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ABSTRACT

Conditional Random Fields (CRFs) have proven to per-
form well on natural language processing tasks like name
transliteration, concept tagging or grapheme-to-phoneme
(g2p) conversion. The aim of this paper is to propose some
extension to the state-of-the-art CRF systems for these tasks.
Since the number of features can grow rapidly, a method
for features selection is very helpful to boost performance. A
combination of L1 and L2 regularization (elastic net) has been
adopted and implemented within the Rprop optimization al-
gorithm. Usually, dependencies on the target side are limited
to bigram dependencies since the computational complex-
ity grows exponentially with the history length. We present
a modified CRF decoding where a conventional language
model on target side is integrated into the CRF search pro-
cess. Thus, larger contexts can be taken into account. Besides
these two main parts, the already published margin-extension
to the CRF training criterion has been adopted.

Index Terms— G2P, CRF, LM, Margin, Elastic-Net, L1

1. INTRODUCTION

Conditional Random Fields (CRFs) provide a powerful model
for natural language processing tasks like grapheme-to-
phoneme conversion [1], name transliteration [2] or concept
tagging [3]. This discriminative modelling approach has be-
come more and more popular within the speech community
due to its nice theoretic properties as well as state-of-the-art
results on a large number of NLP tasks. Nevertheless, there
are some drawbacks to this model. CRFs permits to use over-
lapping features leading in some tasks (e.g. g2p) very fast
to huge feature sets with 100M-1G features. Quasi-Newton
update methods like L-BFGS need to keep the feature param-
eters λM

1 , the gradient of the conditional log-likelihood, and
an approximation to the Hessian in memory. It is obvious
that there is a need to select a set of really useful features.
Taking into account that we only have about 50 output labels
and 26 input labels, most features are rarely seen and cannot
be trained properly. Thus, one can expect even a gain in
performance by selecting only useful features.

In [1], elastic nets are proposed and included in orthant-
wise quasi-Newton (OWL-QN) algorithm, stochastic gradient
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descent, and block coordinate descent. Although this meth-
ods are clearly powerful, they are expensive in computational
costs, memory consumption and time to develop software to
use this algorithm.

Additionally, the computational complexity of CRFs
grows exponentially with the context length on target side.
Thus, only bigram dependencies are computationally feasi-
ble. Within this work, methods to cope with these drawbacks
are presented. Instead of the popular L-BFGS, the Rprop [4]
optimization algorithm is utilized and a method similar to
the elastic net has been implemented. To cope with the
restricted context length on target side, we propose an inte-
gration of a classical language model on target side within the
search process. Additionally, small modifications to CRFs
are discussed like the integration of a margin into the training
criterion, which gives some performance improvements [5],
[3].

To assess the quality of the methods, their performance is
evaluated on the NETtalk task.

The next section presents our baseline CRF system, which
already includes some tweaks compared to the standard CRF.
Sec. 3 presents our new feature-selection method imple-
mented within Rprop. In Sec. 4, the integration of a classical
LM into the CRF search is presented. The following section
gives experimental results. The paper concludes with Sec. 6.

2. CRF WITH MARGIN-EXTENSION

Linear Chain Conditional Random Fields (CRFs) as intro-
duced in [6] are defined as the conditional probability of a
target sequence tN1 = t1, . . . , tN given a source sequence
sN
1 = s1, . . . , sN using a log-linear representation:

p(tN1 |sN
1 ) =

exp H(tN1 , sN
1 )∑

t̃N
1

exp H(t̃N1 , sN
1 )

(1)

H(tN1 , sN
1 ) =

(
N∑

n=1

M∑
m=1

λmhm(tn−1, tn, sN
1 )

)
(2)

H(tN1 , sN
1 ) represents the sentence-wise accumulation of po-

sition dependent and binary feature functions hm(tn−1, tn, sN
1 ).

The feature functions return “1” iff a given configuration
is found in the parallel sequences. In the experiments,
three sets of feature functions were used: lexical features
(tn = t′, sn+ε = s′), a bigram feature (tn−1 = t′′, tn = t′),

4912978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



Input: Last and current lambdas {λM
1 }i−1, {λM

1 }i, current
step sizes {sM

1 }i, last and current gradient of the objective
function {∇λM

1
L}i−1, {∇λM

1
L}i

Output: New lambdas {λM
1 }i+1, new step sizes {sM

1 }i+1

for m ∈ 1, . . . , M :
if { ∂L

∂λm
}i−1 · { ∂L

∂λm
}i > 0:

sm,i+1 = min (s+ · sm,i, smax)
λm,i+1 = λm,i − sign({ ∂L

∂λm
}i) · sm,i+1

else if { ∂L
∂λm

}i−1 · { ∂L
∂λm

}i < 0:

sm,i+1 = max (s− · sm,i, smin)
λm,i+1 = λm,i−1

{ ∂L
∂λm

}i = 0
else if { ∂L

∂λm
}i−1 · { ∂L

∂λm
}i == 0:

sm,i+1 = sm,i

λm,i+1 = λm,i − sign({ ∂L
∂λm

}i) · sm,i

Fig. 1. Rprop Algorithm as proposed in [4]. s+, s−, smax,
smin are configuration variables typically defined as s+ =
1.2, s− = 0.5, smax = 50, smin = 0.

and a huge set of and-combinations of the lexical features

resulting in m-grams on source side (tn = t′, sn+ε+δ
n+ε−δ = s′).

The training criterion on a training set {{tN1 }k, {sN
1 }k}K

k=1
is given by maximization of the conditional log-likelihood L
with respect to λM

1 :

L =
K∑

k=1

log p({tN1 }k|{sN
1 }k) − r(λM

1 ) (3)

using a regularization function r described in detail in Sec. 3,
while the decision criterion is given by the maximization of
the sentence wise probability p(tN1 |sN

1 ).
Recently, an extension to CRFs called the margin-based

extension has been introduced in [5]. It is based on the idea to
integrate the training of SVMs and CRFs, called MMI there
and results in a modification of the potential function H to

Ĥ(tN1 , sN
1 ) = H(t̃N1 , sN

1 ) − ρA(t̃N1 , t
N
1 ) (4)

with the old potential function H from Eq. 2 and a margin

score set to the word accuracy A(tN1 , t
N
1 ) =

∑N
n=1 δ(tn, tn)

between the hypothesis tN1 and the reference t
N
1 , scaled by

ρ ≥ 0. In our experiments ρ was set to 1 and the weight of

both summands of Ĥ was tuned by the regularization func-
tion r. The modification is only included in the training of
parameters.

3. ELASTIC NET FOR RPROP

We like to propose an extension to the very simple Rprop-
Algorithm. Rprop uses only the sign of the current and last
gradient of the objective function L (Eq. 3). An abstract of
the algorithm described in [4] is given in Fig. 1. Elastic-
Net is a combination of L2 and L1 regularization r(λM

1 ) =

(1)

(0) w/o L1

with L1

 0

dL
/d

la
m

bd
a

lambda
 0

(a)

(2)
(3)

(0)

with L1

w/o L1

dL
/d

la
m

bd
a

 0

 0
lambda

(b)

Fig. 2. Sketches of the gradient of the objective function from
Eq. 3 with equal L1 regularization c1 but different offset.

c2||λM
1 ||22+c1||λM

1 ||1 with the 2- and 1-Norm ||·||1/2. Due to

the convexity property of CRFs which implies ∂2L/∂λ2
m <

0, the gradient of L can be approximated at zero as

∂L

∂λm
≈ ∂L

∂λm

∣∣∣∣
λm=0

− ∂2L

∂λ2
m

∣∣∣∣
λm=0

λm−2c2λm−c1sign(λm)

(5)
with an error in the λ3

m magnitude. Fig. 2 sketches two cases
of the gradient of the objective function L with and without
L1 regularization. In Fig. 2(a) the Rprop algorithm will set λ
to 0 after an infinite number of iterations, while in Fig. 2(b) it
will trim λ at some point > 0. We want to modify Rprop, so
that it is able to distinguish these two cases already in one iter-
ation. Without loss of generality we suppose λm,i < 0 (point
(0) in Fig. 2). An update sm,i < 0 keeps λm in the same
orthant, but with sm,i > 0 we have three cases: (1) we have
case Fig. 2(a) where the sign of the gradient is changed, (2) we
have case Fig. 2(b) and the gradient is not changed, and (3) the
same case with a changed gradient. Case (1) and (3) can be
discriminated by evaluating the expression (∂L/∂λm)2 − c2

1.
So we propose to check in each iteration for each λm the ques-
tions

c2
1 > (∂L/∂λm + c1sign(λm))2 ≈ L0 (6)

0 >

{
∂L

∂λm

}
i−1

·
{

∂L

∂λm

}
i

(7)

0 > λm,i · λm,i−1 (8)

If they are true, set λm = 0 and skip the if clauses in the
Rprop algorithm. At λm,i == 0 the evaluation of Eq. 6 is
sufficient.

The modification in the last paragraph still needs the gra-
dient of all λm, but experiments showed that the set of fea-
tures bound by this approach to zero are seldom changed be-
tween iterations, so it is enough to check each feature only
each Nth iteration. We propose to combine count cut-offs
(only use features seen at least n-times in training corpus) and
Elastic-Net, by evaluating features above the count cut-off ev-
ery iteration and cut-off features only every Nth iteration. The
sets of cut features which is evaluated rotates through λM

1 by
modulo. In Sec. 5, experimental results are presented.
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Table 1. Effect of various feature-reduction techniques (up to
1%) on the performance. Elastic-Net (EN) uses c1 = 2−4.
feature set #features PER[%] WER[%]

Dev Eva Dev Eva
full model 54.603.236 7.7 7.9 33.8 34.2

+margin 54.597.879 7.4 7.9 32.3 34.2
elastic net (EN) 322.248 7.5 8.0 33.4 34.3
count > 0 802.379 7.9 8.1 34.1 34.7
rotating EN 260.658 7.7 8.0 34.6 34.6

4. LM IN CRF-SEARCH

One of the most powerful features of CRFs is the context fea-
ture on target side, the so-called bigram feature. It is compu-
tationally expensive, since the complexity of the model cor-
relates with the context length, as already described in Sec. 1.
Since longer context may lead to even better results but the
complexity forbids the direct integration, one solution could
be to integrate a classical language model (LM) into the CRF
search process. This LM could easily be calculated before-
hand and just be used as an additional knowledge source:

t̂N1 = argmax
tN
1

{
exp(H(tN1 , sN

1 ))1−α · pα
LM (tN1 )

}
(9)

The LM is weighted using α.
The SRI LM Toolkit has been used to train the language

models [7]. Experimental results are reported in the next sec-
tion.

5. EXPERIMENTAL RESULTS

To get an idea of the effect of the just introduced methods,
we performed a number of experiments on the NETtalk 15k
corpus. This English g2p corpus is comprised of roughly 15k
sentences for training, whereof 1k is set aside for develop-
ment. The test set contains approximately 5k sentences. Since
a large number of experiments with a detailed analysis had to
be performed, such a small corpus is well suited. As error
measure, we use phoneme error rate (PER) as well as word
error rate (WER). For all experiments reported in this paper,
we used the manual alignment which is available with the cor-
pus.

We first optimized a baseline system on the corpus.
Therefor, we checked a number of different features and
came up with the following setup leading to our best result:
lexical features in a window of [−4, . . . , 4] around the current
word, i.e. at nine positions, the bigram feature and combined
features. The latter features are composed of all monotone
and overlapping combinations of lexical features of lengths
two up to six.

For application of Elastic-Nets (EN) on this setup, the reg-
ularization Parameters c1 and c2 were re-tuned. We first jus-
tified c2 with respect to PER on the development set. After-
wards, c1 was tuned resulting in the interdependence of PER
and number of features shown in Fig. 3. The number of fea-
tures can be greatly reduced by up to two magnitudes without

PE
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#f
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tu
re
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#features
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100k
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10k

1M
8.5

c1

Fig. 3. PER on development and evaluation set vs. L1-
regularization c1. L2-reg. was kept fixed to c2 = 2−3. The
dotted lines symbolize the PER without L1-reg.

loss of performance. The resulting feature sets are not equal
to feature count cut-offs. 558k of 56M features were set to
zero despite their count in the training corpus was not zero
and 77k of 56M features were used though their count was
zero. Tab. 1 documents the comparison of a model without
feature selection, EN, count cut-offs and our proposed com-
bination of count cut-offs and EN which we call rotating EN.
It turned out that all feature selection methods reduced the
number of features to less than 1%. There is no significant
difference in performance , although rotating EN reduced the
number of features the most.

The effect of a language model integrated into CRF search
has been measured in the following way: first, standard ARPA
LMs have been trained on the target side of the training corpus
for the orders two up to seven. The lowest perplexity on the
dev set is obtained for order 5 with 8.3.

We wanted to separate the effect of the various kinds of
features and the language model. Thus, we trained six dif-
ferent systems, each incorporating different features. Tab. 2
gives an overview of the selected features. To each of the sys-
tems, the language models of order two up until seven have
been combined. Therefor, for each experiment, the interpola-
tion weight α had to be adjusted. We did this by grid search.
The order and weighting factor of the best performing LM
are presented in Tab. 2. The results are grouped according
to the used features. Each experiment is reported with and
without LM in search. If we have a look at the experiments
where no combined features are incorporated, we can see that
the LM can improve the system, even if bigram dependencies
are considered within the CRF (third of the six experiments
within the table). As soon as combined features are incorpo-
rated, the quality of the model greatly improves (even more
than with the bigram features alone). Here, the additional LM
can not improve the best performing system significantly, but
it can in someway compensate for the bigram feature, since
the result of the model with only the unigram feature can be
improved with a 5-gram LM to give the same performance as
with the bigram feature. This is also true, if the elastic net is
applied. Thus, it would be possible to omit the bigram feature
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Table 2. Results for language models integrated into CRF
search. Additionally, the best LM n-gram order as well as
the interpolation weight α is given. Tuning of LM for Exper-
iment “*” is documented in Fig. 4. h0 and h1 represent the
unigram and bigram feature respectively, lexical features are
(tn = t′, sn+ε = s′), and source n-grams are combinations of
successional lexical features. EN marks the experiment using
Elastic Net in combination with the language model.

feature set LM PER[%] WER[%] LM
Dev Eva Dev Eva order / α

so
u
rc

e
le

x
ic

al
s

14.6 14.6 59.7 57.5 –
� 11.5 11.8 47.2 46.7 7 / 0.35

+h0
14.8 14.6 60.2 57.6 –

� 11.7 11.9 47.0 47.0 7 / 0.40

+h1
12.3 12.2 51.9 49.5 –

� 11.1 11.1 45.5 44.8 6 / 0.30

+
so

u
rc

e
n
-g

ra
m

s 8.0 8.3 35.4 35.9 –
� 7.4 8.3 33.0 35.8 6 / 0.20

+h0

*
8.0 8.3 35.0 36.0 –

� 7.4 7.9 32.6 34.5 4 / 0.25

EN
7.9 8.4 35.7 36.5 –

� 7.5 7.9 33.8 34.2 4 / 0.25

+h1
7.4 7.9 32.3 34.2 –

� 7.3 7.8 32.1 33.5 5 / 0.10

and decrease training time (about 10%) and memory require-
ments greatly. Note that the results in Tab. 2 are roughly 6%
better than those reported in [8], the most current publication
using exactly this corpus. This can to some degree explained
with the fact that discriminative models usually work better
than generative ones if little training data is available.

6. CONCLUSION

In this paper, extensions to the popular CRF approach for
NLP tasks have been proposed. Beside remarks on some
small tweaks, like the use of the fast and easy to imple-
ment Rprop as optimization algorithm instead of the popular
L-BFGS or the introduction of a margin into the training
criterion, which significantly improves the systems, two ap-
proaches have been implemented. On the one hand, a very ef-
fective method of feature reduction has been ported to Rprop,
reducing the size of the feature set to 1% while keeping the
same performance. On the other hand, the incorporation of a
standard LM on target side into the CRF search process has
been tested. The idea was to take larger contexts than bigram
dependencies into account. LMs could not improve the best
system significantly, but the expensive bigram feature can
in some way be compensated. I.e., if the LM is applied in
search instead of the costly bigram feature, the results are
comparable, even if additionally the elastic net is applied.
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