation setup abcd-e (cf. initialization plots).
In all cases, we estimated the state-confidences on the
first pass output using the M-MMI trained models.
It can be observed that both WER and CER are
slightly decreasing with every Rprop iteration, and
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Table 6 Results for M-MMI-conf model adaptation on the
evaluation setup abcd-e of the IFN/ENIT database after 30

Rprop iterations (baseline without model length estimation).

Training/Adaptation WER[%] CER[%]

ML 21.86 8.11

M-MMI 19.51 7.00

+ unsupervised adaptation 20.11 7.34
+ supervised adaptation 2.06 0.77

M-MMI-conf (word-confidences) 19.23 7.02

M-MMI-conf (state-confidences) 17.75 6.49
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Figure 13 Decreasing word error rates (WER) for all different

training folds on the IFN/ENIT database over confidence-based
M-MMI-conf Rprop iterations (baseline with model length esti-

mation).

Table 7 Results for confidence-based M-MMI-conf model adap-
tation after 15 Rprop iterations on the IFN/ENIT database

using glyph dependent lengths (GDL), and margin-based M-MMI
criterion after 30 Rprop iterations.

Train Test WER[%]

1st pass 2nd pass

ML GDL +MMI +M-MMI M-MMI-conf

abc d 10.9 7.8 7.4 6.1 6.0
abd c 11.5 8.8 8.2 6.8 6.4

acd b 11.0 7.8 7.6 6.1 5.8
bcd a 12.2 8.7 8.4 7.0 6.8

abcd e 21.9 16.8 16.4 15.4 14.6

that between 10 and 15 Rprop iterations are optimal
for the considered small and unsupervised labeled test
datasets.

Table 7 shows the final results of our Arabic hand-
writing recognition system with additional glyph de-
pendent model length estimation (GDL) as described
in [6]. Again, the WER of the GDL based system can
be decreased by our proposed M-MMI training during
both decoding passes down to 14.55%.
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Figure 14 Decreasing character error rates (CER) for all dif-
ferent training folds on the IFN/ENIT database over confidence-

based M-MMI-conf Rprop iterations (baseline with model length
estimation).
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Figure 15 Evaluation of iterative M-MMI-conf model adaption:
text transcriptions are updated in an unsupervised manner after
15 Rprop iterations. The performance remains robust even after

several re-initializations.

Due to the robustness of the confidence- and
margin-based M-MMI-conf criterion against outliers,
the proposed unsupervised and text dependent model
adaptation can be applied in an iterative manner by a
re-initialization of the text transcriptions. In Figure 15,
we re-initialize 2 times the model adaptation process
after 15 Rprop iterations. The results in Figure 15
show the robustness of our approach, leading to an
improved WER of 14.39%.

For the confidence-based unsupervised model adap-
tation approaches on the IAM database we also mea-
sured the performance after 15 Rprop iterations. The
results in Figure 16 suggest that the often mentioned
stronger robustness of the MPE criterion w.r.t. outliers
than the MMI criterion [17] cannot be confirmed for
continuous handwriting recognition within the pro-
posed confidence-based M-MMI-conf and M-MPE-conf
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criteria, as both approaches achieve a similar perfor-
mance: M-MMI-conf decreases the error rates from
31.63% WER / 11.82% CER down to 29.02% WER
/ 10.52% CER, i.e. a relative improvement in WER of
8%, whereas M-MPE-conf decreases from 30.07% WER
/ 10.92% CER down to 29.23% WER / 10.33% CER,
i.e. a relative improvement in WER of 2%. Note that
in both cases the best unsupervised transcriptions of
the unknown validation and test data from the M-MPE
model has been used, but that the confidence-based
model adaptation has been applied to the correspond-
ing un-adapted models, i.e. M-MMI-conf to adapt the
M-MMI trained model, and M-MPE-conf to adapt the
M-MPE trained. This might explain the higher relative
improvement in case of M-MMI-conf model adaptation.
Also note that, as expected, the CER is lower for
M-MPE-conf than for M-MMI-conf.

The number of rejected frames in Figure 16 is
reported in both cases for the testset only, where a
confidence-based reduction by approximately 5% of the
number of features for model adaptation is again a good
choice.

It can be observed that both criteria are robust
against outliers, as the confidence-threshold, although
helpful for values cthreshold ≤ 0.9 (cf. Equation 10),
has only a small impact on the overall performance
of the model adaptation procedures. Interestingly, and
opposed to the results for isolated word recognition
in Table 6, the performance is also improved if all
data is used in M-MMI-conf / M-MPE-conf for model
adaptation. M-MMI-conf in Figure 16 seems to be less
susceptible to unsuitable confidence-threshold and can
therefore be considered the better unsupervised model
adaptation approach if WER as evaluation criterion
is important, otherwise M-MPE-conf might be the
method of choice if CER as evaluation criterion is
important. In particular, the achieved 29% WER for
single and purely HMM based system is one of the best
known word error rates for this task (cf. Section 4.4).

4.3 Visual Inspections

The visualizations in Figure 17 and Figure 18 show
training alignments of Arabic words to their corre-
sponding HMM states. The upper rows show the align-
ment to the ML trained model, the lower rows to the
M-MMI trained models. We use R-G-B background col-
ors for the 0-1-2 HMM states, respectively, from right-
to-left. The position-dependent character model names
(cf. Section 2.2) are written in the upper line, where the
white-space models are annotated by ’si’ for ’silence’;
the state numbers are written in the bottom line. Thus,
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Figure 16 Comparison of the proposed M-MMI-conf and

M-MPE-conf model adaption approaches: both approaches are
robust against outliers, as the confidence-threshold, although

helpful, has only a small impact on the overall performance

HMM state-loops and state-transitions are represented
by no-color-changes and color-changes, respectively.

It can be observed in Figure 17 that especially
the white-spaces, which can occur between compound
words and pieces of Arabic words (PAW) [7], help
in discriminating the isolated- (A), beginning- (B),
or end-shaped (E) characters of a word w.r.t. the
middle-shaped (M) characters, where usually no white-
spaces occur on the left or right side of the character
(cf. [32, 23] for more details about A/B/M/E shaped
characters). The frames corresponding to the white-
space part of the words are aligned in a more balanced
way in Figure 17(a) and Figure 17(b) using the M-MMI
modeling (lower rows) opposed to ML modeling (upper
rows): the proposed M-MMI models learned that white-
spaces help to discriminate different characters. This
can even lead to a different writing variant choice
without any white-space models [7] (see Figure 17(c)).
Note that we cannot know in advance in training if a
white-space is used or not, and if so, how large it is,
as it is not transcribed in the corpora and depends on
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(a)

(b)

(c)

Figure 17 Supervised training alignment comparisons: The

upper rows show alignments to the maximum-likelihood (ML)
trained model, the lower rows to the modified maximum mutual
information (M-MMI) trained models.

(a)

(b)

(c)

Figure 18 Unsupervised test alignment comparisons: The upper

rows show incorrect unsupervised alignments to the maximum-
likelihood (ML) trained model, the lower rows correct unsuper-

vised alignments to the modified maximum mutual information
(M-MMI) trained models.
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the writer’s handwriting style (e.g. cursive style used in
Figure 17(a)).

In Figure 18, unsupervised test alignments are
compared. The upper rows show incorrectly recognized
words by unsupervised alignments to the ML trained
model, the lower rows correctly recognized words by
unsupervised alignments to the M-MMI trained models.
Due to the discriminatively trained character models,
the alignment in Figure 18(a) to the M-MMI model is
clearly improved over the ML model, and the system
opts for the correct compound-white-space writing
variant [7]. In Figure 18(b), again the alignment is
improved by the discriminatively trained white-space
and character models. Figure 18(c) shows a similar
alignment to the white-space model, but a clearly
improved and correct alignment to the discriminatively
trained character models.

Similar alignment observations can be made for the
IAM database, especially for punctuation and white-
space symbols.

4.4 Comparisons with other Systems

IFN/ENIT database and ICDAR Competitions.
In Table 8 we compare or own evaluation results on the
ICDAR 2005 [25] setups (without any tuning on test
data as explained in Section 4.2 ) and ICDAR 2009 [24]
setups. It should be noted that the result for the abcd-e
condition is one of the best known error rates in the
literature [9].

The ICDAR 2009 test datasets which are unknown
to all participants were collected for the tests of the
ICDAR 2007 competition. The words are from the same
lexicon as those of the IFN/ENIT database and written
by writers, who did not contribute to the data sets
before, and are separated into set f and set s. Our
results (externally calculated by TU Braunschweig) in
Table 8 ranked third at the ICDAR 2009 competition
and are among the best purely HMM based systems,
as the A2iA and MDLSTM systems are hybrid system
combinations or full neural network based systems,
respectively. Also note that our single HMM based
system is better than the independent A2iA systems (cf.
[24] for more details), and that the results confirm that
our proposed M-MMI-conf approach even generalizes
well on the more difficult set s.

Note the 36% relative improvement in Table 8
we achieved in the recent ICFHR 2010 Arabic hand-
writing competition [26] with the proposed M-MPE
training framework but an MLP based feature extrac-
tion (not described here), and again without system-
combinations.

Table 9 Evaluation and comparison of the proposed confidence-

based model adaptation methods on the large-vocabulary line

recognition task of the IAM database: training is measured
after 100 Rprop iterations, the corresponding confidence-based

adaptations are measured after 15 Rprop iterations

Systems WER [%] CER [%]

Devel Eval Devel Eval

RWTH OCR (this work)

ML baseline [19] 31.9 38.9 8.4 11.8
+ M-MMI 25.8 31.6 7.6 11.8

+ M-MMI-conf 23.7 29.0 6.8 10.5

+ M-MPE 24.3 30.0 6.9 10.9
+ M-MPE-conf 23.7 29.2 6.5 10.3

Bertolami et al. [3] (HMM) 30.9 35.5 - -
E. et al. [10] (HMM) 32.8 38.8 - 18.6

Natarajan et al. [28] (HMM) - 40.0∗ - -

Romero et al. [38] (HMM) 30.6∗ - - -

Bertolami et al. [3] (HMMs) 26.8 32.8 - -
Graves et al. [13] (RNN) - 25.9 - 18.2

E. et al. [10] (HMM/ANN) 19.0 22.4 - 9.8

(* different training/testing data, only qualitative comparison)

IAM Database. Summarizing results and compar-
isons of the proposed confidence-based model adap-
tation methods on the large-vocabulary line recogni-
tion task of the IAM database are reported in Ta-
ble 9. It can be seen that the performance of our
ML trained baseline system [19] is among current
state-of-the-art systems [3, 10], and that our proposed
confidence- and margin-based extensions of the dis-
criminative MMI/MPE training criteria achieve the
currently best known WERs/CERs for a purely HMM
based system using a very simple feature extraction.
Even ensemble based HMM approaches as proposed
in [3] are outperformed by our approaches.

5 Conclusions

We presented a novel confidence- and margin-based
discriminative training using a MMI/MPE training
criterion for model adaptation in offline handwriting
recognition. The advantages of the proposed methods
using an HMM based multi-pass decoding system were
shown for Arabic handwriting on the IFN/ENIT corpus
(isolated word recognition) and for Latin handwrit-
ing on the IAM corpus (large-vocabulary, continuous
sentence recognition). Both approaches showed their
robustness w.r.t. transcription errors and outperformed
the maximum-likelihood (ML) trained baseline models.

We discussed an approach how to modify existing
training criteria for handwriting recognition like for
example MMI and MPE to include a margin term. The
modified training criterion M-MMI was shown to be



15

Table 8 Comparison to ICDAR 2005/2009 and ICFHR 2010 Arabic handwriting recognition competition results on the IFN/ENIT
database

Competition Group WER [%]

abc-d abcd-e abcde-f abcde-s

ICDAR 2005 [25] UOB 15.0 24.1

ARAB-IFN 12.1 25.3 - -

ICRA (Microsoft) 11.1 34.3 - -

ICDAR 2009 [24] MDLSTM - - 6.6 18.9
A2iA (combined) - - 10.6 23.3

(NN/HMM) - - 14.4 29.6
(HMM) - - 17.8 33.6

RWTH OCR (this work, M-MMI) 6.1 15.4 14.5 28.7

RWTH OCR (this work, M-MMI-conf) 6.0 14.6 14.3 27.5
UOB-ENST (HMM, combined) - - 16.0 27.7

ICFHR 2010 [26] UPV PRHLT (HMM) 7.5 12.3 7.8 15.4

RWTH OCR (this work, w/ MLP features) 3.5 7.3 9.1 18.9

UPV PRHLT (HMM, w/o vert. norm.) - - 12.1 21.6
CUBS-AMA (HMM) - - 19.7 32.1

Other results BBN [28] 10.5 - - -

SIEMENS [39] - 18.1 12.8 26.1

closely related to existing large margin classifiers (e.g.
SVMs) with the respective loss function. This approach
allows for the direct evaluation of the utility of the
margin term for handwriting recognition. As expected,
the benefit from the additional margin term clearly
depends on the training conditions. The proposed
discriminative training approach could outperform the
ML trained system on all tasks.

The impact of different writing styles was dealt with
a novel confidence-based discriminative training for
model adaptation, where the usage of state-confidences
during the iterative optimization process based on
the modified M-MMI-conf criterion could decrease the
word-error-rate on the IFN/ENIT database by 33%
relative in comparison to a ML trained system.

On the IAM database, similar improvements
could be observed for the proposed M-MMI-conf and
M-MPE-conf criteria, leading to a WER decrease by
25% relative in comparison to a maximum-likelihood
trained system, and representing one of the best
known 29% WER in the literature for a single and
purely HMM based system. In supervised training,
the M-MPE criterion could outperform the M-MMI
approach, whereas in unsupervised and confidence-
based model adaptation, the M-MMI-conf approach
could clear the initial gap to the M-MPE trained
model.

Interesting for further research will remain hybrid
HMM/ANN approaches [13, 10], combining the advan-
tages of large and non-linear context modeling via
neural networks while profiting from the Markovian
sequence modeling. This is also supported by the 36%

relative improvement we could achieve in the ICFHR
2010 Arabic handwriting competition [26] with the pro-
posed framework but an MLP based feature extraction.
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