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ABSTRACT

This paper presents a novel method for reducing the dimensionality
of kernel spaces. Recently, to maintain the convexity of training, log-
linear models without mixtures have been used as emission prob-
ability density functions in hidden Markov models for automatic
speech recognition. In that framework, nonlinearly-transformed
high-dimensional features are used to achieve the nonlinear classi-
fication of the original observation vectors without using mixtures.
In this paper, with the goal of using high-dimensional features in
kernel spaces, the cutting plane subspace pursuit method proposed
for support vector machines is generalized and applied to log-linear
models. The experimental results show that the proposed method
achieved an efficient approximation of the feature space by using a
limited number of basis vectors

Index Terms— Automatic speech recognition, kernel method,
subspace method, log-linear model, dimensionality reduction

1. INTRODUCTION

In general, the conventional training methods for mixture models
used in automatic speech recognition have often suffered from local
optimum problems due to the non-convexity of training. The use of
convex optimization for training appears to be attractive way of pre-
venting these local optimum problems by considering the success
of support vector machines (SVMs). However, probabilistic mod-
els with latent variables are no longer available for making an opti-
mization convex. Because current speech recognition systems per-
form nonlinear classification by employing Gaussian mixture mod-
els (GMMs), local-optima problems cannot be ignored even if the
hidden Markov model (HMM) state alignment is fixed to avoid the
latent variable of HMMs.

Recently, it has been confirmed that the use of high-dimensional
features obtained by nonlinearly warping the observation vectors en-
ables the nonlinear classification of the observation vectors without
using mixture models. Wiesler et al. achieved comparable perfor-
mance with a conventional GMM-based speech recognizer for large
vocabulary continuous speech recognition (LVCSR) task by employ-
ing polynomial features and sparse cluster features obtained by prob-
abilistic clustering [1]. It should be noted that high-dimensional fea-
tures are also used for non-convex models. Povey et al. applied a
subspace method, called fMPE, to high-dimensional feature vectors
to obtain modified features that maximize the non-convex perfor-
mance function [2].

With these approaches, the high-dimensional features are ex-
plicitly defined and computed. Therefore, the computational time
has at least to be proportional to the number of features. How-
ever, with SVMs, several methods based on the kernel trick have
been developed to handle extremely high-dimensional features. Ker-
nel methods handle high-dimensional transformed features φ(x) of
the observation vector x simply by focusing on the inner product

function, called the “kernel function,” of the transformed features

K(x, y)
def
= φ(x)Tφ(y). Since the most commonly used kernel

functions can be computed simply by using the observation vec-
tors, the kernel methods do not necessitate the computation of the
high-dimensional features φ(.). Although the efficiency of kernel
methods in speech recognition tasks has been partially confirmed
by phoneme classification experiments [3, 4], the efficiency in con-
tinuous speech recognition tasks has not been evaluated yet since
the kernel methods require an enormous amount of computational
time. In kernel-based methods, computational time O(T 2), where
T is the number of observation vectors in the training dataset, is the
minimum requirement because parameter vectors in feature spaces
are represented as a linear combination of all vectors in the train-
ing dataset. Thus, the naive applications of kernel methods cannot
be used for automatic speech recognition tasks because these tasks
generally involve over 1 million observation vectors. To make com-
putation tractable, several techniques that use a limited number of
basis vectors in kernel spaces instead of using all the vectors in the
training dataset have been developed in the machine learning field.
For example, principal component analysis (PCA) and linear dis-
criminant analysis (LDA) are enhanced by using kernel methods
[5, 6]. Although these methods can reduce the computational time
required for model parameter estimation, the computational time for
pre-processing becomes O(T 3) by introducing these methods. The
Nyström method uses basis vectors derived from randomly sampled
feature vectors from the training dataset [7]. Therefore, the com-
putational cost of pre-processing is sufficiently low; however, the
efficiency of randomly sampled basis vectors is questionable. On
the other hand, the cutting-plane subspace pursuit (CPSP) method
proposed by Joachims and Yu [8] provides a basis optimization ap-
proach that can be performed with a computational time of approxi-
mately O(T ). However, since the method is closely associated with
the SVM training criterion, it is difficult to apply it directly to the
conventional automatic speech recognition models.

In this paper, by using the same strategy as that used with
the CPSP method, we propose a generalized version of the CPSP
method that can be used for log-linear models trained with con-
ventional discriminative training criteria, This method provides an
efficient subspace approximation method for kernel-based speech
recognition with the aim of realizing the practical use of kernel
methods in speech recognition. The rest of this paper is organized as
follows. In Section 2, we describe the model definition and how to
train the models with the fixed basis vectors. In Section 3, we pro-
pose the basis vector optimization method. In Section 4, we present
the experimental setup, experimental results, and discussions.

2. SUBSPACE KERNEL-LOG-LINEAR MODELS

Hereafter, although several training criteria can be associated with
the proposed method, we describe the case of the frame-wise max-
imum mutual information (MMI) criterion [1, 9]. In frame-wise
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MMI, the training dataset is decomposed into observation vectors
and corresponding HMM state-level labels, i.e., the training dataset

Z is denoted as Z def
= {(xt, lt)|∀t ∈ [1..T ]} where T is the number

of frames in the training dataset. The state-level labels (lt) can
be obtained in practice by using the forced alignment of baseline
HMM systems. The frame-wise MMI method is performed by
maximizing the sum of the logarithmic posterior probabilities of the
corresponding HMM states, as follows:

Λ̂ = argmax
Λ

X
t

log P (lt|xt, Λ)− c
X

s

||λs||2

| {z }
F (Λ)

, (1)

where Λ is a set of parameter vectors, i.e, Λ
def
= {λs|∀s}, s is a

variable that denotes an HMM state, and c is a hyper-parameter that
represents a scale-factor of the above regularization term.

The following log-linear model is used as P (s|xt, Λ), which
includes the nonlinear transformation function φ, as follows:

P (s|xt, Λ)
def
=

exp
˘
φ(xt)

Tλs

¯
P

s′ exp {φ(xt)Tλs′} . (2)

The emission probability used in a decoding process is obtained as
P (xt|s) = P (s|xt, Λ)P (xt)/P (s) where P (xt) can be omitted
without any loss of strictness because this probability is the same
for all hypotheses in the decoding process. P (s) can be obtained by
computing the frequency of the HMM states in the training dataset,
or assuming the uniform distribution.

We introduce a subspace approximation that assumes that the

parameter vector λs of the sth HMM state is in the space spanned
by M basis vectors denoted by φ(ym) (m ∈ [1..M ]), as follows:

λs ≈
MX

m=1

βs,mφ(ym), (3)

where ym is a vector in the observation space corresponding to the
basis vector φ(ym) in the feature space, and βs,m is a scale variable

of the mth basis vector.
By using this approximation, inner products between the vector

xt and the parameter vector λs can be denoted as a linear combina-
tion of the kernel function, as follows:

φ(xt)
Tλs =

X
m

βs,mK(xt, ym). (4)

From the representer theorem [10], the approximation is strict
when M = T and yt = xt. This is the essential reason why
a kernel-based method without any approximation requires O(T 2)
computational time at least. In this case, each likelihood compu-
tation requires O(T ) computational time, and optimization of the
conventional training criteria requires at least T times of likelihood
computation. In this study, we attempt to represent the subspace (Eq.
(3)) by using a limited number of basis vectors, i.e. M < T , to make
the likelihood computation as fast as O(M).

By plugging the model definition (Eq. (2)) and the approxima-
tion (Eq. (3)) into the training criterion (Eq. (1)), the following
training objective function is obtained.

F (B; Y )
def
=

X
t

log
exp

˘P
m βlt,mK(xt, ym)

¯
P

s′ exp
˘P

m βs′,mK(xt, ym)
¯

− c
X

s

X
m,m′

βs,mβs,m′K(ym, ym′),
(5)

where B
def
= {βs,m|∀s,∀m}, Y

def
= {ym|∀m}. Note that, in this

objective function, B is used as a parameter variable to be opti-
mized instead of Λ because the parameter space is restricted to the
subspace denoted by Y . The optimization of B with fixed Y can
be achieved by using standard optimization methods, such as the
Newton-Raphson method and the Rprop method [11]. However, the
identification of an essential subspace Y is a non-trivial problem.

3. GRADIENT DESCENT SUBSPACE PURSUIT METHOD

In principle, the best basis vector set Ŷ satisfies the following equa-
tion:

Ŷ = argmax
Y

max
B

F (B; Y ). (6)

If the number of basis vectors is known, the joint optimization of B
and Y can be performed by using the back-propagation algorithm.
However, this joint optimization is non-convex even if F is a con-
vex function with respect to B. In this study, this non-convexity
is avoided by appending the basis vectors gradually as required to
continue the B-optimization. Because Y denotes the basis vectors
used to approximate the true parameter vectors, the condition in Eq.
(6) can always be satisfied if the number of basis vectors |Y | is suf-
ficient, i.e., |Y | ≥ min{T, D} where D is the dimensionality of
φ(.) [10]. From this perspective, we can omit the non-convex opti-
mization of the basis vectors by avoiding joint optimization and ap-
pending basis vectors so that we achieve the maximum of the objec-
tive function (Eq. (6)). However, because the number of basis vec-
tors might be very large without any optimization (cf. the Nyström
method), the CPSP method and the method proposed in this paper
use basis selection criteria to obtain a small set of basis vectors.

One strategy for selecting an efficient set of basis vectors that
can effectively maximize the objective function is to provide a basis
vector that is directed to the global maximum. If the main objective
function is a convex function, the global maximum must be in the di-
rection of the gradient vectors in the feature space. Thus, basis vec-
tors corresponding to the gradient vector are needed to achieve the
global maximum after the optimization converges in a certain sub-
space. With the proposed method, these basis vectors are appended
to the subspace variable to expand the subspace, and then the param-
eter variable B is optimized after each subspace expansion.

Here, by denoting the number of basis vectors to be added as
E and the newly adding basis vectors as Y = {ym|m ∈ [M +

1..M + E]}, the basis vectors Ŷ to be added to the current solution
(Y, B) are obtained by minimizing the sum of the distances between
the true gradient vector and a gradient vector approximated by using
φ(.), as follows:

Ŷ = argmin
Y

X
s

min
γs

˛̨
˛̨
˛
˛̨
˛̨
˛ΔλsF (Λ)−

M+EX
m=M+1

γs,mφ(ym)

˛̨
˛̨
˛
˛̨
˛̨
˛
2

| {z }
Es(Y)

, (7)

where Λ is the current estimate of the parameters, γs,m is a scale
variable that is chosen freely so that Es(Y) is minimized, and
ΔλsF (Λ) is a gradient vector of the performance function F (Λ)
(not F (B; Y )) with respect to λs.

To apply the kernel trick, we assume that the gradient vector of
F (Λ) has the following form:

ΔλsF (Λ)
def
=

X
t

αs,tφ(xt). (8)

In fact, most conventional training criteria (e.g., MMI, minimum
classification error (MCE), and minimum phoneme error (MPE)) of
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Algorithm 1 Subspace pursuit method

1: Input: M, M̂, E /* The initial/required/increase # of basis vec-
tors */

2: Input: ym (m ∈ [1..M ]) /* The initial value */

3: while M < M̂ do
4: Optimize βs,m (m ∈ [1..M ])
5: Optimize ym (m ∈ [M + 1..M + E])
6: M ← M + E
7: end while

log-linear models have the above form (Eq. (8)) 1. For example, with
frame-wise MMI, the gradient vector can be expressed as follows:

ΔλsF (Λ) =
X

t

(δ(s, lt)− P (s|xt, Λ))| {z }
αs,t

φ(xt), (9)

where δ(s, lt) is Kronecker’s delta.
By substituting the assumption (Eq. (8)) into the basis vector

identification criterion (Es(Y)), Eq. (7) can be expressed by using a
kernel function, as follows:

Es(Y) =

M+EX
m=M+1

M+EX
m′=M+1

γs,mγs,m′K(ym, ym′)

− 2

M+EX
m=M+1

X
t

αs,tγs,mK(ym, xt) + constant.

(10)

By using this expression, the direct evaluation of φ(.) is omitted,
and the use of enormously high-dimensional features is enabled.

The analytic solution of γs,m that minimizes Es can be obtained
when the basis vector set Y is given. The gradient of Es with respect

to the vector γs, where the mth element is γs,m, can be expressed
as ΔγsEs(Y) = 2Gγs − 2

P
t αs,tkt where G is a matrix whose

(m, m′)th element is K(ym, ym′), and kt is a vector whose mth

element is K(ym, xt). Setting this gradient vector at 0 yields the
following analytical solution:

γ̂s = G−1
X

t

αs,tkt (11)

By plugging this equation into the criterion Es(Y), the gradient of Es

with respect to ym used for Y-optimization is computed as follows:

ΔymEs(Y) =γ̂2
s,mΔymK(ym, ym)

+
X

m′ �=m

γ̂s,mγ̂s,m′ΔymK(ym′ , ym)

− 2
X

t

γ̂s,mαs,tΔymK(xt, ym).

(12)

This gradient vector can be calculated in computational time
O(TES).

Algorithm 1 is derived by inserting this basis selection during
the main optimization of B. In the algorithm, Y-optimization and
B-optimization are performed alternatively. In the following experi-
ments, we implemented each optimization by using the Rprop algo-
rithm [11].

It should be noted that the use of the modified-MMI criterion
[12] with a certain configuration produces the equivalent criterion
of the CPSP method because αs,t in Eq. (8) becomes equal to the
variable used to represent the cutting planes in the CPSP method.
Thus, we can consider that the proposed method is a straightforward
generalization of the original CPSP method.

1Note that this method can also be used with non-convex criteria such as
MCE although the first motivation is to maintain convexity.

4. EXPERIMENTS

Speech recognition experiments were carried out to evaluate the ef-
ficiency of the proposed method by performing a dimensionality re-
duction of the second order features of Mel-frequency cepstral coef-
ficients (MFCCs), expressed as follows:

φ(x)
def
=

n
x2

i ,
√

2xixj ,
√

2xi, 1|∀i, ∀j �= i
o

, (13)

where xi denotes the ith component of an observation vector. Obser-
vation vectors consist of 12 dimensional MFCCs and the log-energy
augmented by their first/ second order time-derivatives (total: 39 di-
mensions). The input MFCC features are whitened by subtracting
the global mean vector and multiplying the global inverse-covariance
matrix obtained from the training dataset. The number of dimensions
of φ(x) is 819. Because this number is not very high, we can also
apply conventional dimensionality reduction techniques to these fea-
tures directly for comparison. In this feature setting, compared with

the direct computation of φ(x)Tφ(y), we can efficiently compute
the inner-product between two feature vectors by using the follow-
ing kernel function:

K(x, y)
def
=(xTy + 1)2. (14)

We implemented the following two algorithms as conventional
feature reduction techniques.

• The LDA method reduces the dimensions of D-dimensional vec-
tors by using an (M×D)-dimensional matrix obtained by max-
imizing Fisher’s discriminant criterion [6]. In these experiments,
because the training criterion is convex, the performance of the
LDA features exactly converges to that of the expanded second
order features.

• The relief method estimates the importance of the features by em-
ploying local metrics obtained using nearest neighbour samples
[13]. In this paper, we reduce dimensionality by using only M fea-
tures with the highest importance. To improve the performance,
we modified the estimated feature selection rule so that the first
order features (xi) are always included. Note that this method is a
feature selection method unlike the LDA method and the proposed
method.

We also implemented the following system to evaluate log-linear
models without any dimensionality reduction technique.

• Log-linear models with explicitly expanded second order fea-
tures.

Furthermore, as reference results, we also considered the following
three methods in the experiments:

• Log-linear models with first order features, i.e. φ(x)
def
= x.

• Gaussian mixture models (GMM) with diagonal covariance ma-
trices trained by using the MCE criterion (presented in [14]).

• Gaussian mixture models (GMM) with full covariance matrices
trained by using the MMI criterion (presented in [15]).

We used the TIMIT dataset for the experiments. The dataset
consists of 3,696 utterances (1,124,823 frames) for training, and 192
utterances (57,919 frames) for testing. As described in [16], we used
48 phonetic classes for training and decoding, and we calculated the
phoneme error rates by using 39 broader phonetic categories. All
HMMs have 3 left-to-right states for each 48 monophone model. A
bi-gram (bi-phoneme) grammar model is employed during all de-
coding processes. The scale factor for this grammar model and the
hyperparameter c (Eq. (1)) are tuned in advance to maximize the
performance of the second order system. The initial number of the
basis vectors (M in Algorithm 1) is set at 78, and the increased num-
ber of the basis vectors (E in Algorithm 1) is set at 16. The initial
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basis vector set is set at {φ(em), φ(−em)|∀m ∈ [1..39]}where the

mth element of the unit vector em is 1.

Figure 1 shows the phoneme error rates of the compared meth-
ods obtained by varying the number of basis vectors. We confirmed
that all the compared methods interpolated the results of the first or-
der features and the second order features. The results of log-linear
models with second order features were better than conventional
GMM results. This advantage might be attributed to the convexity of
the training method and the efficiency of the log-linear models with
second order features. Further, we confirmed that the LDA tech-
nique was not very efficient in the experiments. We consider that this
was due to the non-Guassianity of the distribution of the second or-
der features. The relief feature selection method worked efficiently
even if the method only performed the binary feature selection. The
proposed method worked effectively even when such non-Gaussian
features were used. In fact, the proposed method achieved the com-
parable performance with the full second order feature system by
only using about 600 basis vectors. Although the differences are not
significant, the performance of the proposed method was also supe-
rior to that of the full second order system when the number of basis
vectors M was in the [606..798] range. This advantage might be due
to de-noising in the feature space.

We consider the proposed method to have two advantages. The
first is that the proposed method can directly optimize the objective
function used for parameter training unlike the LDA system, which
maximizes Fisher’s discriminant criterion. The second advantage is
that the proposed method can maintain the convexity of the origi-
nal problem unlike the perceptron approach. The experimental re-
sults suggest the first advantage. Although the second advantage is
proved analytically by the formulation described in this paper, the
experimental verification of the second advantage will be our future
work.

In the experiments, because the number of second order fea-
tures is not very high, the second order system without dimension-
ality reduction is the most efficient in terms of training time. How-
ever, if we use the naive kernel method to handle these second or-
der features, the kernel function has to be computed at least T 2 	
1.27 × 1012 times. In the experiments, if we stopped the optimiza-
tion at M = 606 the count of the kernel function computations was
(M+OE)T 	 4.52×1010 where O is the total number of iterations
for Y-optimization. Furthermore, the proposed method will perform
well when kernel functions that produce infinite dimensional fea-
tures are used.

First order
Second order
LDA
Relief
Subspace pursuit

GMM 
(Diag., MCE, 16 mix.)

GMM (Full, MMI, 4 mix.)

# dimensions

Ph
on

em
e 

er
ro

r 
ra

te
 [

%
]

Fig. 1. Phoneme error rates as functions of the number of dimen-
sions.

5. CONCLUSIONS

In this paper, we proposed a general framework for approximating
log-linear models in kernel spaces. With the proposed method, the
subspace of a kernel space spanned with a limited number of basis
vectors is iteratively expanded and used to represent parameter vec-
tors in the kernel space. Since the proposed method uses a limited
number of basis vectors, the training method does not require O(T 2)
computational time, where T is the number of vectors in the train-
ing dataset. The experimental results show that the proposed method
outperformed the conventional dimensionality reduction techniques.

In the future, we intend to evaluate the proposed method by us-
ing more diverse kernel functions. For example, extensions to indif-
ferentiable structural kernels, such as dynamic time-alignment ker-
nels [4], are promising because the use of these kernels is essential
in natural language processing fields.
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