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Image Sequence Processing and Recognition
Introduction

What is the Problem?

Why is it Difficult?

How can we handle all these Challenges?
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I symbol boundaries are not always visible

I natural samples
I inter- and intra-personal variability
I hesitations, dialects, styles, genres, ...

How can we handle all these Challenges?

⇒ HMM based approaches are probably the method of choice
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Why is it an Important Problem?
Introduction

Handwritten Text Recognition

Challenges:

⇒ connected continuous handwritten texts
⇒ writer dependent handwriting styles
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Why is it an Important Problem?
Introduction

Head and Hand Tracking

Challenges:

⇒ partially-occluded non-rigid objects

⇒ fast and abrupt movements
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Why is it an Important Problem?
Introduction

Gesture and Sign Language Recognition

Challenges:

⇒ movement epenthesis and coarticulation effects

⇒ natural signed languages, i.e. national with local dialects
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Scientific Goals
Introduction

Domains

I optical character recognition

I object tracking

I automatic sign language recognition

Some Questions

I which concepts and ideas can be adopted from ASR?

I can we tackle all domains within a unique framework?

Underlying Principles

I avoid early and local decisions

I quantitatively evaluate the improvements
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Introduction
Automatic Sign Language Recognition

What Features do we need?

I manual: hand motion / form / orientation / location

I non-manual: mimic, eye gaze, body/head orientation

⇒ should be extracted from input signal

Different Approaches / Assumptions

I special hardware, computer vision, environment, ...

⇒ vision-based approaches do not restrict the way of signing
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Introduction
Automatic Sign Language Recognition

Problems in many State-of-the-Art Approaches

I too controlled conditions

I most systems: person dependent, recognition of isolated signs

I lack of data, no publicly available corpora

Goals: Follow Approaches Similar to Speech Recognition

I recognition of continuous sign language

I training with sentences (unknown word boundaries)

I multi-person / person-independent training and recognition

I cope with dialects

I “large” datasets

⇒ extend RWTH-ASR large vocabulary speech recognition system
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Signed-Language-to-Spoken-Language
Automatic Sign Language Recognition

Recognition: Sign-to-Text (Video⇒ Glosses)

Translation: Text-to-Text (Glosses⇒ Text)

Synthesis: Text-to-Speech (Text⇒ Audio)
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Feature Extraction and Modeling
Automatic Sign Language Recognition

Multi-Purpose Object Tracking by Dynamic Programming Tracking

I model-free tracking approach based on dynamic programming
[Dreuw & Deselaers+ 06], IEEE FG

⇒ 2 steps: score calc. & traceback (full temporal context)

I common problem in sign language recognition:

I tracking as pre-processing
I path only optimized w.r.t. a tracking criterion

(e.g. motion, color, etc.)
⇒ early tracking decisions can lead to recognition errors
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Feature Extraction and Modeling
Automatic Sign Language Recognition

Tracking Extension for Sign Language Processing

I model-based tracking path adaptation [Dreuw & Forster+ 08], IEEE FG

I consider positions around tracking path uT
1 within range R

I simultaneous tracking uT
1 and word sequence wN

1 optimization
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Feature Extraction and Modeling
Automatic Sign Language Recognition

Features
I PCA-Frame

I PCA-Hand-Patch

I Hand position and trajectory

I Mean-Face

I AAM-based facial features

I ...

Modeling

I Gaussian Mixture Models

I whole-word models

I adaptive lengths
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Feature Extraction and Modeling
Automatic Sign Language Recognition

Visual Speaker Alignment (VSA)

I appearance-based features: models are too speaker dependent

⇒ visually align speakers: scale and speaker independent features

Virtual Training Samples (VTS)

I lack of data problem

⇒ use virtual training samples
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Experimental Results
Automatic Sign Language Recognition

RWTH-BOSTON-104 Database

I Corpus statistics

training set test set

# sentences 161 40
# running words 710 178
# frames 12422 3324
vocabulary size 103 65
# singletons 27 9
# out of vocabulary (OOV) - 1

3-gram LM PP 4.7
signers 3
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Experimental Results
Automatic Sign Language Recognition

Features / Rescoring WER [%]

Baseline VSA VTS VSA+VTS

Frame 32×32 38.76 33.15 27.53 24.72

PCA-Frame (200) 30.34 27.53 19.10 17.98

Hand (32×32) 45.51 34.83 25.28 31.46
+ distortion (R = 10) 44.94 30.53 17.42 21.35
+ δ-penalty 35.96 28.65 18.54 20.79

PCA-Hand (70) 44.94 34.27 15.73 26.97
+ distortion (R = 10) 56.74 34.83 14.61 12.92
+ δ-penalty 32.58 24.16 11.24 12.92

⇒ model-based tracking adaptation strongly improves the results

⇒ effects of VSA and VTS are cumulative
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Overview
Optical Character Recognition

Terminology

I OCR = optical character recognition (machine printed)

I ICR = intelligent character recognition (handwritten)

Common Requirements

I “flat” scans⇒ line segments for recognition

I preprocessing: physical/logical layout analysis

Applications
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State-of-the-Art
Optical Character Recognition

Commercial OCR Applications

I Novodynamics, Sakhrsoft, LEADTOOLS, ...

I OmniPage Pro 17, FineReader 10 Pro, ReadIRIS Pro 12

Freeware
I Google Docs OCR, free-ocr.com, ocrterminal.com, weocr, ...

Open Source Systems

I OCRopus, Tesseract-OCR v3.00, GOCR, OCRad

I HTK, RWTH OCR

⇒ comparison of systems/approaches is difficult

⇒ support e.g. Arabic scripts
⇒ our goal: single framework, broad range of scripts/languages
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State-of-the-Art
Optical Character Recognition

Research - Companies
I [Smith & Antonova+ 09], Google

Tesseract for Multilingual OCR, ICDAR 2009

I [Saleem & Cao+ 09], BBN Technologies
The BBN Byblos System, ICDAR 2009

I [Kermorvant & Menasri+ 10], A2iA
MLP/HMM-based Handwriting Recognition, ICFHR 2010

Research - Universities
I [Bertolami & Bunke 08b], IAM

HMM-based Handwriting Recognition, PR 2008

I [Graves & Liwicki+ 09], TUM
RNN/CTC-based Handwriting Recognition, PAMI 2009

I [Espana-Boquera & Castro-Bleda+ 11], UPV
ANN/HMM-based Handwriting Recognition, PAMI 2011
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RWTH OCR
Optical Character Recognition

Recognition System
Image Input

Feature
Extraction

Character Inventory

Writing Variants Lexicon

Language Model

Global Search:

maximize

x1...xT

Pr(w1...wN) Pr(x1...xT | w1...wN)

w1...wN

Recognized
Word Sequence

over

Pr(x1...xT | w1...wN )

Pr(w1...wN)
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What Scripts can RWTH OCR Recognize?
Optical Character Recognition

Language Database Example

Arabic IfN/ENIT

Arabic RAMP-N

Catalan GERMANA

English IAM

French RIMES
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Features
Optical Character Recognition

Preprocessing - Segment Normalization

I Latin handwriting: color, slant, and height normalization

I Arabic handwriting: no preprocesing!

I machine-print: skew

⇒ concept: avoid early decisions, focus on modeling

Appearance-Based

I sliding window, PCA reduction

I typically: large context-window with maximum overlap
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Features
Optical Character Recognition

Multi-Layer Perceptron (MLP)

I non-linear context modeling

I hierarchical neural network structures

I typically: 2 cascades, 1 hidden layer, large context-windows
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⇒ RAW and TRAP-DCT posterior features

⇒ can be used for hybrid or tandem approaches
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Glyph Modeling
Optical Character Recognition

Bayes’ Decision Rule and HMMs

xT1 → ŵN1 (xT1 ) = argmax
wN

1

{
p(wN1 ) p(xT1 |wN1 )

}

p(xT1 |wN1 ) = max
[sT1 ]

{ T∏
t=1

p(xt|st, wN1 ) p(st|st−1)

}
Gaussian HMMs

I Gaussian mixture models as emissions

I left-to-right topology with skip transitions

⇒ important in Arabic handwriting:

(a) white-spaces (b) state-transitions
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Glyph Modeling
Optical Character Recognition

Glyph Dependent Lengths (GDL) for GHMMs

I wide complex characters⇒ more HMM states

I unsupervised iterative approach: update #states Sc for each
glyph model c by alignment and frequency counts

Sc =
N(x, c)

N(c)
· α

⇒ important in Arabic handwriting [Dreuw & Jonas+ 08], ICPR

⇒ less important: Arabic machine-print, w/ preprocessing
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Glyph Modeling
Optical Character Recognition

Hybrid MLP/HMM

I approximate the observation probabilities of an HMM

p(xt|st) =
p(st|xt)
p(st)

I p(st|xt) realized as MLP posterior feature stream (offline)
I p(st) prior provided by previously trained model

Tandem MLP-GHMM

I estimate using log-PCA reduced MLP posterior probabilities

x′t = φ(log p(st|xt))

⇒ important is initial MLP alignment [Dreuw & Doetsch+ 11], IEEE ICIP
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Writing Variants Lexicon
Optical Character Recognition

Arabic Scripts

I ligatures and diacritics⇒ multiple writing variants

I PAWs: other approaches had difficulties⇒ explicit modeling

Example

si 2 1 0 si

p(si|si)p(0|0)

p(1|0)

p(2|0)

p(1|1)

p(2|1)

p(2|2)p(si|si)
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Writing Variants Lexicon
Optical Character Recognition

Arabic Scripts: Explicit White-Space Modeling

without

between compounds

between and within
(as writing variants)

⇒ important in Arabic handwriting [Dreuw & Jonas+ 08], ICPR

⇒ less important: Arabic machine-print
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Training and Decoding Architectures
Optical Character Recognition

Training

I Maximum Likelihood (ML)

I Writer Adaptive Training (WAT) [Dreuw & Rybach+ 09], ICDAR

I Discriminative training criteria (M-MMI/M-MPE)

I Tandem (MLP-GHMM)

Decoding

I 1-pass
I GHMM / Tandem MLP-GHMM model
I Hybrid MLP/HMM

I 2-pass
I Writer Adaptation
I Unsupervised Confidence-based Discriminative Training

Details
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Isolated Arabic Words - IfN/ENIT
Optical Character Recognition

Statistics

I 937 Tunisian city names

I 32492 handwritten Arabic words, 916 writers, several sets

I database is used by more than 60 groups all over the world

Example (same city name)

Baseline System
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Isolated Arabic Words - IfN/ENIT
Optical Character Recognition

Comparisons and Progress: ICDAR / ICFHR Competitions
external evaluations on unknown sets f and s [Märgner & Abed 10]

Year Group (Approach) set-e set-f set-s

IC
D

A
R

2
0

0
9 MDLSTM (RNN/CTC) - 6.6 18.9

A2iA (GHMM & MLP/HMM) - 10.6 23.3
RWTH OCR (x16, GHMM, M-MMI) 15.4 14.5 28.7
RWTH OCR (x16, GHMM, M-MMI-conf) 14.6 14.3 27.5

IC
F

H
R

2
0

1
0 UPV PRHLT (HMM) 6.2 7.8 15.4

RWTH OCR (x16, MLP-GHMM, M-MMI) 7.3 9.1 18.9
CUBS-AMA (HMM) - 19.7 32.1

IC
D

A
R

2
0

1
1

RWTH OCR (x32, MLP-GHMM, ML) 5.9 7.8 15.5
REGIM (HMM) - 21.0 31.6
JU-OCR (RF & Rules) - 36.1 50.3
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Continuous Latin Sentence Lines - IAM
Optical Character Recognition

I English handwriting

I LM: Brown, Lancester-Oslo-Bergen, and Wellington corpora

I 50k lexicon, 3-gram LM

Train Devel Eval LM

words 53.8k 8.7k 25.4k 3.3M
chars 219.7k 31.7k 96.6k 13.8M
lines 6.1k 0.9k 2.7k 164k
writers 283 57 162 -

OOV rate 1.07% 3.94% 3.42% 1.87%

MMI/MPE Results Unsupervised Results
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Continuous Latin Sentence Lines - IAM
Optical Character Recognition

Results
Systems WER [%]

Devel Eval

GHMM, ML baseline 31.9 38.9

+ M-MMI 25.8 31.6
+M-MMI-conf 23.7 29.0

+ M-MPE 24.3 30.0
+ M-MPE-conf 23.7 29.2

MLP/HMM 31.2 36.9

MLP-GHMM 25.7 32.9
+ M-MMI 23.5 30.1
+ M-MPE 22.7 28.8

[Bertolami & Bunke 08a] (GHMMs) 26.8 32.8
[Graves & Liwicki+ 09] (LSTM/CTC) - 25.9
[Espana-Boquera & Castro-Bleda+ 11] (MLPs/HMM) 19.0 22.4
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Conclusions
Conclusions and Future Work

Optical Character Recognition
I able to recognize handwritten and machine printed texts

I MLP and HMM can cope with horizontal variations/contexts

I neural network based features significant improvements

I excellent results, also at external evaluations

Object Tracking
I multi-purpose tracking framework (DPT)

I robust and smooth head and hand trajectories

I excellent results on various datasets of different visual
complexity

Automatic Sign Language Recognition
I many similarities with ASR

I good temporal alignments & adequate features are crucial
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Future Work
Conclusions and Future Work

Features, Visual Modeling, Training, LMs, ...

I “intelligent” preprocessing

I robust / high-level features

I context modeling (e.g. CART)

I writer/font adaptive training

I joint optimization of neural networks and HMM

I unsupervised adaptation

I ...
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Thank you for your attention
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Recognition



State-of-the-Art
Optical Character Recognition

Competitions

I ICDAR / ICFHR:
segmentation and recognition
external evaluations

I DARPA MADCAT / NIST OpenHaRT:
segmentation, recognition, and translation

Machine Printed Text Recognition

I many benchmark datasets available

⇒ Arabic?
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State-of-the-Art
Optical Character Recognition

Belongie & Malik+ 2002 (Berkeley)
shape context matching

DeCoste & Schölkopf+ 2002 (CalTech / MPI)
invariant SVM

Simard & Steinkraus+ 2003 (MSR)
convolutional neural network

Schambach & Rottland+ 2008 (Siemens AG)
Natarajan et al. 2009 (BBN Technologies)
HMM

Graves et al. 2009 (TUM)
recurrent neural network

P. Dreuw: Final PhD Talk 52 Apr. 27th, 2012



Arabic Writing System
Optical Character Recognition

Arabic

I 28 base characters, up to 4 position dependent shapes

I ligatures, diacritics - optional in handwriting!

I Part of Arabic Word (PAW) as sub-words

I machine-print: cursive, shape usually not encoded!

(a) Ligatures (b) Diacritics
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RWTH ASR
Optical Character Recognition

Software

I corpus driven architecture, parallelization at segment-level

I runs on a 500-machine cluster (SUN Grid Engine)

⇒ http://www.hltpr.rwth-aachen.de/rwth-ocr/
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RWTH OCR
Optical Character Recognition

Software

I corpus driven architecture, parallelization at segment-level

I runs on a 500-machine cluster (SUN Grid Engine)

⇒ http://www.hltpr.rwth-aachen.de/rwth-ocr/
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UPV Preprocessing - Latin
Optical Character Recognition

I Original images

I Images after color normalisation

I Images after slant correction

I Images after height normalisation

Note: preprocessing did not help for Arabic handwriting [Visualization]

Return Features
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UPV Preprocessing - Arabic
Optical Character Recognition

I Original images

I Images after slant correction

I Images after height normalisation

Experimental Results:

I important informations in ascender/descender areas lost

⇒ not yet suitable for Arabic OCR

Return Features
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MLP Training
Optical Character Recognition

RAW Features (values for IfN/ENIT)

I first level MLP system
I input features: raw pixel column vectors (32 components)
I no windowing of input features
I single hidden layer (2000 nodes)
I 216 output nodes (GDL glyph labels)
I log-PCA transformation to 32 components

I second level MLP system
I input features: concatenates MLP log-PCA with raw features
I window size of 9⇒ (32 + 32)× 9 = 576
I single hidden layer (3000 nodes)
I 216 output nodes (GDL glyph labels)
I log-PCA transformation to 32 components

Return MLP Features MLP Modeling
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MLP Training
Optical Character Recognition

TRAP-DCT Features (values for IfN/ENIT)

I first level MLP system
I input features: raw pixel column vectors (32 components)
I TRAP-DCT [Hermansky & Sharma 98] window⇒ 256

components
I single hidden layer (1500 nodes)
I 216 output nodes (GDL glyph labels)
I log-LDA transformation to 96 components

I second level MLP system
I input features: MLP log-LDA with raw pixel features
I two windows: (96× 5) + (32× 9) = 768
I single hidden layer (3000 nodes)
I 216 output nodes (GDL glyph labels)
I log-LDA transformation to 36 components

Return MLP Features MLP Modeling
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Glyph Dependent Lengths
Optical Character Recognition

Original Length

I overall mean of character length = 7.9 px (≈ 2.6 px/state)

I total #states = 357

Return GDL Modeling
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Glyph Dependent Lengths
Optical Character Recognition

Estimated Length

I overall mean of character length = 6.2 px (≈ 2.0 px/state)

I total #states = 558

Return GDL Modeling
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Writing Variant Model Refinement
Optical Character Recognition

HMM baseline system

I searching for an unknown word sequence
wN1 := w1, . . . , wN

I unknown number of words N

I maximize the posterior probability p(wN1 |xT1 )

I described by Bayes’ decision rule:

xT1 → ŵN1 (xT1 ) = arg max
wN1

{
pκ(wN1 ) p(xT1 |w

N
1 )
}

with κ a scaling exponent of the language model.

Return Writing Variants Lexicon
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Writing Variant Model Refinement
Optical Character Recognition

Arabic Ligatures and Diacritics

I same Arabic word can be written in several writing variants
I depends on writer’s handwriting style

⇒ lexicon with multiple writing variants
⇒ problem: many and rare writing variants

Example

Return Writing Variants Lexicon
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Writing Variant Model Refinement
Optical Character Recognition

I probability p(v|w) for a variant v of a word w
I usually considered as equally distributed
I here: we use the count statistics as probability:

p(v|w) =
N(v, w)

N(w)

I writing variant model refinement:

p(xT1 |w
N
1 ) = max

vN1 |wN1

{
pα(vN1 |w

N
1 )p(xT1 |v

N
1 , w

N
1 )
}

with vN1 a sequence of unknown writing variants
α a scaling exponent of the writing variant probability

⇒ training: corpus and lexicon with supervised writing variants
possible!

Return Writing Variants Lexicon
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Writer Adaptive Training
Optical Character Recognition

I writer adaptation
I method for improving visual models in handwriting recognition
I refine models by adaptation data of particular writers
I widely used is affine transform based model adaptation

I CMLLR
I Idea: normalize writing styles by adaptation of the features xt

I constrained MLLR feature adaptation technique
I also known as feature space MLLR (fMLLR) [Details]
I estimate affine feature transform:

x′
t = Axt + b

I CMLLR is text dependent
I requires an (automatic) transcription

Return Training / Decoding CMLLR
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Writer Adaptive Training
Optical Character Recognition

I writer adaptation compensates for writer differences during
recognition

⇒ do the same during visual model training
⇒ maximize the performance gains from writer adaptation

I writer variations are compensated by writer adaptive training
(WAT)

I writer normalization using CMLLR
I necessary steps

1. train writer independent GMMs model
2. CMLLR transformations are estimated for each (estimated)

writer
I supervised if writers are known

3. apply CMLLR transformations on features to train writer
dependent GMMs
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Decoding: CMLLR-based Writer Adaptation
Optical Character Recognition

I writers and writing styles are unknown
I necessary steps

1. estimate writing styles using clustering
I Bayesian Information Criterion (BIC) based stopping condition

2. estimate CMLLR feature transformations
for every estimated writing style cluster

3. second pass recognition
I WAT models + CMLLR transformed features

Sys.1 Sys.2

Decoder

Writer Independent
Pass 1: Pass 2:

Clustering CMLLR Decoder

WAT+CMLLR
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Results - Decoding: Writer Adaptation
Optical Character Recognition

I comparison of GDL, WAT, and CMLLR based feature
adaptation

I comparison of unsupervised and supervised writer clustering
I decoding always unsupervised
I supervised clustering⇒ only the writer labels are used!

Train Test WER[%]
1st pass 2nd pass

ML +GDL WAT+CMLLR
unsup. sup.

abc d 10.88 7.83 7.72 5.82
abd c 11.50 8.83 9.05 5.96
acd b 10.97 7.81 7.99 6.04
bcd a 12.19 8.70 8.81 6.49
abcd e 21.86 16.82 17.12 11.22
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Results - Decoding: Writer Adaptation
Optical Character Recognition

I unsupervised clustering: error analysis
I histograms for segment assignments over the different test

folds
I problem: unbalanced segment assignments
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C-MLLR
Optical Character Recognition

Idea: improve the hypotheses by adaptation of the features xt
I effective algorithm for adaptation to a new speaker or

environment (ASR)
I GMMs are used to estimate the CMLLR transform
I iterative optimization (ML criterion)

I align each frame xt to one HMM state (i.e. GMM)
I accumulate to estimate the adaptation transform A
I likelihood function of the adaptation data given the model is to

be maximized with respect to the transform parameters A, b
I one CMLLR transformation per (estimated) writer
I constrained refers to the use of the same matrix A for

the transformation of the mean µ and variance Σ:

x′t = Axt + b⇒ N(x|µ̂, Σ̂) with µ̂ = Aµ+ b

Σ̂ = AΣAT

Return WAT
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Language Modeling
Optical Character Recognition

Bayes’ Decision Rule and HMMs

xT1 → ŵN1 (xT1 ) = arg max
wN1

{
pκ(wN1 ) p(xT1 |w

N
1 )
}

p(wN1 ) =

N∏

n=1

p(wn|wn−m+1
n−1 )

LMs

I any model in ARPA LM format can be read

I otherwise (weighted) finite state automatons
I typically:

I modified Kneser-Ney smoothing
I word LMs: 3- to 5-gram
I character LMs: 5- to 10-gram
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Discriminative Training
Optical Character Recognition

Goals for OCR

I can we adopt from ASR? parameter behavior?

I novel: unsupervised adaptation possible?

⇒ joint work with Georg Heigold, details in his PhD Thesis
[Heigold 10]

Introduction

I labeled training sentences (Xr,Wr)r=1,...,R with
2D image⇒ string representation X = x1, . . . , xT
word sequence W = w1, . . . , wN
pΛ(X,W ) with model parameters Λ⇒ posterior

pΛ,γ(W |X) =
pΛ(X,W )γ∑
V

pΛ(X,V )γ
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Discriminative Training
Optical Character Recognition

Introduction

I labeled training sentences (Xr,Wr)r=1,...,R

I training: weighted accumulation of aligned observations xt:

accumulators =

R∑

r=1

Tr∑

t=1

ωr,s,t · xt

Maximum Mutual Information (MMI)

ωr,s,t :=
p(Xr,Wr)

γ

∑
V

p(Xr, V )γ

I ωr,s,t is the “(true) posterior” weight
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Discriminative Training
Optical Character Recognition

Introduction

I labeled training sentences (Xr,Wr)r=1,...,R

I training: weighted accumulation of aligned observations xt:

accumulators =

R∑

r=1

Tr∑

t=1

ωr,s,t · xt

Maximum Mutual Information (MMI)

ωr,s,t :=
p(Xr,Wr)

γ

∑
V

p(Xr, V )γ

I ωr,s,t is the “(true) posterior” weight
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Margin-Based MMI (M-MMI)

ωr,s,t(ρ 6=0):=

{
p(Xr,Wr) e

−ρA(Wr,Wr)
}γ

∑
V

{
p(Xr,Wr) e−ρA(V,Wr)

}γ

I additional margin-term including the accuracy A(·,Wr)
e.g. approximate word error [Povey & Woodland 02]

I ωr,s,t is the “margin posterior” weight

[Heigold & Dreuw+ 10], IEEE J-STSP
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Unsupervised Discriminative Model Adaptation

I assumption: margin-based training robust against outliers

⇒ unsupervised discriminative training on test data

⇒ select data depending on confidence threshold τc

[Dreuw & Heigold+ 11], IJDAR

Confidence-Based Accumulation

1. recognize (unsupervised transcriptions)

2. estimate frame confidences cr,s,t (state-posteriors, FB algo.)

3. 1-best accumulation: consider only observations for which
cr,s,t > τc in the 1-best recognition hypothesis

[Gollan & Bacchiani 08]
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Confidence-Based M-MMI (M-MMI-conf)

I sentence/word confidences⇒ simply weight the segments

I state confidences⇒ state posteriors required

ωr,s,t :=

{ ∑
s
Tr
1 :st=s

p(Xr, s
Tr
1 ,Wr) · exp(−ρA(Wr,Wr))

}γ
∑
V

{ ∑
s
Tr
1 :st=s

p(Xr, s
Tr
1 , V )

︸ ︷︷ ︸
posterior

· exp(−ρA(V,Wr))︸ ︷︷ ︸
margin

}γ · δ(cr,s,t > τc)︸ ︷︷ ︸
confidence

⇒ accumulators:
each frame t contributes ωr,s,t · δ(cr,s,t > τc) · xt
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Maximum Likelihood: accumulation of aligned xt

accumulators =

R∑

r=1

Tr∑

t=1

δ(st, s) · xt

Margin-based MMI/MPE: weighted accumulation

accumulators =

R∑

r=1

Tr∑

t=1

ωr,s,t(ρ) · xt

Confidence-Based M-MMI/M-MPE: confidence-weighted accumulation

accumulators =

R∑

r=1

Tr∑

t=1

ωr,s,t(ρ) · δ(cr,s,t > τc) · xt

I with cr,s,t at sentence-, word-, glyph-, or state-level
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Optimization Problem - Loss Minimization

I loss function for each training sample r:

L[pΛ(Xr, ·),Wr]

I criterion

Λ̂ = arg min
Λ

{
C||Λ− Λ0||22 +

R∑

r=1

L[pΛ(Xr, ·),Wr]
}

I `2 regularization term replaced by I-smoothing
[Povey & Woodland 02]

I initialization at a reasonable ML trained model Λ0

Return Discriminative Training
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Maximum Mutual Information (MMI)

L(MMI)[pΛ(Xr, ·),Wr] =

− log
pΛ(Xr,Wr)

γ

∑
V

pΛ(Xr, V )γ

Margin-Based MMI (M-MMI)

L(M-MMI)
ρ [pΛ(Xr, ·),Wr] =

− log
[pΛ(Xr,Wr) exp(−ρA(Wr,Wr))]

γ

∑
V

[pΛ(Xr, V ) exp(−ρA(V,Wr))]γ

I additional margin-term including the accuracy A(·,Wr)
e.g. approximate word error [Povey & Woodland 02]

P. Dreuw: Final PhD Talk 78 Apr. 27th, 2012



Discriminative Training
Optical Character Recognition

Maximum Mutual Information (MMI)

L(MMI)[pΛ(Xr, ·),Wr] =

− log
pΛ(Xr,Wr)

γ

∑
V

pΛ(Xr, V )γ

Margin-Based MMI (M-MMI)

L(M-MMI)
ρ [pΛ(Xr, ·),Wr] =

− log
[pΛ(Xr,Wr) exp(−ρA(Wr,Wr))]

γ

∑
V

[pΛ(Xr, V ) exp(−ρA(V,Wr))]γ

I additional margin-term including the accuracy A(·,Wr)
e.g. approximate word error [Povey & Woodland 02]
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Minimum Phone Error (MPE)

L(MPE)[pΛ(Xr, ·),Wr] =

∑

W

E(W,Wr)
pΛ(Xr,Wr)

γ

∑
V

pΛ(Xr, V )γ

I error function E(·,Wr), e.g. approximate phone error
[Povey & Woodland 02]

Margin-Based MPE (M-MPE)

L(M-MPE)
ρ [pΛ(Xr, ·),Wr] =

∑

W

E(W,Wr)
[pΛ(Xr,Wr) exp(−ρA(W,Wr))]

γ

∑
V

[pΛ(Xr, V ) exp(−ρA(V,Wr))]γ
,
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Minimum Phone Error (MPE)

L(MPE)[pΛ(Xr, ·),Wr] =

∑

W

E(W,Wr)
pΛ(Xr,Wr)

γ

∑
V

pΛ(Xr, V )γ

I error function E(·,Wr), e.g. approximate phone error
[Povey & Woodland 02]

Margin-Based MPE (M-MPE)

L(M-MPE)
ρ [pΛ(Xr, ·),Wr] =

∑

W

E(W,Wr)
[pΛ(Xr,Wr) exp(−ρA(W,Wr))]

γ

∑
V

[pΛ(Xr, V ) exp(−ρA(V,Wr))]γ
,
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I example for a word-graph w/ 1-best state alignment
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∑ ∑ ∑ ∑ ∑ ∑

c = 0.001

c = 0.1

c = 0.7

∑

I steps for confidence-based model adaptation:
I 1-pass recognition (unsupervised transcriptions)
I calculation of corresponding confidences
I unsupervised M-MMI-conf training on test data

to adapt models (w/ regularization)

I can be done iteratively with unsupervised corpus update!

Return Training and Decoding
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Confidence-Based M-MMI (M-MMI-conf)

I sentence/word confidences⇒ simply weight the segments

I state confidences⇒ state posteriors required

ωr,s,t :=

{ ∑
s
Tr
1 :st=s

p(Xr, s
Tr
1 ,Wr) · exp(−ρA(Wr,Wr))

}γ
∑
V

{ ∑
s
Tr
1 :st=s

p(Xr, s
Tr
1 , V )

︸ ︷︷ ︸
posterior

· exp(−ρA(V,Wr))︸ ︷︷ ︸
margin

}γ · δ(cr,s,t > τc)︸ ︷︷ ︸
confidence

⇒ accumulator accs:
each frame t contributes ωr,s,t · δ(cr,s,t > τc) · xt
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Accuracies
Optical Character Recognition

Approximate Phone Error

I proposed by Povey [Povey & Woodland 02]

I phone accuracy of a word sequence W

⇒ sum over all phone arcs q in the sequence W

PhoneAcc(q|W ) = max
z∈W

{
−1 + 2e(q|z), if same phone

−1 + e(q|z), if different

I q hyp, z reference, e overlap in time

⇒ efficiently calculated by pre-computing for each frame a list of
arcs that include that frame

⇒ approximate word error similar (e.g. for M-MMI or MWE)

Return MMI/M-MMI MPE/M-MPE
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Isolated Arabic Words - IfN/ENIT
Optical Character Recognition

Visual Inspections

I ML

I M-MMI-conf

⇒ learned to discriminate depending on white-space context

⇒ implicit HMM segmentation adequate for post-processing
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Visual Inspections

I ML

I M-MMI-conf

⇒ learned to discriminate depending on white-space context

⇒ implicit HMM segmentation adequate for post-processing
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I 937 Tunisian city names
I 32492 handwritten Arabic words, about 1000 writers
I database is used by more than 60 groups all over the world

I writer statistics

set #writers #samples

a 0.1k 6.5k
b 0.1k 6.7k
c 0.1k 6.4k
d 0.1k 6.7k

e 0.5k 6.0k

f - 8.6k
s - 1.5k

I examples (same word):

Return
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Competitions and Corpus Development

I external evaluations

I ICDAR 2005: a-d sets for training, evaluation on set e
I ICDAR 2007: a-e sets for training, evaluation on set f, s

I set f from same Tunisian University
I set s from United Arab Emirates

I ICDAR 2009 and ICFHR 2010: as for ICDAR 2007

Return
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Baseline System

I appearance-based sliding window features + PCA

I ML trained GHMM: 121 glyphs, 361 GMMs, 36k densities

I + GDL: 216 glyphs, 646 GMMs, 55k densities

Train Test WER[%]

1st pass 2nd pass

ML GDL +MMI +M-MMI M-MMI-conf

abc d 10.9

7.8 7.4 6.1 6.0

abd c 11.5

8.8 8.2 6.8 6.4

acd b 11.0

7.8 7.6 6.1 5.8

bcd a 12.2

8.7 8.4 7.0 6.8

abcd e 21.9

16.8 16.4 15.4 14.6

Return
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Baseline System

I appearance-based sliding window features + PCA

I ML trained GHMM: 121 glyphs, 361 GMMs, 36k densities

I + GDL: 216 glyphs, 646 GMMs, 55k densities

Train Test WER[%]

1st pass 2nd pass

ML GDL +MMI +M-MMI M-MMI-conf

abc d 10.9 7.8

7.4 6.1 6.0

abd c 11.5 8.8

8.2 6.8 6.4

acd b 11.0 7.8

7.6 6.1 5.8

bcd a 12.2 8.7

8.4 7.0 6.8

abcd e 21.9 16.8

16.4 15.4 14.6

Return
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Baseline System

I appearance-based sliding window features + PCA

I ML trained GHMM: 121 glyphs, 361 GMMs, 36k densities

I + GDL: 216 glyphs, 646 GMMs, 55k densities

Train Test WER[%]

1st pass 2nd pass

ML GDL +MMI +M-MMI M-MMI-conf

abc d 10.9 7.8 7.4 6.1

6.0

abd c 11.5 8.8 8.2 6.8

6.4

acd b 11.0 7.8 7.6 6.1

5.8

bcd a 12.2 8.7 8.4 7.0

6.8

abcd e 21.9 16.8 16.4 15.4

14.6

Return
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Baseline System

I appearance-based sliding window features + PCA

I ML trained GHMM: 121 glyphs, 361 GMMs, 36k densities

I + GDL: 216 glyphs, 646 GMMs, 55k densities

Train Test WER[%]

1st pass 2nd pass

ML GDL +MMI +M-MMI M-MMI-conf

abc d 10.9 7.8 7.4 6.1 6.0
abd c 11.5 8.8 8.2 6.8 6.4
acd b 11.0 7.8 7.6 6.1 5.8
bcd a 12.2 8.7 8.4 7.0 6.8

abcd e 21.9 16.8 16.4 15.4 14.6
Return
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Unsupervised Training

 14

 14.5

 15

 15.5

 16

 0  5  10  15  20  25  30
 5

 6

 7
W

E
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 [%
]

C
E

R
 [%

]

Iteration

initialization, abcd-e, WER
initialization, abcd-e, CER

re-initialization 1, abcd-e, WER
re-initialization 1, abcd-e, CER
re-initialization 2, abcd-e, WER
re-initialization 2, abcd-e, CER
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Hybrid MLP/HMM vs. Tandem MLP-GHMM

I both GHMM systems are M-MMI trained

Model WER[%] CER[%]

GHMM 15.4 6.1

MLP/HMM 11.6 4.8

MLP-GHMM 7.3 3.0

⇒ MLP based features (hybrid/tandem) very powerful!

⇒ tandem usually outperforms hybrid approaches
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Hybrid MLP/HMM vs. Tandem MLP-GHMM

I MLP parameters tuned only on set abc

I both GHMM systems are M-MMI trained

Train Test GHMM MLP/HMM MLP-GHMM

WER[%] CER[%] WER[%] CER[%] WER[%] CER[%]

abc d 6.1 2.4

4.5 1.7 3.5 1.5

abd c 6.8 2.6

2.6 0.9 1.4 0.8

acd b 6.1 2.2

2.7 0.9 2.5 1.0

bcd a 7.0 3.1

3.1 1.3 2.6 1.1

abcd e 15.4 6.1

11.6 4.5 7.3 3.0

⇒ MLP based features (hybrid/tandem) very powerful!
Return
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Hybrid MLP/HMM vs. Tandem MLP-GHMM

I MLP parameters tuned only on set abc

I both GHMM systems are M-MMI trained

Train Test GHMM MLP/HMM MLP-GHMM

WER[%] CER[%] WER[%] CER[%] WER[%] CER[%]

abc d 6.1 2.4 4.5 1.7

3.5 1.5

abd c 6.8 2.6 2.6 0.9

1.4 0.8

acd b 6.1 2.2 2.7 0.9

2.5 1.0

bcd a 7.0 3.1 3.1 1.3

2.6 1.1

abcd e 15.4 6.1 11.6 4.5

7.3 3.0

⇒ MLP based features (hybrid/tandem) very powerful!
Return
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Hybrid MLP/HMM vs. Tandem MLP-GHMM

I MLP parameters tuned only on set abc

I both GHMM systems are M-MMI trained

Train Test GHMM MLP/HMM MLP-GHMM

WER[%] CER[%] WER[%] CER[%] WER[%] CER[%]

abc d 6.1 2.4 4.5 1.7 3.5 1.5
abd c 6.8 2.6 2.6 0.9 1.4 0.8
acd b 6.1 2.2 2.7 0.9 2.5 1.0
bcd a 7.0 3.1 3.1 1.3 2.6 1.1

abcd e 15.4 6.1 11.6 4.5 7.3 3.0

⇒ MLP based features (hybrid/tandem) very powerful!
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Comparisons: ICDAR / ICFHR Competitions
external evaluations on unknown sets f and s [Märgner & Abed 10]

Year Group (Approach) set-e set-f set-s

IC
D

A
R

2
0

0
7

SIEMENS (HMM) 18.1 12.8 26.1
MIE (DP) - 16.7 31.6
UOB-ENST (HMM) - 18.1 30.1

IC
D

A
R

2
0

0
9

MDLSTM (RNN/CTC) - 6.6 18.9
A2iA (combined) - 10.6 23.3

(HMM) - 17.8 33.6
(MLP/HMM) - 14.4 29.6

RWTH OCR (HMM, M-MMI) 15.4 14.5 28.7
RWTH OCR (HMM, M-MMI-conf) 14.6 14.3 27.5
UOB-ENST (HMM, combined) - 16.0 27.7
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Comparisons: ICDAR / ICFHR Competitions
external evaluations on unknown sets f and s [Märgner & Abed 10]

Year Group (Approach) set-e set-f set-s

IC
D

A
R

2
0

0
7

SIEMENS (HMM) 18.1 12.8 26.1
MIE (DP) - 16.7 31.6
UOB-ENST (HMM) - 18.1 30.1

IC
D

A
R

2
0

0
9

MDLSTM (RNN/CTC) - 6.6 18.9
A2iA (combined) - 10.6 23.3

(HMM) - 17.8 33.6
(MLP/HMM) - 14.4 29.6

RWTH OCR (HMM, M-MMI) 15.4 14.5 28.7
RWTH OCR (HMM, M-MMI-conf) 14.6 14.3 27.5
UOB-ENST (HMM, combined) - 16.0 27.7
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Comparisons: ICDAR / ICFHR Competitions
external evaluations on unknown sets f and s [Märgner & Abed 11]

Year Group (Approach) set-e set-f set-s

IC
F

H
R

2
0

1
0 UPV PRHLT (HMM) 6.2 7.8 15.4

RWTH OCR (x16, MLP-GHMM, M-MMI) 7.3 9.1 18.9
UPV PRHLT (HMM, w/o vert. norm.) 12.3 12.1 21.6
CUBS-AMA (HMM) - 19.7 32.1

IC
D

A
R

2
0

1
1 RWTH OCR (x32, MLP-GHMM, ML) 5.9 7.8 15.5

REGIM (HMM) - 21.0 31.6
JU-OCR (RF & Rules) - 36.1 50.3
CENPARMI (SVMs) - 60.0 64.5

⇒ missing is an M-MMI trained MLP-GHMM system!
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Year Group (Approach) set-e set-f set-s

IC
F

H
R

2
0

1
0 UPV PRHLT (HMM) 6.2 7.8 15.4

RWTH OCR (x16, MLP-GHMM, M-MMI) 7.3 9.1 18.9
UPV PRHLT (HMM, w/o vert. norm.) 12.3 12.1 21.6
CUBS-AMA (HMM) - 19.7 32.1

IC
D

A
R

2
0

1
1 RWTH OCR (x32, MLP-GHMM, ML) 5.9 7.8 15.5

REGIM (HMM) - 21.0 31.6
JU-OCR (RF & Rules) - 36.1 50.3
CENPARMI (SVMs) - 60.0 64.5

⇒ missing is an M-MMI trained MLP-GHMM system!
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Continuous Latin Lines - IAM
Optical Character Recognition

I English handwriting

I LM: Brown, Lancester-Oslo-Bergen, and Wellington corpora

I 50k lexicon, 3-gram LM

Train Devel Eval LM

words 53.8k 8.7k 25.4k 3.3M
chars 219.7k 31.7k 96.6k 13.8M
lines 6.1k 0.9k 2.7k 164k
writers 283 57 162 -

OOV rate 1.07% 3.94% 3.42% 1.87%
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Continuous Latin Lines - IAM
Optical Character Recognition

TODO: PPL plotReturn

P. Dreuw: Final PhD Talk 93 Apr. 27th, 2012



Continuous Latin Sentence Lines - IAM
Optical Character Recognition

Results
Systems WER [%] CER [%]

Devel Eval Devel Eval

GHMM, ML baseline [Jonas 09] 31.9 38.9 8.4 11.8
+ M-MMI 25.8 31.6 7.6 11.8

+M-MMI-conf 23.7 29.0 6.8 10.5
+ M-MPE 24.3 30.0 6.9 10.9

+ M-MPE-conf 23.7 29.2 6.5 10.3

MLP/HMM 31.2 36.9 10.0 14.2

MLP-GHMM 25.7 32.9 7.7 12.4
+ M-MMI 23.5 30.1 6.7 11.1
+ M-MPE 22.7 28.8 6.1 10.1

[Bertolami & Bunke 08a] (GHMMs) 26.8 32.8 - -
[Graves & Liwicki+ 09] (LSTM/CTC) - 25.9 - 18.2
[Espana-Boquera & Castro-Bleda+ 11] (MLPs/HMM) 19.0 22.4 - 9.8

[Doetsch 11] RWTH OCR (LSTM-GHMM, M-MPE) 17.4 21.4 6.6 9.5
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+ M-MPE-conf 23.7 29.2 6.5 10.3

MLP/HMM 31.2 36.9 10.0 14.2
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+ M-MPE 22.7 28.8 6.1 10.1

[Bertolami & Bunke 08a] (GHMMs) 26.8 32.8 - -
[Graves & Liwicki+ 09] (LSTM/CTC) - 25.9 - 18.2
[Espana-Boquera & Castro-Bleda+ 11] (MLPs/HMM) 19.0 22.4 - 9.8
[Doetsch 11] RWTH OCR (LSTM-GHMM, M-MPE) 17.4 21.4 6.6 9.5
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Continuous Latin Sentence Lines - IAM
Optical Character Recognition

Margin-Based Supervised Training
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⇒ M-MPE usually outperforms M-MMI

⇒ benefit of margin term is significant (limited in ASR)

⇒ M-MPE word lattice density is important for convergence!
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Continuous Latin Sentence Lines - IAM
Optical Character Recognition

Margin- and Confidence-Based Unsupervised Training
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⇒ benefit of confidence term is limited, margin again significant

⇒ typically M-MMI/M-MMI-conf more robust

⇒ confidence term is important in M-MPE-conf
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Continuous Latin Sentence Lines - IAM
Optical Character Recognition

Margin- and Confidence-Based Unsupervised Training
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Continuous Latin Lines - IAM
Optical Character Recognition

M-MMI-conf vs. M-MPE-conf
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⇒ word graph density is important for smooth convergence

⇒ typically M-MMI/M-MMI-conf more robust

⇒ M-MPE usually (slightly) outperforms M-MMI

⇒ benefit of margin term
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Continuous Arabic Lines - RAMP-N
Optical Character Recognition

I Arabic machine-print

I open vocabulary

I 106k lexicon, 3-gram LM

I RWTH Arabic Machine-Print Newspaper (RAMP-N) corpus

Train Dev Eval a Eval b Eval c LM Training

words 1.4M 7.7k 20.0k 17.2k 15.2k 228M
characters 5.9M 30.8k 72.3k 64.2k 62.0k 989M
lines 222.4k 1.1k 3.4k 2.4k 2.2k 22M
pages 409 2 5 4 4 85k
fonts 20 5 12 7 6 -

OOV rate 1.9% 2.8% 2.2% 2.9% 2.7% 5.5%
Return
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Perplexities - RAMP-N
Optical Character Recognition

I LM using modified Kneser-Ney smoothing
I vocabulary size of 106k words
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Arabic Machine-Print - Ground-Truth
Optical Character Recognition

Why?

I there is no suitable OCR database

Goals?

I large-vocabulary OCR database
> 1M training words
> 200M language model (∼ ASR)

How?

I PDF⇒ “Automatic” Ground-Truth
I OCRopus and PDFlib TET
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Arabic Machine-Print - Ground-Truth
Optical Character Recognition

Visual Model Data

I 450 PDFs, 1 Arabic Newspapers, May 2010 - Nov 2010

I total size: 247k lines, 1.6M words, 8.5M characters, 20 fonts

Language Model Data

I 85k PDFs, 2 Arabic Newspapers, Jan 2003 - Aug 2010

I total size: 22M lines, 228M words, 989M characters

⇒ there is much more available ...

⇒ multi-font re-rendering possible ...
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Continuous Arabic Lines - RAMP-N
Optical Character Recognition

ML Trained GHMMs

I Eval a = 20k words, 72k chars, 3.4k lines, 12 fonts

I 106k lexicon⇒ 2.2% OOVs, 3-gram word LM⇒ 190 PPL
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⇒ GMMs can cope with multiple-fonts

⇒ important with OOVs: focus on CER instead of WER

⇒ Character LMs (8-gram): 1.28 % CER
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Continuous Arabic Lines - RAMP-N
Optical Character Recognition
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Continuous Arabic Lines - RAMP-N
Optical Character Recognition

ML trained GHMMs using Rendered and Scanned data

Layout Analysis Rendered Scanned

WER[%] CER[%] WER[%] CER[%]

Supervised 4.76 0.15 5.79 0.64
Unsupervised - - 17.62 3.79

⇒ rendered data: remaining errors mainly due to OOVs

⇒ scanned data: problems with OCRopus and feature robustness
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Continuous Arabic Lines - RAMP-N
Optical Character Recognition

Visual Inspection

I ML

⇒ implicit HMM segmentation adequate for post-processing
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Continuous Arabic Lines - RAMP-N
Optical Character Recognition

ML trained GHMMs

I Font-dependent results on the RAMP-N subset Eval a

Font Lines Errors Words OOV WER[%] Errors Glyphs CER[%]

AXtAlFares 2 10 2 2 500.0 0 19 0.00
AXtCalligraph 1 0 8 0 0.0 0 21 0.00
AXtGIHaneBoldItalic 15 19 129 4 14.7 12 591 2.03
AXtHammed 3 0 5 0 0.0 0 31 0.00
AXtKaram 9 2 83 0 2.4 4 300 1.33
AXtManal 1 0 2 0 0.0 0 4 0.00
AXtManalBlack 5 5 27 1 18.5 11 112 9.82
AXtMarwanBold 109 46 385 18 12.0 13 2002 0.65
AXtMarwanLight 3261 828 18963 405 4.4 79 83091 0.10
AXtShareQ 5 10 64 0 15.6 7 299 2.34
AXtShareQXL 68 35 371 13 9.4 10 1973 0.51
AXtThuluthMubassat 1 0 3 0 0.0 0 13 0.00

Total (Eval a) 3480 955 20042 443 4.8 136 88456 0.15

Return
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Continuous Arabic Lines - RAMP-N
Optical Character Recognition

M-MPE Trained GHMMs
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⇒ remaining errors mainly due to OOVs
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Appendix: Font Examples - RAMP-N
Experimental Results

AXtAlFAres
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P. Dreuw: Final PhD Talk 107 Apr. 27th, 2012



Ground-Truth - RAMP-N
Optical Character Recognition
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Ground-Truth - RAMP-N
Optical Character Recognition
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Ground-Truth - RAMP-N
Optical Character Recognition
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Appendix: Automatic Sign Language
Recognition



Introduction
Automatic Sign Language Recognition

Problems to be Solved in ASR/ASLR

1. preprocessing and feature extraction of the input signal

2. specification of models for the words to be recognized

3. learning of the free model parameters from the training data

4. maximum probability search over all models during recognition

Similarities
I temporal sequence of sounds or gestures

I languages and dialects

Main Differences Between Signed and Spoken Languages
I simultaneousness

I signing space

I 3D coarticulation and movement epenthesis

I silence
P. Dreuw: Final PhD Talk 112 Apr. 27th, 2012



Feature Extraction and Modeling
Automatic Sign Language Recognition

Sub-Word Units
I possible to recognize unseen words

using a pronunciation lexicon
I problems in sign language recognition:

I phoneme still not well-defined
I phonemes occur simultaneously
I no unique pronunciation lexicon
I more phonemes in sign language

⇒ approach not directly transferable to
sign language recognition

⇒ usually whole-word models are used

⇒ 3-state HMM, GMMs
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