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ABSTRACT

Conditional Random Fields (CRFs) are a state-of-the-art ap-
proach to natural language processing tasks like grapheme-to-
phoneme (g2p) conversion which is used to produce pronun-
ciations or pronunciation variants for almost all ASR pronun-
ciation lexica. One drawback of CRFs is that for training, an
alignment is needed between graphemes and phonemes, usu-
ally even 1-to-1. The quality of the g2p result heavily depends
on this alignment. Since these alignments are usually not an-
notated within the corpora, external models have to be used
to produce such an alignment in a preprocessing step. In this
work, we propose two approaches to integrate the alignment
generation directly and efficiently into the CRF training pro-
cess. Whereas the first approach relies on linear segmentation
as starting point, the second approach considers all possible
alignments given certain constraints. Both methods have been
evaluated on two English g2p tasks, namely NETtalk and
Celex, on which state-of-the-art results have been reported in
the literature. The proposed approaches lead to results com-
parable to the state-of-the art.

Index Terms— CRF, G2P, Alignments, EM Algorithm

1. INTRODUCTION

Conditional Random Fields (CRFs) represent a powerful, dis-
criminative modelling framework, leading to state-of-the-art
results for natural language processing tasks. They can easily
be applied to all monotone string-to-string translation tasks,
where a 1-to-1 alignment between source and target side is
available. Grapheme-to-phoneme conversion (g2p) repre-
sents such a task. Here, for a given sequence of graphemes, a
phoneme sequence representing a valid pronunciation has to
be generated. This is an important task for almost all state-
of-the-art ASR systems, since especially the pronunciations
of named entities are usually not given in a standard lexicon.
One constraint for the use of CRFs is that a 1-to-1 alignment
between graphemes and phonemes is necessary to train the
model. The alignment is usually provided by an external
model and can easily be transferred to a 1-to-1 alignment.

The need for such an alignment results in two drawbacks:
first, an additional model has to be trained and tuned and sec-
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ond, there may be a mismatch between the alignment pro-
vided by an external model and an alignment suited for CRF
training. It would be desirable to get rid of the external align-
ment and the possible error propagation as well as the addi-
tional tuning steps.

The work in this publication was inspired by current suc-
cess of log-linear modelling for g2p conversion shown by [1],
the success of CRFs in a wide range of applications, e.g. con-
cept tagging [2], g2p [3], and the earlier work on Hidden Con-
ditional Random Fields [4, 5] (HCRFs) and Hidden Dynamic
Conditional Random Fields [6] (HDCRFs). HCRFs as de-
scribed by [4] and [5] sum over a predefined graph capturing
the hidden structure. In [4] the graph is a mesh between fea-
tures, while [5] uses a part of a speech parse tree. HDCRFs
as described in [6] are similar to our approach specified in
Sec. 3.2. They included hidden variables by summing up over
all alignments in training. To keep training feasible they lim-
ited the set of hidden states per seen state. However they only
reported result on machine learning tasks like part-of-speech
(POS) tagging and named entity recognition (NER).

In contrast to the experiments reported in the literature,
we will show experiments on g2p tasks with much more out-
put labels than e.g. POS tagging or NER, will extend the
EM-Algorithm to CRFs, and will show an efficient way to
implement our approach. Except the restriction to monotonic
alignments with many source symbols to one target symbol,
our approach does not need any external knowledge or restric-
tions and finds the alignment only by applying CRFs.

For comparison with external alignment models, giza++
[7] and the joint n-gram approach [8, 9] have been used to
produce alignments on which a conventional CRF has been
trained.

In the next section, CRFs are introduced in detail followed
by a section describing the two approaches which have been
realized to incorporate the alignment into CRFs. In Sec. 4,
experimental results and a comparison to state-of-the art ap-
proaches are presented. The last two section of the paper give
a conclusion and an outlook. The paper concludes with Sec. 5.

2. CONDITIONAL RANDOM FIELDS

Linear Chain Conditional Random Fields (CRFs) introduced
by [10] are defined as the conditional probability of a target
sequence tN1 = t1, . . . , tN given a source sequence sN1 =



s1, . . . , sN using a log-linear representation:
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H(tN1 , s
N
1 ) defines position dependent feature functions

hl(tn−1, tn, s
N
1 ). In the experiments they were binary (∈

0, 1) functions, were lexical features (tn = t′, sn+ε = s′),
bigram features (tn−1 = t′′, tn = t′), and any “and”-
combinations of them (to capture n-grams) are possible. The
training criteria over a training dataset {{tN1 }k, {sN1 }k}Kk=1 is
given by the maximization of the conditional log-likelihood
L

L =
K∑
k=1

log p({tN1 }k|{sN1 }k)− c2||λM1 ||22 (3)

using a L2-regularization constant c2, while the decision cri-
teria is given by the maximization of the sentence wise prob-
ability p(tN1 |sN1 ).

In [11], the idea of merging the optimization of feature
weights (training) based on SVMs and CRFs, called MMI
there, is described. This is realized by modifying the potential
function H in training to:

H → Ĥ(tN1 , s
N
1 ) = H(t̃N1 , s

N
1 )− ρA(t̃N1 , t

N
1 ) (4)

Here, the margin score is set to the word accuracyA(tN1 , t
N
1 ) =∑N

n=1 δ(tn, tn) between the hypothesis tN1 and the reference
t
N
1 , scaled by ρ ≥ 0.

3. ALIGNMENTS

CRFs as described in the previous section assume the same
length of the source sN1 and target sequence τM1 (N = M ).
Thus we start by the traditional approach of integrating a hid-
den alignment variable aN1 :

p(τM1 |sN1 ) =
∑
aM
1

p(τM1 , aM1 |sN1 ) (5)

It is possible to model the tuple (τM1 , aM1 ) by a projection
using the so-called BIO scheme, proposed in [12]. For each
source symbol sn a tag tn is a tuple of the aligned target sym-
bol τm and a “begin” (B) or “inside” (I) marker. An example
of a possible 1-to-1 alignment for a word/pronunciation pair
using this scheme would look like this:

“throw”
[Tr5] = t

T B
h

T I
r

r B
o

5 B
w
5 I

These scheme allows the modelling of monotone align-
ments with the restriction of one target symbols to one and
to many source symbols, but not vice versa. Taking our task

of grapheme to phoneme conversion this restrictions can be
accepted. Using the BIO scheme permits CRFs to model the
probability p(τM1 , aM1 |sN1 ) = p(tN1 |sN1 ).

There are two ways of implementing Eq. 5: First the sum
can be approximated by a maximum resulting to an EM-like
algorithm, described in Sec. 3.1, or second the sum can be
computed directly, described in Sec. 3.2.

3.1. Maximum Approach

Starting from a linear segmentation

pos(s)→ (pos(s) · len(t)/len(s)) mod len(t)

a CRF is trained using the tag sequence tN1 of the correct
target sequence τM1 and the linear segmentation aM1 as cor-
rect/reference sequence

p(tN1 |sN1 )|tN1 =tN1 (τM
1 ,aM
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which is called maximization step in EM-Training. The
trained model is applied on the training corpus with restrict-
ing the search to the correct target sequence τM1

âM1 = argmax
aM
1

{
p(tN1 (τM1 , aM1 )|sN1 )

}
, (7)

which is called expectation step in EM-Training. Training
continues by a CRF training/resegmentation loop (Eqs. 6
and 7) until convergence.

In the maximization step the convexity property of CRFs
is still preserved, however by application of the expectation
step the convexity is broken. In early experiments it turned
out, that it was useful to keep the model used in Eq. 6 simple
and blurred to avoid local optima. In the final maximization
step the full CRF model using all features were trained until
convergence.

3.2. Summation Approach

Combining Eqs. 1 and 5 under use of the BIO scheme tags tn
results to
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In training the conditional log-likelihood L (Eq. 3) splits up to
three summands: two corresponding to the numerator and de-
nominator of p(τM1 |sN1 ) and one corresponding to the regular-
ization term. In comparison to regular linear chain CRFs only
the numerator summand is changed, due to the summation
over all alignments. The numerator summand gets the same
structure as the denominator summand and can be solved by
the same posterior approach (using Forward-/Backward Al-
gorithm). Since the sum in the numerator of Eq. 8 is a re-
stricted variant of the denominator sum the computational
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Fig. 1. Automaton describing the topology of all possible
tag sequences t31 with length 3 and vocabulary τ ∈ {A,B}.
To keep the diagram simple BIO markers are not included.
The correct paths for target sequence τ2

1 = [A,B] is marked
yellow/grey.

cost is in worst case doubled, which is acceptable. Unfor-
tunately in search we have a mixture of summation and max-
imisation which results to exponential behaviour making it
hard to carry out the alignment sum in search. Thus we only
applied the maximisation for both target and alignment se-
quence.

The advantage of this summation approach is that it is
mostly configuration free. It is not necessary to tune an align-
ment before, the alignment is a true hidden variable. Its disad-
vantage however is that it breaks the convexity of the training
criteria.

3.3. Implementation using FSAs

The methods described in Sec. 3.1 and 3.2 are modelled us-
ing finite state automata (FSA). An input sequence sN1 en-
coded as linear chain FSA is augmented by the tag vocabu-
lary (target vocabulary times BIO scheme markers) as output
labels, and composed with a bigram automaton guaranteeing
that all arcs pointing to one state have the same tag (output
symbol). An example of a resulting automaton with N = 3
and τ ∈ {A,B} is sketched in Fig. 1. An FSA-posterior op-
eration with Log-semiring is used for the denominator part of
Eq. 3. The numerator part for Sec. 3.2 is realized by selecting
all paths expressing the correct target sequence τM1 (see yel-
low/grey paths in Fig. 1) and again applying FSA-posterior
with Log-semiring. The resegmentation part of Sec. 3.1 is an
FSA-best with tropical-semiring on this selected paths (again
yellow/grey paths in Fig. 1).

4. EXPERIMENTS

In this section, experiments on two publicly available English
g2p corpora are reported. The statistics are given in Tab. 1.
The NETtalk corpus [13] is a comparatively small one with
roughly 15k grapheme/phoneme word pairs, whereof 1k has
been set aside as development set for tuning. An additional
advantage of this corpus is that a manual alignment is avail-
able, which is rarely the case for g2p corpora. The Celex cor-
pus [14] has roughly 40k training words, and with 15k words
a bigger test set. Thus, even small improvements of the model
can be measured, since the error rates are comparatively low
on this corpus. Other authors have used exactly these corpora

and data splits, thus a comparison of the proposed methods
with the state-of-the-art is possible.The results are presented
w.r.t. phoneme error rate (PER) and word error rate (WER).
For scoring, the NIST scoring toolkit has been applied [15].

In a first experiment, we wanted to investigate the effect
of the alignment on the performance of the CRF model. We
tested four different external models to produce alignments,
which will now be shortly described. A straight-forward
alignment can be realized using a linear segmentation (cf.
Sec. 3.1 for the corresponding equation). A popular tool to
produce alignments for machine translation is giza++. We
utilized this tool to produce an alignment using the follow-
ing sequence of models: 4x IBM1, 4x HMM, 2x IBM3, 2x
IBM4, 3x IBM5 (see e.g. [7]). The joint n-gram approach as
presented in [9] is also often used for enriching ASR lexica
with pronunciation variants and automatically derived pro-
nunciations. We use exactly the best models presented in the
aforementioned paper. Since manual alignments are available
for the NETtalk corpus [13], they are also considered.

For each of the resulting alignments, a CRF is trained
with exactly the same features. Thus, only the influence of
the alignment can be observed. The results are presented in
Tab. 2. For both corpora, the linear segmentation leads to the
worst results as expected. On NETtalk, giza++, the joint n-
gram and the manual alignment give roughly the same result,
namely a PER of around 7.5%. These figures are roughly 6%
relatively better than the numbers reported in [9]. This huge
improvement can be traced back to the fact that usually dis-
criminative methods work better than generative models, if
little training data is available. On Celex, there is now a sig-
nificant difference in the performance of the giza++ and the
joint n-gram alignment, whereas the latter can improve the
giza++ result by roughly 30% relatively. Here, the results are
comparable to the numbers presented in [9] and [1], whereas
the latter publication gives the best result on this g2p task in
the literature.

These results are now the baseline for grading of the inte-
grated alignment approaches. On both corpora, the maximum
approach as well as the summation approach have been tested.
For the former, a broader model is utilized for the resegmen-
tation step as explained in Sec. 3.1. We only used lexical
features in a window of [−1, . . . , 1] around the current word
and the bigram feature. We did a resegmentation after itera-
tions 5, 10, 15, 25, 35, 45, 65, 85 and 105. Additionally, the
lambdas and step-sizes have been reseted. With such a small
feature set,this procedure is pretty fast, albeit the number of
iterations is high. With the final alignment, a CRF model has
been trained for 50 iterations using a much larger feature set,
also incorporating combined features and a larger lexical win-
dow size. It is the same feature set which has been utilized
and optimized for the various alignments. For the summation
approach, the model is simply trained with the refined fea-
ture set for 50 iterations. These experimental results are also
presented in Tab. 2. On NETtalk, one can see that the maxi-
mum approach could improve the linear segmentation to the
quality of the manual alignment. The summation approach
did not perform this well, but the results are better than linear
segmentation. On Celex, the picture is similar. The maxi-



Table 1. Corpus statistics for the two considered Englisch g2p
corpora including the partitioning of the data into training,
development end evaluation sets.

symbols number of words

|S| |T | train test dev
NETtalk 15k 26 50 13804 4951 1071
Celex 26 53 39995 15000 5000

Table 2. Effect of various alignments on two g2p tasks.
data set alignment PER [%] WER [%]

Dev Eva Dev Eva
NETtalk 15k linear 10.1 10.6 43.7 44.9

giza++ 7.6 8.0 33.9 34.5
joint n-gram 7.4 7.9 33.2 34.2
manual 7.6 7.8 33.6 33.7
CRF max 7.5 7.9 34.0 34.1
CRF sum 9.0 9.5 39.7 39.8

Celex linear 5.3 4.9 25.1 23.6
giza++ 3.7 3.6 18.8 18.1
joint n-gram 2.6 2.5 13.0 12.4
CRF max 2.9 2.8 14.6 13.9
CRF sum 3.2 3.0 15.3 14.4

mum approach is comparable to the joint n-gram approach.
Here, the summation approach is on the same level as giza++,
a little worse than the joint n-gram approach.

5. CONCLUSION

In this paper, we have presented two approaches to inte-
grate the alignment into the CRF training process. The first
approach uses two steps and the maximum approximation,
where an initial alignment is iteratively improved. The sec-
ond algorithm takes all possible alignments (approximated by
certain constraints) into account. Both methods give results
which are comparable to state-of-the-art results, whereas the
first approach outperforms the second one, even getting the
same performance as with a given manual alignment for the
NETtalk corpus.
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