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ABSTRACT
We have recently proposed an EM-style algorithm to opti-

mize log-linear models with hidden variables. In this paper,

we use this algorithm to optimize a hidden conditional ran-

dom field, i.e., a conditional random field with hidden vari-

ables. Similar to hidden Markov models, the alignments are

the hidden variables in the examples considered. Here, EM-

style algorithms are iterative optimization algorithms which

are guaranteed to improve the training criterion in each itera-

tion - without the need for tuning step sizes, sophisticated up-

date schemes or numerical line optimization (with hardly pre-

dictable complexity). This is a rather strong property which

conventional gradient-based optimization algorithms do not

have. We present experimental results for a grapheme-to-

phoneme conversion task and compare the convergence be-

havior of the EM-style algorithm with L-BFGS and Rprop.

Index Terms— EM-style optimization, hidden condi-

tional random fields, grapheme-to-phoneme conversion

1. INTRODUCTION

An emerging and promising framework for string recognition

are conditional random fields (CRFs) [1]. These are struc-

tured log-linear models for string recognition. Recently, the

CRFs have been extended to hidden CRFs (HCRFs) to in-

clude hidden variables [2]. Hidden variables are an important

means to represent variability (e.g. alignment).

Numerical optimization plays a key role in CRFs, HCRFs,

and pattern recognition in general. The optimization problem

is typically solved using gradient-based algorithms, e.g. L-

BFGS [3] or Rprop [4]. This type of optimization algorithms

has proven to be efficient in practice. However, they require

the tuning of step sizes, sophisticated update schemes or nu-

merical line optimization to guarantee convergence to a local

optimum. These approaches are often associated with heuris-

tics or hardly predictable running time per iteration.

For a few special cases, EM-style algorithms are known.

These algorithms allow for a simple and safe convergence to
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a local optimum at low computational cost per iteration. The

most prominent examples include expectation-maximization

(EM) [5] and generalized iterative scaling (GIS) [6, 7]. Unfor-

tunately, these algorithms cannot be applied to our problem:

EM applies to generative models (e.g. Gaussian mixture mod-

els) and GIS only works for log-linear models without hidden

variables.

In [8], we proposed an extension to GIS, G-GIS, to in-

clude hidden variables. For one of the special instances con-

sidered here, our algorithm and the algorithm for maximum

mutual information from incomplete data [9] are identical,

and experimental results for relatively small parsing tasks can

be found in [10]. In fact, G-GIS is an example for generalized

EM (GEM) [11, p.545] where the maximization step consists

of a GIS iteration. In general, an arbitrary number of GIS it-

erations could be done in the maximization step [12]. This,

however, adds considerable complexity to each iteration and

will presumably not reduce the overall computation time.

The goal of the present work is to apply the EM-style al-

gorithm in [8] to grapheme-to-phoneme conversion [13]. This

task has the advantage of being of practical interest while the

modest complexity of the task and setup allows for a care-

ful experimental evaluation and comparison with state-of-the-

art optimization algorithms, without the need for approxima-

tions.

The outline of the remainder of the paper is as follows.

Section 2 gives an overview on the grapheme-to-phoneme

conversion task. Section 3 summarizes the EM-style algo-

rithm for HCRFs. Comparative experimental results can be

found in Section 4. The paper concludes with Section 5.

2. GRAPHEME-TO-PHONEME CONVERSION

Grapheme-to-phoneme conversion (g2p) is an important task

to build a state-of-the-art ASR system. It is used to enrich the

pronunciation lexicon by words where the lexical representa-

tion is known, but not the phonetic presentation. To use CRFs

for g2p, a 1-to-1 alignment between source and target side is

needed. We adopted the so-called Begin-Inside-Out scheme

[14], so we are able to transfer any given alignment into a
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1-to-1 representation. An example of a possible 1-to-1 align-

ment for a word/pronunciation pair using this scheme would

look like this:

“throw”
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3. EM-STYLE OPTIMIZATION

In this section, the key results for EM-style optimization as

proposed in [8] are summarized. This algorithm is referred to

as G-GIS because it is a generalization of generalized iterative

scaling (GIS) [6, 7]. G-GIS is then applied to two concrete

examples based on linear-chain HCRFs.

Consider the formal training criterion

F (λ) =
∑
r

log

(∑
C vrCΦλ(Xr, C)∑
C wrCΦλ(Xr, C)

)
(1)

where X denotes some feature vector and C stands for

the class. In our case, the score function Φ is log-linear:

Φλ(X,C) = exp(
∑

i λifi(X,C)) for a set of feature func-

tions fi(X,C) and model parameters λ = (λ1, . . . ). For

greater flexibility, we allow for weighting the score function

with some non-negative constants v and w. In addition, there

is a sum over the index r, e.g., the observation or the position

index. Typically, the training criterion is used in combination

with �2-regularization. This adds some notational complexity

but is rather straightforward to incorporate, see [15, Chapter

6.4].

Obviously, conventional GIS does not apply to the train-

ing criterion in Equation (1) because of the weighted sum over

the classes in the numerator. In [8], we derived generalized

update rules for this training criterion

λi = λ′
i +

1

F
log

Ni(λ
′)

Qi(λ′)

where λ′ and λ are the old and new model parameters, respec-

tively. The update rules resemble the update rules for conven-

tional GIS but use slightly different accumulation statistics

Ni(λ
′) :=

∑
r

∑
C

vrCΦλ′(Xr, C)∑
C̃ vrC̃Φλ′(Xr, C̃)

fi(Xr, C). (2)

The Q-statistics are defined similarly. Like for conventional

GIS, F is the feature count and, in case of binary features,

counts the maximum number of features that are simultane-

ously active. In the following, we discuss two special in-

stances of Equation (1) in more detail.

For sake of concreteness, consider the conversion from a

letter string X = sM1 to a phoneme string tN1 (see Section 2).

Here, we use the hidden variables aM1 to align the two strings,

i.e., C = (aM1 , tN1 ). Conditional maximum likelihood (CML)

for the associated HCRF is defined as

FCML(λ) = log

( ∑
aM
1
Φλ(s

M
1 , aM1 , tN1 )∑

t̃N1

∑
aM
1
Φλ(sM1 , aM1 , t̃N1 )

)
.

It can be implemented by a suitable choice for the weights v
and w in Equation (1). The weight v is set to one for the align-

ments representing the true phoneme string and to zero oth-

erwise, i.e., v is used as a filter. The weight w is always one.

The accumulation statistics in Equation (2) for the lexical fea-

tures, fsa(s
M
1 , aM1 , tN1 ) :=

∑
m δ(sm, s)δ(am, a), then reads

Nsa(λ
′) :=

M∑
m=1

δ(sm, s)pλ′(am = a|tN1 , sM1 )

(the sum over different training words is omitted for simplic-

ity). The statistics can be expressed in terms of conditional

probabilities, which are derived from the scoring functions Φ
via Bayes rule and marginalization. These quantities include

sums over a combinatorial number of strings and, assuming

certain independence assumptions, can be efficiently com-

puted with the forward-backward algorithm [15]. The use of

weighted finite-state transducers to represent the summation

space considerably simplifies the implementation [15, Chap-

ter 3]. The statistics for other features (see Section 4.1 for a

detailed setup) and Q are defined and computed similarly.

CML for HCRFs is rather standard. The training criterion

in Equation (1), however, also supports more exotic training

criteria. This is illustrated by another example, the position-

wise CML criterion. In contrast to CML, which optimizes

the string log-posteriors, this criterion optimizes the position-

wise log-posteriors

FPOS(λ) =

N∑
n=1

log

(∑
t̃N1 :t̃n=tn

∑
aM
1
Φλ(s

M
1 , aM1 , t̃N1 )∑

t̃N1

∑
aM
1
Φλ(sM1 , aM1 , t̃N1 )

)
.

The inspection of the minimum Bayes risk decision rule using

the phoneme error gives some motivation for this criterion:

the risk can be expressed in terms of the position-wise pos-

teriors and thus, the direct optimization of these posteriors is

expected to provide better estimates in general. Position-wise

CML has the same formal structure as the training criterion

in Equation (1). Again, the weight v is used to filter the hy-

potheses C = (aM1 , tN1 ) in the numerator. The weight w is

always one. The accumulation statistics in Equation (2) for

the lexical features then reads

Nsa(λ
′) :=

∑
n,m

δ(sm, s)

∑
t̃N1 :t̃n=tn

∑
aM
1 :am=a

Φλ′(sM1 , aM1 , t̃N1 )

∑
t̃N1 :t̃n=tn

∑
aM
1

Φλ′(sM1 , aM1 , t̃N1 )
.

The other statistics are defined similarly. The feature count

F is the same as for CML because the denominator is the

same. These statistics can be interpreted as (formal) second

order statistics (cf. covariance) and thus, can be efficiently

computed with the forward/backward algorithm using the ex-

pectation semiring, see [15, Chapter 3] for further details.
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Table 1. Phoneme error rates (PER) for NETtalk develop-

ment and evaluation corpus using different initializations, op-

timized with L-BFGS.
PER [%]

initialization Dev Eva

from scratch 12.5 12.5

suboptimal 10.8 10.9

maximum 10.6 10.8

4. EXPERIMENTAL RESULTS

We evaluate the EM-style algorithm described in Section 3

for the grapheme-to-phoneme conversion task NETtalk. In

particular, we check the feasibility and the theoretical prop-

erties of our EM-style algorithm (G-GIS), and compare it to

conventional gradient-based optimization algorithms such as

L-BFGS and Rprop.

4.1. Database & Setup

For the reported experiments, the English NETtalk 15k cor-

pus has been chosen. It consists of 26 different graphemes

and 50 phonemes. The data set is partitioned in roughly 14k

training words (’Train’), 1k for development and tuning of the

system (’Dev’), and 5k testing words (’Eva’).

In the experiments CRFs were used with binary (∈ 0, 1)

feature functions, where lexical features (an = a′, sn+ε =
s′), bigram features (tn−1 = t′′, tn = t′), and any “and”-

combination of them (to capture n-grams) is possible. For

the optimal setup, lexical features were used with offsets

−4, . . . , 4 and combined features are composed of all mono-

tone and overlapping combinations of lexical features of

lengths two up to six. The setup with the full feature set

achieves phoneme error rates around 6%.

Here, we choose a simpler setup by dropping the com-

bined features to reduce the computational load. We do not

believe that the conclusions will significantly change for more

complex setups. Table 1 provides a few baseline results. The

optimization is performed with L-BFGS, the conventional al-

gorithm for HCRFs. The algorithm terminates if the differ-

ence in the training criterion of two subsequent iterations is

smaller than the machine precision. Three different ways to

initialize the HCRF are used: ’from scratch’ (model param-

eters are set to zero, Dev PER=113.6%), ’suboptimal’ (some

suboptimal model, Dev PER=14.6%), and ’maximum’ (man-

ual segmentation used as the truth, Dev PER=11.1%). The

results in Table 1 suggest that local optima are an issue and to

achieve optimal performance, a good initial model is required.

4.2. Comparison

Next, we compare G-GIS with L-BFGS and Rprop. The

progress of training is plotted in Figure 1 (training crite-

rion on training corpus), Figure 2 (phoneme error rate on

development corpus), and Figure 3 (phoneme error rate on

evaluation corpus). Here, we are mainly interested in the

convergence behavior of the optimization algorithms, which

can be described in terms of convergence and efficiency.

By construction, L-BFGS and G-GIS converge to a local

optimum. In contrast, Rprop does not necessarily converge.

Nevertheless, the curves in Figures 1, 2, and 3 suggest that all

three algorithms finally converge to a local optimum. As ex-

pected, the local optima are different but comparable, see Ta-

ble 2.

For the given example, the number of training iterations

gives a reasonable estimate of the actual computational cost.

In general, this is not true as the computational load per itera-

tion varies for L-BFGS due to the implicit line minimization.

Both L-BFGS and Rprop converge within a few hundred iter-

ations. G-GIS, however, takes about ten times more iterations

to converge.

Hence, what makes G-GIS so much slower than L-BFGS?

The update rules for G-GIS are constructed such as to always

improve the training criterion, also in the worst case. In con-

trast, L-BFGS implements a ”trial-and-error” approach: start

with a reasonable step size and reduce it until the current iter-

ation improves the last iteration. In general, this can be costly

(up to ten trials in the given example, i.e., the actual step size

is 210 times smaller than the initial). In practice, however, this

only occurs rarely such that the overall training time is hardly

affected. Keeping this in mind, G-GIS favorably compares to

L-BFGS and Rprop.

5. SUMMARY
We compared EM-style to conventional gradient-based opti-

mization for hidden conditional random fields. Experiments

were performed for the grapheme-to-phoneme conversion

task NETtalk. The experimental results suggest that EM-

style optimization is feasible on this task and shows the

expected convergence behavior. In particular, it increases

the training criterion in each iteration. The downside of the

increased safety and simplicity of the EM-style algorithm is

that it comes at the expense of reduced convergence speed.

Hence, experimenters need to carefully consider the trade-

off between safety/simplicity and efficiency for numerical

optimization. Also, EM-style algorithms aim to effectively

converge to a local optimum. To find good optima, however,

additional heuristics (e.g. good initial model) are required in

general.
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