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Abstract—We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two

applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully

discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional

flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers

image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating

optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this

guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data

set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters,

are able to obtain competitive results with models proposed in the literature.

Index Terms—Log-linear models, latent variables, conditional random fields, OCR, image classification.

Ç

1 INTRODUCTION

INCORPORATING latent, or hidden, variables into a model is a
well-known means of increasing its expressiveness.

Latent variables are not directly observed from the data,
but are inferred from other variables. In machine learning
and pattern recognition, latent variables are, for example,
used in speech recognition to account for temporal
variabilities [32], in information retrieval and natural
language processing to analyze the relationships between
terms and concepts [23], and in object recognition to model
the positions of object parts [8].

We develop two log-linear models incorporating latent
variables: log-linear mixture models and deformation-
aware log-linear models. In general, the training of models
with latent variables is hard. Therefore, many approaches
restrict their choice of models to those for which efficient
and optimal algorithms exist. In order to improve the
expressiveness of such models, often the kernel trick is
applied, e.g., in SVMs [35]. To train an SVM, a convex
optimization problem is solved, which can be done
optimally and efficiently. The resulting classifiers are linear
hyperplanes and the kernel trick allows for complex models
by optimizing the decision hyperplane implicitly in a very

high (possibly infinite) dimensional space. For many
applications, kernel methods have been able to obtain very
good results in recent years.

In this work, we present extensions to log-linear models.
Starting from a conventional log-linear model, we develop

. log-linear mixture models which increase the flex-
ibility of the model in general;

. deformation-aware log-linear models which increase
the flexibility of the model by incorporating prior
knowledge about image deformations.

Although the function to be optimized during training of
our proposed models is not convex, we present an efficient
training algorithm which is guaranteed to converge to a
stationary point and which finds models that perform well
in practice. To the best of our knowledge, the deformation-
aware log-linear model is the first model which jointly (and
discriminatively) trains the deformation parameters with
the remaining model parameters. We carefully evaluate the
proposed models on two public OCR data sets.

1.1 Related Work

1.1.1 Discriminative Modeling

The aim of this work is to add flexibility and to learn
parameters that reflect domain specific prior knowledge into
a discriminative classification framework. In kernel methods,
additional flexibility is obtained through the kernel trick
[35], e.g., deformation invariance [13], [14]. However, it is
not easy to learn kernel parameters and thus these are often
tuned using cross validation [5]. Gehler and Nowozin [10]
propose a method to implicitly learn the kernel parameters
while training the classification model by selecting kernels
from a potentially infinite set of base kernels.

Instead of using a kernel, we start from a conventional
discriminative log-linear model and incorporate latent
variables to extend its flexibility. The resulting models
can be seen as CRFs [22] with latent variables [12], [31],
where the latent variables account for the assignment of
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observations to the mixture components in the first case
and for the deformations in the second case. Heigold et al.
[16] and Gunawardana et al. [12] use log-linear models
within (HMMMs) for speech recognition. An approach
similar to the log-linear mixtures presented here was used
for local-feature-based object classification in [38].

1.1.2 Deformation Modeling

To model image deformations, conventional approaches
can be split into two groups:

Approaches that directly incorporate invariance.
Haasdonk and Keysers [15] incorporate the tangent
distance into support vector machines. DeCoste and
Schölkopf [7] use kernel jittering to obtain translated
support vectors in a two-step training approach. Keysers
et al. [19], [20] use transformation invariant distance
measures in a nearest neighbor framework. They also
propose a deformation-aware Gaussian model, but do not
train the deformation parameters.

Approaches that implicitly incorporate invariance.
Another approach is not to incorporate the deformation
invariance into the model but to use a huge amount of
synthetically deformed data during training. LeCun et al.
[25] and Simard [36] train multilayer convolutional neural
networks that implicitly learn the occurring deformations
from training data.

The first approach has the disadvantage that, during
testing, a large amount of potentially computationally
expensive image comparisons has to be performed, whereas
in the second approach, the training procedure may become
very expensive. None of these approaches explicitly learns
the parameters of the allowed deformations, but the
deformation model was hand coded by the system
developers, either in designing the distance function or in
generating the deformed training samples. In contrast to
these approaches to transformation invariant classification,
Memisevic and Hinton [27] proposed an approach to learn
image transformations from corresponding image pairs
using conditional restricted Boltzmann machines. This
approach can also be used for classification, but the
deformation and classification parameters are decoupled.

In our deformation-aware log-linear model, we aim at
training

. a small (in the number of parameters) model that

. directly models deformations,

. automatically learns which deformations are al-
lowed (and desired), and

. is efficient to train and apply.

We build our approach around the (IDM) [20], a zero-order,
nonlinear deformation model, which we briefly describe in
Section 5. A preliminary version of the part on deformation-
aware models was published in [9].

1.1.3 Structure

The remainder of this paper is structured as follows: In
Section 3, we present how log-linear models are extended to
incorporate latent variables and how this is applied to create
log-linear mixture models (Section 4) and deformation-
aware log-linear models (Section 5). In Section 6, we
experimentally evaluate the proposed approaches on two
standard data sets. We tune and evaluate both models on the

USPS data set for (OCR). Then, we use the settings that
worked best on the USPS data set to train and to evaluate a
model on the MNIST data set. Finally, the paper is
summarized and concluded.

2 LOG-LINEAR MODELS

Log-linear models [6], [21] are discriminative classification
models that have been used successfully in many
applications, such as natural language processing [3],
[30]. Log-linear models are closely related to other
machine learning techniques such as perceptrons and
SVMs. In a log-linear model, the posterior probability for
class c is given directly as

p�ðcjXÞ ¼
expðg�ðc;XÞÞP
c0 expðg�ðc0; XÞÞ

; ð1Þ

where g�ðc;XÞ is a linear function of the input vector X, i.e.,
g�ðc;XÞ ¼ �c þ �Tc X with parameters � ¼ f�c; �cg for c ¼
1; . . . ; C. X is a feature vector to be classified. The
parameters � are estimated in training. As such, log-linear
models do not incorporate invariance with respect to any
variabilities in the input data explicitly, but are able to learn
which variations occur in their training data implicitly.

The input vectors X can be represented by (possibly
nonlinear) functions fðc;XÞ of c and X. This allows for
great flexibility in this type of model and the incorporation
of higher order features. Analogously, a discriminant
function g� which is nonlinear in the input vectors X
can be used. The resulting models are called generalized
log-linear models. A special case is model with a quadratic
(in X) discriminant function g�ðc;XÞ ¼ �c þ �Tc X þXT�cX.
These are called second-order log-linear models and can be
trained efficiently analogously to the linear case. We also
refer to the experimental evaluation (Section 6.2) where we
use a kernelized log-linear model for comparison.

To train a log-linear model given a set of training
observations fX1; . . . ; XNg with labels fc1; . . . ; cNg, we
maximize the (regularized) (MMI) criterion over the
parameters �1 [18]:

FMMIð�Þ ¼
1

N

X
n

log p�ðcnjXnÞ � �k�k2; ð2Þ

where � > 0 is the regularization factor and k�k2 is the L2

norm overall model parameters �. The training of log-linear
models according to this criterion is a convex optimization
problem leading to a linear decision boundary and several
algorithms exist that allow for effectively finding the
globally optimal model [6], [26], [28].

The class posterior of a single Gaussian classifier can be
expressed in log-linear form [1]. Heigold et al. [16] showed
that training Gaussian models and log-linear models
according to the same criterion leads to the same classifier.
Experimentally, it was observed that training a log-linear
model may be numerically more stable since the inversion
of the covariance matrix is not required. This is particularly
interesting for Gaussian models with full covariance, which
correspond to second-order log-linear models.
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3 LOG-LINEAR MODELS WITH LATENT VARIABLES

In this section, we describe a general approach of
incorporating latent variables into log-linear models to

better model the variability of the data to be recognized. In
Sections 4 and 5, we present applications that use latent
variables to extend the capabilities of log-linear models.

To integrate a discrete latent variable A into a log-linear
model, we sum over the joint probability of the newly
introduced latent variable:

p�ðcjXÞ ¼
X
A

p�ðc; AjXÞ ¼
P

A expðg�ðc; A;XÞÞP
c0
P

A0 expðg�ðc0; A0; XÞÞ
: ð3Þ

Training such a model according to the MMI criterion (2) is
not a convex problem anymore due to the sum in the
numerator and is NP-hard. In Section 3.2, we present a

training algorithm which, in practice, finds good models
and for which, under certain circumstances, convergence
can be guaranteed.

3.1 Maximum Approximation

The joint probability for a given configuration A of the
latent variable and a class is in the form of a regular log-
linear model over pseudoclasses ðc; AÞ:

p�ðc; AjXÞ ¼
expðg�ðc; A;XÞÞP

ðc0;A0Þ expðg�ðc0; A0; XÞÞ
: ð4Þ

This means that given a configuration A for each training
sample, such models can be trained efficiently and opti-

mally. However, the correct configuration of A is not known
and thus we approximate A using the configuration AcðXÞ,
which maximizes the discriminant function for an observa-

tion X:

AcðXÞ ¼ arg max
A
fg�ðc; A;XÞg ¼ arg max

A
fp�ðc; AjXÞg: ð5Þ

We expect the maximum approximation, p�ðcjXÞ �
p�ðc; AcjXÞ to be a good approximation because the
approximated function exponentially decreases from its
maximum [2].

Combining these observations, we derive a training
algorithm that is guaranteed to improve the training
criterion FMMI in every iteration; when the criterion cannot
be improved anymore, the algorithm converges (cf.
Section 3.2). Analogously, applying the maximum approx-
imation in the numerator, it can also be applied in the
denominator. Therefore, a configuration of the latent
variables has to be determined for each class for each
observation independently: AC

1 ðXÞ ¼ ðA1ðXÞ; . . . ; ACðXÞÞ
is determined according to (5) and used in the posterior:

p�ðc; AC
1 jXÞ ¼

expðg�ðc; Ac;XÞÞP
c0 expðg�ðc0; Ac0 ; XÞÞ

: ð6Þ

Each Ac maximizes its respective class-specific discriminant
function: Ac ¼ arg maxAfg�ðc; A;XÞg (for all classes c ¼
1; . . . ; C).

In the following, we refer to the model without the
maximum approximation as SUMSUM (3), the model with
the maximum approximation in the numerator only is
denoted as MAXSUM (4), and the model with the maximum
approximation in numerator and denominator is denoted
MAXMAX (6). An overview of the different model variants is
given in Table 1 along with the latent variables that have to
be predetermined, and the derivatives required for training.

3.2 Training Method

To train the models, we apply gradient descent methods.
For the SUMSUM model, the gradients can be calculated
directly. For the MAXSUM method, the configuration Acn of
the correct class cn is fixed for each observation Xn. For the
MAXMAX method, the configurations Ac for all classes c ¼
1; . . . ; C are fixed for each observation Xn. The models are
then iteratively trained, alternating between reestimating
the model parameters and updating the configuration of the
latent variables.

Table 1 shows the derivatives used for the training. The
alternating training procedure works as follows:

1. For each training sample Xn, estimate the config-
uration A of the latent variable according to (5) for

a. class c ¼ cn, when training a MAXSUM-model,
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TABLE 1
Overview on the Variants of the Maximum Approximation in Comparison to Conventional Log-Linear Models

along with the Derivatives of the Training Criterion (2)

The column “latent” specifies which latent variables need to be predetermined to calculate pðcjXÞ. These variables also have to be predetermined for
each training observation to calculate the derivative (note pðAjcn;XnÞ ¼ pðcn;AjXnÞP

A0 pðcn;A
0 jXnÞ

).



b. each class c ¼ 1; . . . ; C, when training a MAX-

MAX-model.
2. Optimize FMMIð�Þ with fixed configuration A using a

gradient descent method. We use the (LBFGS)
Newton method [26].

3. If not converged, go back to 1.

When training a MAXSUM-model, step 2 is identical to
training a conventional log-linear model over pseudo-
classes ðc; AÞ (cf., (4)). This is a convex optimization
problem where LBFGS [26] will converge to the global
optimum for the parameters � given the configuration of
the latent variables A. Given this set of parameters �, the
algorithm goes back to step 1 and chooses the configuration
of latent variables A that maximizes the training criterion
(2). A will only be changed if it can be improved, since
otherwise it would remain constant. If it is changed, in
step 2 the parameters are relearned. Otherwise, in step 2 no
parameter update is performed and training is converged to
a stationary point (neither changing A nor � can improve
the criterion (2)). That is, at this point we either have a local
optimum or a stationary point with two configurations A of
the latent variable that have the same criterion. Further-
more, the MMI criterion (2) is bounded from above [4], [11].

Unfortunately, such a guarantee cannot be shown for
training MAXMAX or SUMSUM models. For MAXMAX

models, changing A may lead to a deterioration of the
training criterion. However, in practice training also
converges for these models (cf., Section 6.1.1).

4 LOG-LINEAR MIXTURE MODELS

Mixture models, such as Gaussian mixture distribution
GMDs, are a standard technique to allow for modeling
complex data in Gaussian approaches. Analogously, the
way Gaussian mixtures extend single Gaussians, we extend
log-linear models toward LLMMs. In this case, the config-
uration of the latent variable models the alignment of
observations to the model components (densities). The
posterior is given as

p�ðcjXÞ ¼
X
i

p�ðc; ijXÞ ð7Þ

¼
P

i p�ðc; i;XÞP
c0
P

i0 p�ðc0; i0; XÞ
ð8Þ

¼
P

i expðg�ðc; i; XÞÞP
c0
P

i0 expðg�ðc0; i0; XÞÞ
; ð9Þ

where g� is chosen as g�ðc; i;XÞ ¼ �ci þ �TciX and � ¼
f�ci; �cig.

LLMMs are the discriminative counterpart of Gaussian
mixture models analogously to the relationship between log-
linear models and single Gaussian classifiers [33]. This
relationship allows for transforming one into the other and,
e.g., to use a GMD model to initialize an LLMM or vice versa.

4.1 Initialization

Since training of these models is not convex, the result may
depend on the initialization of the model. We investigate
three different initializations.

4.1.1 Initialization from a Gaussian Mixture Model

We train a Gaussian mixture for each of the classes c using
the EM algorithm. Therefore, we start from a single
Gaussian, which is then incrementally split and reestimated
until the desired number of densities is obtained. This
algorithm is known to lead to stable results and, unlike the
k-means algorithms, does not depend on a random
initialization. The Gaussian mixture densities are then
converted into an LLMM following [16], [33].

4.1.2 Initialization by Incremental Splits

Analogously to our GMD training algorithm, we iteratively
split the LLMM until the desired number of components is
obtained: We start from a simple log-linear model. Then, we
iteratively split the model components by duplicating and
disturbing using a small ". After each split, we perform the
normal training procedure until convergence. Once the
desired amount of densities is obtained and converged,
training terminates.

4.1.3 Random Initialization

We start with the desired number of densities where all
model parameters are initialized with random numbers
between 0 and 1.

5 DEFORMATION-AWARE LOG-LINEAR MODELS

Here we use the configuration of the latent variable to
model the deformation of an image as an alignment of its
individual pixels to the pixels of the model.

Deformation-invariance for handwritten character recog-
nition has been thoroughly investigated for various distance
functions in the context of nearest neighbor classification
[20], [37]. Our deformation model is inspired by the IDM,
which has been proposed by several authors independently
under different names. For example, it has been described
as “local perturbations” [37] and as “shift similarity” [29].

Here, we follow the formulation of [20]. The IDM aligns

an image pixelwise to a prototype image. To allow for

efficient computation, no dependencies between alignments

of neighboring pixels are considered. An image alignment

ðxyÞIJ11 maps each pixel ij of image A of size I � J to a pixel

ðxyÞij in the prototype (image) B:

ðxyÞIJ11 : ðijÞ 7! ðxyÞij; 8i ¼ 1; . . . ; I; j ¼ 1; . . . ; J: ð10Þ

To restrict the number of possible alignments, a maximal
warp range W , i.e., the maximal displacement between ij
and ðxyÞij, is defined. An example alignment is shown in
Fig. 1. For nearest neighbor classification, a distance didm

between two images A and B is defined as:

didmðA;BÞ ¼ min
ðxyÞij

X
ij

dlocal

�
Aij; BðxyÞij

�( )
: ð11Þ

To compute didmðA;BÞ, a minimizing alignment
dðxyÞIJ11 ¼

arg minðxyÞIJ11
f
P

ij dlocalðAij; BðxyÞijÞg is computed. The align-

ment of a pixel ij to a pixel ðxyÞij is restricted by warp

range W to a local image region:

ji�W j �W and jj�W j �W; ð12Þ
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dlocal is a local distance function comparing pixel ðijÞ in
image A and pixel ðxyÞij in image B by comparing pixels
values or features thereof from local image regions around
ij and ðxyÞij. A small example alignment is shown in Fig. 1.

The deformation-aware log-linear models consider the
full image alignment ðxyÞIJ11 as a latent variable which is
marginalized out:

p�ðcjXÞ ¼
X
ðxyÞIJ11

p�
�
c; ðxyÞIJ11 jX

�
ð13Þ

¼
P
ðxyÞIJ11

p�
�
c; ðxyÞIJ11 ; X

�P
c0
P
ðx0y0ÞIJ11

p�
�
c0; ðx0y0ÞIJ11 ; X

� ð14Þ

¼
P
ðxyÞIJ11

exp
�
g�
�
c; ðxyÞIJ11 ; X

��P
c0
P
ðx0y0ÞIJ11

exp
�
g�
�
c0; ðx0y0ÞIJ11 ; X

�� : ð15Þ

We define the discriminant function g�ðc; ðxyÞIJ11 ; XÞ for
class c, a given image alignment ðxyÞIJ11 , and image X as

g�
�
c; ðxyÞIJ11 ; X

�
¼ �c þ

X
ij

�
�cijðxyÞij þ �

T
cðxyÞijXij

�
; ð16Þ

where � ¼ f�c; �cijðxyÞij ; �cðxyÞijg and �c is a class bias. The
�cijðxyÞij correspond to class, position, and alignment
depending deformation priors. A high value of �cijðxyÞij
means that a pixel at position ði; jÞ is likely to be aligned to
position ðx; yÞ in class c. The alignment ðxyÞIJ11 aligns the
observation X to the class-dependent weight vector �cðxyÞij ,
which can be considered the normal of the decision
hyperplane in a two class problem. In this model, the full
alignment between the image X and the model para-
meters � and � is considered as a latent variable (e.g., the
entire alignment ðxyÞIJ11 at the right of Fig. 1 is a latent
variable). In the experiments, we show a visualization of the
� and the � parameters in Figs. 8 and 9.

Note that each pixel ði; jÞ in image X is represented by a
D-dimensional feature vector which can, e.g., consist of
Sobel features extracted from a square local neighborhood
around position ðijÞ (cf., Fig. 2). The corresponding weight
vectors �cðxyÞij are of the same dimensionality D. For each
class c, we train D� IJ many �-parameters.

This formulation involves a huge number of potential
configurations of the latent variable (image alignments) but
can be evaluated efficiently in the IDM since the alignments
of the individual pixels are modeled independently.
Starting from a sum over all possible deformations (denoted

by ½ðxyÞIJ11 �), we rewrite the posterior such that the
contributions of the individual pixels are evaluated in-
dependently:X
½ðxyÞIJ11 �

p
�
c; ðxyÞIJ11 jX

�
ð17Þ

¼
P
½ðxyÞIJ11 �

expð�cÞ exp
�P

ij �cijðxyÞij þ �
T
cðxyÞij

Xij

�P
~c

P
½ fðxyÞIJ11 �

expð�~cÞ exp
�P

ij �~cij fðxyÞij þ �T~c fðxyÞijXij

� ð18Þ

¼
expð�cÞ

P
½ðxyÞIJ11 �

Q
ij exp

�
�cijðxyÞij þ �

T
cðxyÞij

Xij

�P
~c expð�~cÞ

P
½ fðxyÞIJ11 �

Q
ij exp

�
�

~cij fðxyÞij þ �T~c fðxyÞijXij

� ð19Þ

¼
expð�cÞ

Q
ij

P
ðxyÞij2WðijÞ exp

�
�cijðxyÞij þ �

T
cðxyÞij

Xij

�P
~c expð�~cÞ

Q
ij

P fðxyÞij2WðijÞ exp
�
�

~cij fðxyÞij þ �T~c fðxyÞijXij

� :
ð20Þ

This transformation reduces the complexity to evaluate this
from summing over jWði; jÞjW �H products of H �W terms to
H �W sums of jWði; jÞj terms, where Wði; jÞ is the area
which has to be considered for potential alignments of the
pixel at position ði; jÞ. Using the default warp range W ¼ 2
of the IDM [20], this relates to evaluating a product over
256 sums of 25 terms instead of evaluating a sum over
25256 products of 256 terms for 16� 16 pixel images.

To the best of our knowledge, this is the first model in
which all model parameters including deformation priors
�cijðxyÞij can be trained jointly with the other model
parameters. This allows the model to learn which deforma-
tions are valid for which of the classes to account for
intraclass variability and which deformations should not be
allowed because they would allow for bridging the inter-
class variability. In Fig. 9, we visualize the learned �cijðxyÞij
and it can, e.g., be seen that it is possible to make a “0” wider
and narrower but that it must not become too narrow
(because otherwise it might turn into a “1”).

To avoid evaluating a sum over the latent variable, we use

the maximum approximation: To train a model with the

maximum approximation, we apply the algorithm described

in section 3.2. For the MAXSUM case, in step 1, for each

training sample Xn, the alignment
dðxyÞIJ11 cn

is determined

that maximizes the discriminant function for the correct

class:

dðxyÞIJ11 cn
:¼ arg max

ðxyÞIJ11

�
g�
�
cn; ðxyÞIJ11 ; Xn

��
: ð21Þ
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Fig. 2. Each pixel can be represented by a descriptor of Sobel features
extracted from a local neighborhood (figure from [20]).Fig. 1. Image alignment. Two images A and B of size 2� 2 pixels and an

alignment ðxyÞIJ11 between them. ðxyÞIJ11 specifies for every pixel ðijÞ in
image A a location ðxyÞij in image B, e.g., the dark gray pixel in image A
at position ði; jÞ ¼ ð2; 1Þ is mapped to the dark-gray pixel ðx; yÞ ¼ ð2; 2Þ in
image B.



This is efficient since the alignment can be computed for
each pixel independently.

Analogously, in the MAXMAX-case, the alignmentdðxyÞIJ11 c maximizing the discriminant function has to be

determined for each class independently. After these align-

ments have been determined for each training sampleXn, the

training algorithm proceeds to step 2 (Section 3.2).

5.1 Deformation Prior Sharing

In our initial formulation, the �cijðxyÞij model the deforma-
tion priors separately for each class and pixel position. This
leads to a large number of parameters modeling similar
properties. To reduce the number of parameters and allow
for sharing deformation information, we propose five
parameter sharing strategies over classes, positions, and
deformations, respectively:

Full alpha. Deformation parameters are trained for each
class, position, and possible deformation independently, i.e.,
�ðc; i; j; i� x; j� yÞ is a function of the class c, the position
ði; jÞ in the test image, and the deformation ði� x; j� yÞ. In
this setup, we have a total of CðIJÞð2W þ 1Þ2 deformation
priors � to be trained.

Position independent. Deformation parameters are
shared among the positions in the test image. In this case,
�ðc; i� x; j� yÞ is a function of the class c and the
deformation ði� x; j� yÞ. In this setup, we have a total of
Cð2W þ 1Þ2 deformation priors �.

Deformation independent. Deformation parameters are
shared among the deformations, i.e., �ðc; i; j; �ðx ¼ i ^ y ¼
jÞÞ is a function of the class c and the position ði; jÞ in the
test image; furthermore, it is only distinguished between
no-deformation (i� x ¼ 0 ^ j� y ¼ 0) and deformation
(i� x 6¼ 0 _ j� y 6¼ 0). In this setup, we have 2CðIJÞ
deformation priors �.

Position and deformation independent. Deformation
parameters are shared among positions in the test image
and deformations. This is a combination of “position
independent” and “deformation independent.” Here, �ðc; �ðx ¼
i ^ y ¼ jÞÞ is a function only of the class c and the question
of whether there is a deformation or not. In this case, we
only have 2C deformation priors �, one for deformation
and one for no-deformation per class.

Class independent. Deformation parameters are shared
among the classes. This can be combined with any of the
previous schemes. For the first case of full, but class-
independent �ði; j; i� x; j� yÞ is a function of image
position and every possible deformation, but independet
of the class resulting in ðIJÞð2W þ 1Þ2 deformation priors �.

6 EXPERIMENTAL ANALYSIS

We evaluated our methods on two well-known databases:
the USPS data set [34] and the MNIST data set [24]. We
used the smaller USPS data set to tune our methods and
thoroughly investigated the effects of different settings.
Then we performed experiments on the MNIST data set
with the settings that turned out to work best on the
USPS data set. This allowed us 1) to reduce the required
computations, and 2) to avoid overfitting to a particular
data set.

The USPS data set. The US Postal Service task is still
one of the most widely used reference data sets for
handwritten character recognition and allows for fast
experiments due to its small size. The test set contains a
large amount of image variability and is considered to be a
“hard” recognition task. The training and test sets consist of
7,291 and 2,007 observations, respectively. All images are of
size 16� 16 pixels and scaled between 0.0 and 1.0.

The MNIST data set. The modified NIST (MNIST)
database can be considered the standard benchmark for
handwritten character recognition. A large number of
reference results are available. The MNIST data set is larger
in size than the USPS data set. The training and test sets
consist of 60,000 and 10,000 images of size 28� 28 pixels,
respectively. Also, all pixel values are scaled between 0.0
and 1.0.

Example images for both the USPS and the MNIST data
set are shown in Fig. 3.

In the following, we first present experimental results on
the USPS data set using LLMMs (Section 6.1) and using
deformation-aware log-linear models (Section 6.2). We
tuned all model settings on the USPS data set and then
transferred these to the MNIST data set (Section 6.3) to
show the generalization capabilities and avoid tuning on
the MNIST test set.

These data sets are well suited for this transfer since both
are 10-class handwritten digit classification tasks on gray
value images. The images in the MNIST data set are slightly
larger (20� 20 pixels centered in a 28� 28 pixel) and in
MNIST there are more training and test images. While the
larger image size might justify a larger warp range, we did
not observe big changes in informal experiments (which
was also observed by Keysers et al. [20]). For significantly
larger images, we would expect a larger warp range to be
appropriate. Note that we consider our experiments on the
USPS data set as preparatory experiments for the experi-
ments on the MNIST data.

6.1 Log-Linear Mixture Models

First, we present experiments directly comparing the
performance of Gaussian and LLMMs. The Gaussian
mixtures were used to initialize the LLMMs following
[16], [33]. We first trained a Gaussian mixture model, then
transformed this into log-linear form, and then trained this
model until convergence using the alternating optimization
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Fig. 3. Example images for (a) the USPS and (b) the MNIST data set.



techniques. The results of these experiments are given in
Fig. 4, where the “0 split/1 density” per class results
correspond to single Gaussians and plain log-linear

models, accordingly. The experiments were performed
with regularization factor � ¼ 10�6 on untransformed pixel
values as features. It can be observed that for both models
the error rate decreases with increasing numbers of
densities. This effect is much stronger for the generative
GMD model. For LLMM, a slight overfitting effect can be
observed for high numbers of densities. However, the error
rates of LLMM clearly outperform GMD even with far

smaller models due to the discriminative training criterion.
The GMD-models were trained generatively following the
maximum likelihood approach and the LLMMs were
trained according to the MMI criterion. Since these
experiments suggest that more than “5 splits/32 densities”
per class are not helpful, we restricted most of the
upcoming experiments to 32 densities.

6.1.1 Maximum Approximation

In the experiments described above, we used the MAXMAX

variant. During training, we alternated between updating
the latent density alignments and reestimating the model
parameters � using 20 iterations of LBFGS.

We investigated the impact of the maximum approxima-
tion. The results of the experiments using the three different
approaches (MAXMAX, MAXSUM, and SUMSUM) are
shown in Fig. 5. Interestingly, the use of the maximum

approximation has a positive impact on the results. The
results of the MAXMAX experiments are best. The results
from the MAXSUM experiments are also better than those
from using SUMSUM. This is an interesting result since for
the MAXMAX case no theoretical convergence guarantee
can be given.

To obtain more insight into the convergence of the
training using the three different approaches to the
maximum approximation, we measured the error rate and
the score of the optimized training criterion as a function
the first 20 iterations. Fig. 6 shows the plot for the three
variants of the maximum approximation using 16 model
components per class. It can be observed that for the
SUMSUM and the MAXSUM case the training criterion
improves monotonously, while it goes up and down for the
MAXMAX case. However, even for the MAXMAX case,
training converges because the improvements when updat-
ing the parameters � are consistently larger than the
deteriorations of the criterion when updating the assign-
ment of training observations to model components. Over-
all, the training using the maximum approximation in
numerator and denominator converges faster and leads to
better results. Therefore, in all succeeding experiments we
use the MAXMAX approach.

6.1.2 The Effect of Initialization

So far, we initialized the LLMMs using a mixture of
Gaussians with the appropriate number of densities. In
the following, we evaluate other initialization methods
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Fig. 4. Training and test error rates (percent) using Gaussian mixtures and LLMMs on the USPS data set with different numbers of densities.

Fig. 5. Test error rates (percent) on the USPS data set using the different approaches to the maximum approximation to train LLMMs. SUMSUM = no
maximum approximation, MAXSUM = maximum approximation in the numerator, MAXMAX = maximum approximation in numerator and
denominator.



(Section 4.1). Table 2 shows the results of these experi-
ments. Using only a few (i.e., eight or less) mixture
components, the models obtained from splitting discrimi-
native models outperform those initialized from Gaussian
mixtures. For the models with many (16 or more)
components, those initialized from the Gaussian mixtures
perform best. In general, random initialization performs
worse than the other methods. We assume that the
number of local optima of the training criterion grows
with the number of densities and that the initialization
using a Gaussian mixture often leads to finding better
local optima than using random initialization or discrimi-
natively split models.

6.1.3 Different Features

Since we used Sobel gradient features in the deformation-
aware log-linear models (following [20]), we also evaluated
them here. Here, we investigated plain gray values, Sobel
features, absolute values of Sobel features, squared Sobel
features, second-order features over the entire image, and
second-order features over local (5� 5 pixels) image
regions (cf., Section 2). That is, we use the product of the
gray values of every pair of pixels within a 5� 5
neighborhood as features.

These experiments are performed using 0-5 splits
corresponding to 1-32 densities per class. The models
were initialized from a Gaussian mixture model. The
results of these experiments are given in Table 3. Note that
using plain Sobel features does not affect the result since

linear transformations of the features cancel out and thus
have no impact.

From the results it can be seen that better features lead to
a significant improvement for models with few compo-
nents. In models with many components, the effect is very
small, and in some cases, even overfitting can be observed.
Overall, the best result is obtained using absolute values of
Sobel features.

From these experiments, we observed that LLMMs are
robust models which lead to good results. The results are
improved from 8.6 percent error rate for simple log-linear
models to 5.5 percent error rate for LLMMs. By choosing the
right number of components, the maximum approximation
in nominator and denominator, a good initialization, and
proper features it is possible to obtain an error rate of
4.4 percent. In Section 6.3, we transfer the settings found to
the MNIST task and show that these settings generalize well
to this data set.

6.2 Deformation-Aware Log-Linear Models

In the following, we experimentally investigated and tuned
the deformation-aware log-linear models on the USPS data
set. First, we investigated the warp range and different
image features for alignment and classification. Then we
investigated the effects of the different parameter sharing
schemes presented. We also investigate different training
methods and initializations and compare the obtained
results to an SVM and a kernelized log-linear model with
IDM distance kernel. While the SVM can determine a
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TABLE 2
Test Error Rates (Percent) on the USPS Data Set Obtained

Using LLMMs with Different Initializations of the Training

Experiments with random initialization were repeated three times and
results are averaged. The variance of these experiments was < 10�5.

TABLE 3
Test Error Rates (Percent) on the USPS Data Set Using LLMMs

with Different Image Features

Note that using untransformed sobel features leads to the same results
as pure gray values since they are only a linear transformation of the
gray values. Row “Dim.” is the dimensionality of the feature space in
which the parameters are trained.

Fig. 6. Convergence of the training of LLMMs on the USPS data set using the different variants of the maximum approximation. SUMSUM = no
maximum approximation, MAXSUM = maximum approximation in the numerator, MAXMAX = maximum approximation in the numerator and
denominator.



relatively sparse set of support vectors (30-50 percent of the
training vectors), the kernelized log-linear model will
always give a weight to all training observations and thus
is computationally expensive.

6.2.1 Warp Range

One crucial setting of the IDM is the warp range W , which
controls the maximal horizontal and vertical displacement
for each pixel. In Fig. 7, the effect of different warp ranges
on the error rate on the USPS data set is shown. In these
experiments, we used simple Sobel features. It can be seen
that beyond a warp range of W ¼ 2 hardly any improve-
ment is possible and since smaller warp ranges W have
faster runtimes for the experiments in the following, we
kept W ¼ 2, which is also concordant with the results
Keysers et al. [20] report.

6.2.2 Features

Keysers et al. [20] observed that local context is essential to
determine good alignments and they found that subwin-
dows of Sobel features performed best. Here, we investi-
gated the impact of different local descriptors and
subwindows on the classification performance. The results
of these experiments are shown in Table 4. Note that here,
in contrast to [20], this changes the entire model and not just
the distance function.

We compared eight different setups: simple gray values,
Sobel features, absolute values of Sobel features, and a
combination of Sobel and absolute Sobel. Each feature setup
has been evaluated with and without 3� 3 subwindows. It
can be observed that using Sobel features, scaled from �1 to
1, leads to a significant improvement over using just gray
values and there is hardly any difference in the test error
rate whether local context is used or not. Absolute Sobel
values do not reach the performance of plain Sobel features

as they lose the direction of the edge information. None-
theless, combining the two improves the result because the
combination contains both improved features for alignment
as well as nonlinear combinations of the original features.
The observation that Sobel features are important to
determine good alignments is consistent with the observa-
tions by Keysers et al. [20]. It can be observed that the use of
subwindows leads to a minor improvement when using the
combined Sobel descriptors. Due to the minor improve-
ments using the feature combination but nonetheless
greatly increased training effort, we used simple Sobel
features for further investigations and recombined the best
approaches in Section 6.3 for the MNIST data set.

Fig. 8 shows a visualization of the �cxy parameters from
an experiment with Sobel features and without local-
context. �cxy are averaged over the horizontal and vertical
Sobel features. A bright pixel in the �cxy in Fig. 8 denotes
that our model expects a bright-to-dark (left-to-right or top-
to-bottom) gradient in an image of class c at position ðx; yÞ,
and a dark pixel denotes an dark-to-bright gradient (for
characters written in dark ink on white background). For
most classes, the structure is well recognizable, with an
exception for the classes 4 and 7, which have stronger
variations than the other classes, which makes it more
difficult to interpret the prototypes.

6.2.3 The Deformation Parameters

In this section, we first analyzed the �cijðxyÞij parameters
learned and then we evaluated the different deformation
parameter sharing strategies described in Section 5.1.

We visualized the learned �cijðxyÞij from the previous
experiments in Fig. 9. For most classes, the structure of the
class is clearly visible. For example, for class “0,” it is good to
move away from the center (and not inward). Movements on
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TABLE 4
The Impact of Different Local Features and Local Context on

the Test Error Rate (Percent) When Using Deformation-Aware
Log-Linear Models on the USPS Data Set [9]

D is the dimensionality of the feature vectors representing the individual
pixels (cf., Section 5).

Fig. 8. Visualizations of the �cxy from an experiment on the USPS data
set.

Fig. 7. The effect of different warp ranges on the test error rate (percent)
on the USPS test data [9].

Fig. 9. Visualizations of the �cijðxyÞij from an experiment on the USPS
data set.



the outline of the zero are all equally likely. For class “1,”
moving up and down in the middle but not to the left and
right is allowed. On the left side of the image, moving
down is not desired and on the right side, moving up is
not desired. For class “9,” there are many high values on
the bottom left of the top circle, which is a very common
variability in writing style.

Table 5 shows the results obtained using the different
strategies for deformation parameter sharing described in
Section 5.1. It can be observed that, although the number of
parameters is significantly reduced, the error rates on the
test data are only slightly affected. This shows that it is not
necessary to have position and deformation-specific defor-
mation priors but that most of the relevant deformation
information can be stored in the �-parameters. Thus, we
assume that the models with shared deformation para-
meters generalize better. The observation that the number
of deformation papers does not have a big influence on the
results confirms the observation from Keysers et al. [20] that
the nearly parameter-free IDM, while one of the simplest
deformation models, achieves very competitive results.

6.2.4 Initialization and Alternating Optimization

The deformation-aware log-linear model can be rewritten as
a Gaussian model analogously to the mixture model [33].
Thus, it is possible to initialize the model from a deforma-
tion-aware Gaussian model [20]. Since we cannot guarantee
convergence to the global optimum of the parameters, we
considered three different ways to initialize the model in
this section: initialization from a nondeformation invariant
log-linear model, initialization from a deformation-aware
generative Gaussian model, and initialization of all para-
meters with zeros.

For these alternatives, we compared the results using
different training schemes. In the scheme “fixed alignment,”
we initialized the model, determined an alignment of the
training data to the init model, and kept this alignment
fixed until convergence. In the scheme “alternating optimiza-
tion,” we used the alternating optimization procedure
described before. We initialized the model and alternated
between realigning and parameter updates until conver-
gence. The results of these experiments are given in Table 6.

Interestingly, the final result is nearly independent of
the initialization, which indicates that the alternating
optimization is able to find a good set of parameters
independent of the starting point. Only for the model
initialized from the deformation aware Gaussian model

does the alternating optimization have no effect. We
believe that this model is stuck in a strong local optimum.
However, if alternating optimization is not used, the other
two models are clearly worse, which again highlights the
importance of the alternating optimization. The training
time for the different initializations is similar, where,
generally, the model initialized with a log-linear model
needs fewer iterations than the other two.

6.3 Experiments on the MNIST Data Set and
Comparison to the State-of-the-Art

In this section, we transfer the results obtained on the USPS
data set to the MNIST data set. For that purpose, we chose
the settings which performed best on the USPS data set,
trained the corresponding models on the MNIST training
set, and evaluated on the MNIST test set. Only for a very few
settings (such as the number of splits of the mixture models)
did we perform multiple experiments on the MNIST data set
to demonstrate the stepwise improvement of the results.

The parameters that were transferred for the LLMMs are
the number of densities (2, 4, 32) and the image features
used (squared Sobel features). For the deformation-aware
log-linear models, we transferred the warp range (W ¼ 2),
the image features (Sobel horizontal and vertical), the
deformation prior sharing (position and deformation in-
dependent �ðc; �ðx ¼ i ^ y ¼ jÞÞ), and the size of the local
context (¼ 1). For both LLMMs and deformation-aware log-
linear models, we transferred which variant of the max-
imum approximation we use (MAXMAX) and the regular-
ization factor � ¼ 10�6.

The results for the experiments on both data sets using
LLMMs and deformation aware log-linear models along the
number of parameters of the respective models are given in
Table 7. The first block of results shows the results obtained
using the LLMM approach; the second block contains the
results obtained using the deformation-aware log-linear
model. In addition to the classification error rate of the
individual approaches on both the USPS and the MNIST data
set, we give the total number of parameters and an estimate
of the runtime of the respective model relative to the
performance of the simplest model: a single log-linear model.

For the LLMMs, we evaluated models with 2, 4, and 32
densities per class using gray values only and using squared
horizontal and vertical Sobel features. Each of these models
was initialized using a mixture of Gaussians and the
training was performed using the MAXMAX-setup. Analo-
gously to the experiments on the USPS data set, it can be
observed that for the models with only a few densities, the
use of the Sobel features leads to significant improvement,
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TABLE 6
Training and Test Error Rates (Percent) on the

USPS Data Set Obtained Using the Different Initializations
with and without Alternating Optimization [9]

TABLE 5
Training and Test Error Rates (Percent) on the
USPS Data Set Using the Different Deformation
Prior Sharing Methods Along with the Number of

Deformation Parameters and the Number of Parameters
of the Entire Model [9]



whereas the improvement is much smaller for the models
with sufficient densities.

For these LLMMs, the number of parameters, as well as
the runtime, grows linear in the number of model densities.
It can be observed that the improvement with a higher
number of densities is slightly higher on the MNIST data set
than on the USPS data set which is probably due to fewer
overfitting problems since the amount of training data is
much bigger. In general, for the mixtures, it can be observed
that the models which lead to improvements on the USPS
data set also lead to improvements on the MNIST data set.

For the deformation-aware log-linear models, a combi-
nation of Sobel and absolute Sobel with position and
deformation independent � sharing improves the results.
Additionally, using local context does not lead to an
improvement but rather to overfitting. All improvements
using settings optimized on the USPS data set consistently
transfer to improvements on the MNIST database, showing
the good generalization capabilities of our model.

Table 8 shows comparison results from the literature,
some of them very simple, some of them state-of-the-art.
The first model is a simple single Gaussian classifier with
diagonal covariance matrix, which can also be seen as a
naive Bayes classifier. This one is, along with its discrimi-
native counterpart, the simple log-linear model, the fastest

approach. In these two approaches, a test observation only
needs to be compared to one prototype per class.

The single Gaussian model with IDM already performs
much better, but an IDM comparison is about 50 times as
expensive as a simple component-wise comparison (due to
the use of Sobel features and a deformation window of
5� 5 pixels (W ¼ 2)).

The next comparison result is a nearest neighbor
classifier, which is frequently used as a simple baseline
and already performs reasonably well. However, a problem
with this approach is that, at test time, the runtime depends
on the number of training samples. If the nearest neighbor
uses the IDM to compare the images, it obtains one of the
best published results on both data sets. Note that the use of
computationally more complex image alignment models
can lead to a small additional improvement [20].

We also compare the performance to SVMs with and
without explicit deformation modeling. The standard SVM
uses a Gaussian radial basis function kernel and SVM+IDM
is the method from [13]. For SVMs, the number of
operations to classify an observation depends on the
number of support vectors. In these two data sets, the
number of support vectors is typically about 30 percent of
all training samples and thus these methods need about
one-third of the runtime of the corresponding nearest
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TABLE 8
Comparison to the State-of-the-Art for the USPS and the MNIST Data Set

When two runtime factors are given, the first is for USPS, the second for MNIST.

TABLE 7
Comparison of Test Error Rates (Percent), Number of Parameters, and Runtime of the LLMMs and the

Deformation-Aware Log-Linear Model to the State-of-the-Art for the USPS and the MNIST Data Set



neighbor classifier. For the SVM incorporating the IDM, we
used a radial basis kernel of the symmetric variant of the
IDM distance defined as KIDMðX;V Þ ¼ expð� �

2 ðdidmðX;
V Þ þ didmðV ;XÞÞÞ, since nonsymmetric kernels cause pro-
blems in training SVMs. Although this kernel is not positive
definite, it was observed by Haasdonk [13] that, in practice,
the training terminates with a good result. We note that the
symmetric IDM distance is known to perform worse than
the asymmetric one in nearest-neighbor experiments
(3.4 percent instead of 2.4 percent). Nonetheless, the
support vector machines obtain excellent results on both
data sets where the results on the MNIST database have
been reported by [13] and the results on the USPS database
have been obtained using our own implementation.

Furthermore, we also used the same IDM kernel as we
used in the SVM in a kernelized log-linear model, which
then learns a weight for each training observation. Apart
from a prohibitive runtime at test time, at training time the
full kernel matrix between all pairs of training samples has
to be computed and stored which requires a large amount
of memory. The performance of this approach is competi-
tive with neither our deformation-aware log-linear model
nor with the respective SVMs.

For further comparison, we give two state-of-the-art
results on the MNIST database using deep belief networks
and convolutional neural networks. Both are based on
neural networks where the deep belief network is proposed
as a general learning technique [17] which does not
incorporate prior knowledge about the data. It does not
even assume that the observations are images. The con-
volutional neural networks were designed with digit
recognition in mind and are trained from a huge amount
of automatically deformed training data [36]. The convolu-
tional neural network obtains one of the best published
results on the MNIST data set despite its small size and
efficient classification stage. However, the training phase
for this network is computationally very expensive because,
during training, the training data are automatically de-
formed several thousand times.

As an overview, it can be seen that our method compares
favorably to other methods. In particular, in comparison
with the other fast methods, only convolutional neural
networks, which are difficult to create and optimize,
outperform our methods with a comparable computation
time. Furthermore, the small number of parameters in our
model is a good indicator for its generalization perfor-
mance, which is underlined by the successful transfer of the
settings from the USPS data set to the MNIST data set.

7 SUMMARY

We presented how latent variables can be incorporated into
log-linear models and two direct applications of this
approach: log-linear mixture models and deformation-
aware log-linear models. We presented an efficient and
effective training algorithm for these approaches and
showed that they work well in practice. Both approaches
were demonstrated to perform well on two widely used
image classification tasks and obtain competitive results
with other approaches, albeit only a very few parameters
have to be trained. The deformation-aware log-linear model
is the first approach to train the deformation parameters

jointly with the remaining model parameters. By sharing

deformation parameters among pixels, the number of

parameters can be further reduced, resulting in improved

generalization.
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