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ABSTRACT
In current speech recognition systems mainly Short-Time
Fourier Transform based features like MFCC are applied.
Dropping the short-time stationarity assumption of the voiced
speech, this paper introduces the non-stationary signal anal-
ysis into the ASR framework. We present new acoustic
features extracted by a pitch-adaptive Gammatone filter
bank. The noise robustness was proved on AURORA 2 and
4 tasks, where the proposed features outperform the standard
MFCC. Furthermore, successful combination experiments
via ROVER indicate the differences between the new features
and MFCC.

Index Terms— non-stationary, pitch-adaptive, Gamma-
tone, Gammachirp

1. INTRODUCTION
In state of the art automatic speech recognition (ASR) sys-
tems the most widely used acoustic features (Mel Frequency
Cepstral Coefficients (MFCC), Perceptual Linear Prediction
Coefficient (PLP)) are based on the Short-Time Fourier Trans-
form (STFT). Although it is well know that speech contains
non-stationary parts like stop consonants, the speech produc-
tion model is described on a short-time scale (≈ 30 ms) as
a response of a linear time invariant (LTI) system to wide
sense stationary or quasi-periodic excitation. In the case of
voiced speech, the features are calculated from the harmon-
ically structured power spectrum being composed of funda-
mental frequency (F0) and its harmonics, where F0 is as-
sumed to be constant within the analysis window. In this
case the Fourier analysis or comparable filter bank can be
used to separate and extract the periodic modes containing
the information of the vocal tract transfer function (VTTF).
The time evolution of the fundamental frequency in particu-
lar challenges the stationarity assumption inside a short anal-
ysis window of about 30 ms. Figure 1(a) depicts a spectro-
gram showing the typical harmonic structure within voiced
segments, exhibiting dynamic behavior due to F0 variability.

The separation and reconstruction of non-stationary sinu-
soids is not possible by means of STFT. Figure 1(b) shows
the magnitude spectrum of a stationary sinusoid compared to
the one of a linear chirp. The dynamic of the latter results in
a smearing of calculated energy among the bins. Further, it
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Fig. 1: (a) Spectrogram of “sale of the hotels” spoken by a woman,
the chirp rate in white patch assumed in b. (b) Hamming windowed
(25 ms) spectrum of chirped non-stationary harmonic mode (solid)
compared with the stationary sinusoid spectra (dashed).

has been shown in psychoacoustic experiments, that the hu-
man auditory pathway benefits from adaptation to the time-
varying frequency of harmonic modes: in presence of simul-
taneous speakers, the introduction of frequency modulation
into voiced speech improves the intelligibility (cocktail party
effect) [1].

A non-stationary speech production model for voiced
speech was introduced in [2]. The author also suggested
an analysis suited to separate the harmonic modes and to
extract their physical parameters. For this purpose adaptive
Gammatone (GT) filters have been used.

In this paper we investigate the usage of non-stationary
analysis [2] in the ASR framework replacing the standard
windowed STFT in the MFCC feature extraction by pitch-
adaptive GT filter bank. By suppressing the spectral region
between the harmonics we are able to estimate the VTTF
more robustly.

In Section 2 we summarize the related work. Section 3
gives an overview of the GT filters and their generalization
for non-stationary harmonic signal analysis. The integration
of the non-stationary filter bank into the MFCC pipeline is
discussed in Section 4. Section 5 reports the experimental
results on three different ASR tasks, while the conclusions
are drawn in Section 6.

2. RELATED WORK

In [3] a model based on short-time stationary pitch-adaptive
harmonics was used for noise robust VTTF estimation by sup-
pressing the regions between the harmonics. The authors re-
ported significant improvement on AURORA 2. To reduce the
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interference between the signal periodicity and the window
size, the authors in [4] substituted the classic fixed length win-
dowing of the STFT by an F0-adaptive window, which can
also be interpreted as a variable bandwidth STFT. It slightly
outperformed the conventional MFCCs. The properties of
different approximations of GT filter transfer functions have
been discussed in [5]. The stationary GT filter bank for acous-
tic feature extraction was investigated in [6]. The reported re-
sults are comparable to MFCC. However, in all these cases
the authors assumed stationarity of the speech signal within
each analysis frame.

3. FROM GAMMATONE TO GAMMACHIRP FILTER
In computational auditory models the peripheral filtering in
the cochlea is typically described by GT filters as introduced
in [7]. In the continuous time domain the impulse response is
defined as:

fγ(t) = A · tγ−1 · exp(−2π · fb · t) · cos(2π · fc · t + θ) (1)

where γ denotes the filter order, fb denotes a bandwidth pa-
rameter and fc the center frequency in Hz.

A computationally efficient, complex valued, all-pole
time domain implementation of a 4th-order linear GT filter in
discrete domain was defined in [8] as a cascade of first-order
filters. The difference equation of complex band-pass cascade
element is:

y(n) = x(n) + α · y(n − 1) (2)

with α = λ · exp (i · 2π · fc/fs)

where y(n) denotes the filter output and x(n) the input at time
n. The filter coefficient α is the complex pole of the filter
where λ depends on the bandwidth parameter, fc denotes the
center frequency of the band-pass filter and fs the sampling
frequency.

In [2], the assumption of short-term periodicity of the
voice source is dropped and the excitation is described instead
as synchronized dynamics of time dependent part-tones. The
author modelled the vocal tract excitation as time invariant
non-linear filter response to a non-stationary input signal with
varying frequency, referred to as the fundamental oscillator:

e(n) = Re

{ K∑
k=1

ck · A(n) · exp(i · k · φ(n))
}

(3)

where A(n) exp(i · φ(n)) corresponds to the fundamen-
tal oscillator and F(·) produces the higher harmonics of

F0 = fs

2π

(
φ(n) − φ(n − 1)

)
.

Equation (3) introduces the higher harmonics of F0. For
the separation of harmonics with non-stationary frequencies
the GT filter of Hohmann has been generalized and extended
by the capability to adapt its center frequency fc(n) to the
instantaneous chirp of the underlying modes:

α(n) = λ · exp (i · 2π · fc(n)/fs) (4)

The time dependency of the center frequency fc(n), being
introduced into Equation (2), is inherited by the complex pole.

In [9] it has been shown that the band-pass feature of the
GT filter is suited to isolate non-stationary harmonics. By
choosing the center frequency of the GT filter identical to
the instantaneous frequency of the isolated k-th harmonic, the
phase of the filter output is identical to the phase of the input
signal. The fundamental phase φ can be used to define the
instantaneous fundamental frequency F0 as well as the fre-

quencies f
(k)
c (n) of the band-pass filters

f (k)
c (n) = k · F0(n) ⇒ � yk(n) = k · φ(n) (5)

The analysis is suited to extract harmonic modes with un-
corrupted phases. In contrast to the reconstructed amplitude
the reconstruction of the phase has no time delay. There is no
restriction on the contour of the center frequency (except for
continuity).

4. INTEGRATION INTO MFCC PIPELINE

To guarantee the continuity of the center frequency of a fil-
ter in the unvoiced regions (without valid F0 estimation) we
perform linear interpolation between voiced regions. Further-
more, covering every harmonic in the spectrum (fc < fs/2)
leads to a varying number of filters with time dependent F0.
This issue is automatically solved by Mel triangular critical
band integration which ensures constant feature space dimen-
sion for the further processing steps.

The windowed STFT used in many feature extraction
methods can be expressed in terms of linear filtering opera-
tions as STFT{s(n), f} = s(n) ∗ h̃f (n), where STFT of
the signal s(n) is calculated at time n and frequency f , and

h̃f (n) corresponds to the STFT-equivalent filter: a time mir-
rored version of modulated window function (e.g. Hamming
window). Usually the window size is about 30 ms, while the
step width of about 10 ms corresponds to the downsampling
of the filter output.

We replaced the windowing and STFT blocks in the
MFCC extraction by a filter bank of stationary GT filters with
the same parameters. In the second step we introduced the
time dependency of the filter center frequencies according to
the estimated pitch contour.

Further, after application of a non-stationary filter and an
additional time average the output is downsampled. Because
of the continuously changing filter center frequency the time
averaging can not be performed independently from the spec-
tral integration, therefore we used an approximation to sepa-
rate the two steps and to reduce the computational costs:

Md(n) =
1

N + 1

n+ N
2∑

m=n−N
2

K∑
k=1

wd(k · F0(m)) · |yk(m)|

≈
K∑

k=1

wd

(
k · F0(n)

) · 1
N + 1

n+ N
2∑

m=n−N
2

|yk(m)|

where Md(n) denotes the output of the d-th component of
a 20-dimensional Mel filter bank, wd(f) denotes the d-th
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Table 1: Results on AURORA 2: Clean training

SNR MFCC NSGT
[dB] A B C Avg. A B C Avg.

Clean 0.9 0.9 1.0 0.9 1.1 1.1 1.4 1.2
20 1.7 1.4 1.8 1.6 1.6 1.6 2.2 1.8
15 3.5 2.7 3.0 3.1 2.9 2.5 3.5 3.0
10 7.5 6.1 6.8 6.8 5.7 5.5 6.1 5.8

5 16.7 15.4 16.5 16.2 13.1 14.0 14.5 13.9
0 37.3 36.9 38.2 37.5 32.2 34.3 36.1 34.2

-5 69.1 69.5 68.1 68.9 66.5 66.9 64.5 66.0

Avg. 19.5 19.0 19.3 19.3 17.6 18.0 18.3 18.0
Rel.± -9.7 -5.3 -5.2 -6.7

spectral weighting function (triangular filter), yk(n) cor-
responds to the filter output on the k-th harmonic of the

estimated F0 at time point n, i.e. f
(k)
c = k · F̂0(n). The

average fundamental frequency over N samples is denoted

by F0(n) = 1
N+1

∑n+ N
2

m=n−N
2

F̂0(m).

Further processing in the MFCC pipeline is kept un-
changed: the logarithm of the output of the triangular filter
bank is decorrelated by application of the discrete cosine
transformation (DCT) and normalized.

5. EXPERIMENTAL RESULTS

The new NSGT acoustic features were extensively evalu-
ated and compared with MFCC on three different corpora:
AURORA 2 and 4 and EPPS English task from TC-STAR
2007. Across all experiments, the RWTH ASR system was
used as the recognizer system. The HMM topology is also the
same in all setups, modelling each allophone by 3 states with
repetitions, allowing loop, forward and skip transitions, while
the silence consists of only one state. The acoustic model
(AM) training is performed with respect to the maximum
likelihood criterion. The emission probabilities were mod-
elled via Gaussian mixtures with globally pooled diagonal
covariance matrix.

5.1. AURORA 2
A set of experiments was conducted on the small vocabulary
task AURORA 2. This corpus consists of US English digits
under different types and levels of additive noise. The details
on the corpus generation can be found in [10]. Test set A was
used as development set, while the final evaluation was done
by averaging all test sets over all 7 noise levels.

First, a baseline MFCC system was trained. The spo-
ken digits are described by whole-word models, such that
the number of HMM states is proportional to the number of
phonemes per word. The AM was trained as follows: First,
single Gaussians were estimated on MFCC+Δ+ΔΔ features
(45 dim.) using linear segmentation as initial alignment. Af-
ter 7 density splits the final alignment was used for estimat-
ing a Linear Discriminant Analysis (LDA) matrix, mapping
9 consecutive time frames into a 45-dimensional space. With
LDA transformed features the split-and-realign scheme was
repeated, resulting in the final acoustic model.

Table 2: Results on AURORA 4: Detailed WERs of MFCC and
NSGT systems, and their combination via ROVER

M
ic

.

System Test set Avg.
1 2 3 4 5 6 7

S
en

n
h

. MFCC 3.8 8.7 11.9 18.1 17.6 15.2 20.3 13.7
NSGT 4.9 9.7 13.2 17.8 16.6 14.7 18.9 13.7

ROVER 3.6 7.4 11.5 15.5 14.6 12.8 16.5 11.7

U
n

k
. MFCC 16.3 20.9 35.2 37.4 39.3 33.1 37.3 31.4

NSGT 14.8 23.5 30.8 33.7 34.3 30.3 33.6 28.7
ROVER 13.7 19.8 29.0 30.5 32.8 28.4 31.6 26.5

In the NSGT system, a filter bank of linearly spaced GT
filters with harmonics adapted center frequencies was em-
ployed. The search for an optimal constant bandwidth yielded
the best recognition performance at 75 Hz, which corresponds
to a coverage of approx. 45 % of the spectrum with 24 non-
stationary filters. The results of these experiments for the sys-
tems trained on clean training data are given in Table 1. It can
be easily seen, that the improvement originates mainly from
the noisy parts, while on the clean test data, MFCC outper-
forms the NSGT features.

The second set of experiments on multi-conditional train-
ing data showed, that this advantage vanishes in case of a
match between training and test data. The constant band-
width had to be increased to 90 Hz to find an optimal value
for new training data. Nevertheless, the average WER of con-
ventional STFT-based features (13.5 %) could not be reached
by the same NSGT approach (14.1 %).

5.2. AURORA 4
This corpus contains a closed vocabulary of 5000 words and
is built from the WSJ0 recordings by adding real-world noise
of different types and levels [11]. In contrast to AURORA 2,
the words are modelled by phoneme sequences. The mono-
phone training is performed in the same manner as described
in the previous section. The resulting alignment is used for
the estimation of an LDA matrix as well as a Classification
And Regression Tree (CART) with 4000 leaves for triphone
state-tying. In the recognition a 3-gram language model has
been used.

The constant filter bandwidth in the NSGT system was
chosen experimentally and set to 60 Hz, which corresponds to
a coverage of less than the half of the effective bandwidth with
average F0 of 150 Hz. In both MFCC and NSGT systems, the
output of 20 triangular Mel-scaled filters was decorrelated by
a DCT, retaining only 16 components. The results of the ex-
periments along with the STFT-based baseline MFCC system
are shown in Table 2. The total WER averaged to 21.2 %
(NSGT) and 22.5 % (MFCC). Again, the improvement origi-
nates mainly in the “hard” parts.

5.3. EPPS
The next experiments were conducted on EPPS English 2007.
This LVCSR task contains 87.7 h training data, and the recog-
nition is evaluated on the test sets dev07 (3.1 h) and eval07
(2.8 h). In contrast to both AURORA corpora, the perfor-
mance of a similar NSGT system could not reach the base-
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Table 3: Word error rates on EPPS English 2007

System MFCC
NSGT

ROVERf
(k)
c : k · F0 k · F0 k · F0/2

f
(k)
b : 75 Hz 120 Hz F0/2

dev07 17.3 19.6 19.5 18.5 16.9
eval07 16.2 19.2 18.6 17.1 15.8

line MFCC setup. Increasing fb up to 120 Hz had only small
impact on the performance. Hence, the coverage of the spec-
trum was improved by putting additional GT filters between
the integer multiples of the estimated fundamental frequency.
The bandwidth of the filters was adapted to one half of the
estimated F0(n), resulting in an almost complete filter bank.
This filter bank design led to more competitive results, which
are summarized in Table 3. In the ROVER [12] experiments,
MFCC was combined with the best NSGT system.

5.4. Discussion
The observed noise robustness on both AURORA corpora
can be explained by the reduced coverage of the spectrum.
Following harmonic contours by narrow band-pass filters can
also be considered as suppression of the regions between the
harmonics. These regions have been shown to be more vul-
nerable to noise than the harmonic peaks [13]. The NSGT
features thus reduce the mismatch between the clean train-
ing and the noisy test data by a more robust estimation of the
spectral envelope than STFT-based MFCC.

In addition to the baseline MFCC systems, a set of ex-
periments was performed by using stationary GT filter banks
without F0 adaptation. This allows to compare the adaptive
and non-adaptive filtering under the same conditions and
hence to isolate the influence of dynamic filter parameters.
The filter bank was designed identical to the STFT as de-
scribed in Section 4. The resulting averaged error rates of
19.2 % (clean) and 13.0 % (multi-conditional training) on
AURORA 2 were even slightly better than standard MFCC.
On AURORA 4 the performance of STFT-based features
could also be repeated with 22.2 % WER. Reducing the fil-
ter bandwidth or spacing without adaptation to F0 led to a
degradation as expected.

Although the amplitude-based NSGT features were de-
rived from the MFCC pipeline, the combination of both rec-
ognizer outputs via ROVER shows further improvement in all
experiments, indicating differences in the acoustic features.

6. CONCLUSIONS

In this work, a novel approach of non-stationary signal anal-
ysis based on pitch-adaptive GT filters was presented. The
extracted model parameters could be integrated into acoustic
feature extraction for ASR. In the experiments on AURORA
2 and 4, the amplitude-based features exhibited noise robust-
ness and yielded competitive results with the state of the art
MFCC systems. The output phase of the complex GT fil-
ters could be interpreted in terms of an appropriate underly-
ing physical model, such that a connection to phonetic events
could be established systematically.

In our future work we will concentrate on a better han-
dling of unvoiced segments, e.g. by using an additional sta-
tionary voicedness-based fallback filter bank.
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[9] F. R. Drepper and R. Schlüter, “Non-stationary acoustic ob-
jects as atoms of voiced speech,” in 34. Jahrestagung für
Akustik der Deutschen Gesellschaft für Akustik, Dresden, Ger-
many, March 2008, pp. 249–250, [corrected version: Eq. (5)].

[10] D. Pearce and H.-G. Hirsch, “The AURORA experimental
framework for the performance evaluation of speech recogni-
tion systems under noisy conditions,” in ISCA Tutorial and
Research Workshop ASR2000, Paris, France, Sept. 2000, pp.
181–188.

[11] N. Parihar and J. Picone, “Aurora Working Group: DSR Front
End LVCSR Evaluation,” Technical Report, Mississippi State
University, MS, USA, Dec. 2002.

[12] J. G. Fiscus, “A post-processing system to yield reduced
word error rates: Recognizer output voting error reduction
(ROVER),” in Proc. IEEE Automatic Speech Recognition and
Understanding Workshop, Santa Barbara, California, USA,
Dec. 1997, pp. 347–354.

[13] Q. Zhu and A. Alwan, “Non-linear feature extraction for
robust speech recognition in stationary and non-stationary
noise,” Computer Speech and Language, vol. 17, no. 4, pp.
381–402, Oct. 2003.

5207


