
RASR – The RWTH Aachen University
Open Source Speech Recognition Toolkit

D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer, Z. Tüske, S. Wiesler, R. Schlüter, H. Ney
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Abstract—RASR is the open source version of the well-proven
speech recognition toolkit developed and used at RWTH Aachen
University. The current version of the package includes state of
the art speech recognition technology for acoustic model training
and decoding. Speaker adaptation, speaker adaptive training,
unsupervised training, discriminative training, lattice processing
tools, flexible signal analysis, a finite state automata library, and
an efficient dynamic network decoder are notable components.
Comprehensive documentation, example setups for training and
recognition, and tutorials are provided to support newcomers.

I. INTRODUCTION

The interest in speech recognition technology has grown
over the last years. For researchers it requires a lot of effort
to develop a speech recognition system from scratch, which
impedes innovations. Publicly available toolkits, often pub-
lished under an open source license, facilitate the introduction
to research in this area. A couple of open source system are
available, for example CMU Sphinx [1], the HTK Toolkit [2],
Julius [3], and Kaldi [4].

RASR (short for RWTH ASR) has been designed for the
special requirements of research applications. On the one hand
it should be very flexible, to allow for rapid integration of new
methods, and on the other hand it has to be efficient, so that
new methods can be studied on real-life tasks in reasonable
time and system tuning is feasible. The flexibility is achieved
by a modular design, where most components are decoupled
from each other and can be replaced at runtime. The API is
subdivided into several modules and allows for an integration
of (high and low level) methods in external applications.

The applicability of our toolkit to real-life tasks has been
proven by building several competitive large vocabulary sys-
tems in recent international research projects, for example TC-
STAR (European English and Spanish) [5], GALE (Arabic,
Mandarin) [6], [7], and Quaero (English, French, German,
Polish, and Spanish) [8]. For some of these systems, we have
to deal with huge vocabularies and need to process thousands
of hours of speech data.

The flexibility of the toolkit allows for the rapid devel-
opment of applications also in other domains, for example
continuous sign language recognition using video input [9] and
optical character recognition (OCR), in particular handwriting
recognition [10]. The OCR system is publicly available, too
(cf. Section VIII).

An important aspect for developing a system for a large
vocabulary task is the support for grid-computing. Nearly all
processing steps for acoustic model training and decoding can
be distributed in a cluster computer environment. The paral-
lelization scales very well, because we divide the computations
on the segment level, which requires synchronization only at
the end of the computation.

The toolkit is available for download on our website 1.
We publish our toolkit under an open source license, called
“RWTH ASR License”, which is derived from the Q Public
License v1.0 This license grants free usage including re-
distribution and modification for non-commercial use. Pub-
lications of results obtained through the use of original or
modified versions of the software have to cite our paper [11].
RASR runs on Linux and Mac OS X.

The RASR website also offers comprehensive documenta-
tion, tutorials, and recipes for system development. Support is
offered in form of a forum as part of the website. Furthermore,
we offer a ready-to-use recognizer for English.

In the remainder of this paper we describe the individual
parts of the framework. First we depict the acoustic front-end
and the used models. Then we present the decoder, lattice
processing tools, the finite-state automata library, extensions,
and finally the documentation and supplementary materials.

II. SIGNAL ANALYSIS

Methods for signal analysis are implemented in a generic
framework, called Flow, which is described in the next section.
The predefined acoustic features computed using this frame-
work are defined in the following section.

A. Flow Networks

The Flow module offers a generic framework for data
processing. The data flow is modeled by links connecting
several data processing nodes to a network. The networks
are created at runtime based on a network definition in XML
documents, which makes it possible to implement or modify
data processing tasks without modifying the software.

Flow networks are used to compute acoustic features as
well as to generate and process dynamic time alignments,
i.e. mappings from acoustic features to HMM states. Using

1http://www.hltpr.rwth-aachen.de/rasr



a caching mechanism, which is also implemented as a node,
acoustic features and alignments can be re-used in processing
steps requiring multiple iterations.

B. Acoustic Features

The basic nodes in a Flow network implement the reading of
waveforms from audio files, computing an FFT, miscellaneous
vector operations, and different types of signal normalization.
The networks included in the toolkit compute MFCC features
and a voicing feature [12]. Temporal context can be incorpo-
rated by using derivatives of the acoustic features or an LDA
transformation [13].

The flexibility of the Flow module allows for an easy
implementation of other acoustic features as well as for the
integration of externally computed features.

III. ACOUSTIC MODELING

The acoustic model consists of the transition, the emission,
and the pronunciation model. The pronunciation model gives
for each word in the vocabulary a list of pronunciations
together with a probability of the occurrence. A pronunciation
is modelled by a sequence of context dependent phonemes.
In the current version, the context is limited to triphones,
including context across words.

Strict left-to-right HMM topologies are supported, each
representing a context dependent phoneme. Except for silence,
which is modeled by a single state, all HMMs consist of the
same number of states. The transition model implements loop,
forward, and skip transitions. The existing toolkit supports a
global transition model which distinguishes only the silence
state. Transitions leaving a word are penalized with an extra
cost, the word penalty.

The emission probability of an HMM state is represented
by a Gaussian mixture model. By default, globally pooled
variances are used. However, several other tying schemes,
including density-specific diagonal covariance matrices, are
supported. The acoustic model score computations are opti-
mized for globally pooled variances though.

We provide tools to convert HTK acoustic models to RASR
models. However, not all parameters of the HTK models can
be used, especially the state dependent transition probabilities.

A. State Tying: Phonetic Decision Trees

RASR includes tools to train classification and regression
trees (CART) for phonetic decision trees [14]. The configura-
tion of the CART training is flexible and supports a variety
of phonetic decision tree based tyings. For example, English
systems usually perform best when estimating a separate
tree for each combination of central phoneme and HMM
state. On the other hand, languages like Mandarin benefit
from applying a less strict separation. In addition, the CART
software supports randomization to generate several acoustic
models for subsequent system combination.

State tying definitions from external tools can be imported
by using look-up tables stored in simple text files.

B. Confidence Scores

The relation between the competing hypotheses in a word
graph can be computed by estimating the lattice link posterior
probabilities [15]. Depending on the lattice link labels and the
structure of the lattice it is possible to compute confidence
scores for different units, e.g. word, pronunciation, or HMM
state confidence scores.

For the unsupervised refinement or re-estimation of the
acoustic model parameters (unsupervised training) the toolkit
supports the generation and processing of confidence weighted
state alignments. Confidence thresholding on state level is
supported for unsupervised training as well as for unsupervised
adaptation methods. The toolkit supports different types of
state confidence scores, all described in [16]. The emission
model can be re-estimated based on the automatically anno-
tated observations and their assigned confidence weights, as
presented in [17].

C. Speaker Normalization and Adaptation

RASR supports several methods for speaker normalization
and adaptation: Vocal tract length normalization (VTLN) [18],
maximum likelihood linear regression (MLLR) [19], feature
space MLLR (fMLLR, also known as constrained MLLR,
CMLLR) [20], and dimension reducing affine transforms [21].

VTLN is implemented as a parametric linear warping of
the MFCC filter bank, as described in [22]. The parameter is
estimated using maximum likelihood. Support for one pass, or
so called fast VTLN [18], is also included, by using Gaussian
mixture model classifiers for choosing the warping factors.

Both, VTLN and fMLLR are implemented in the feature
extraction front-end, allowing for use in both recognition and
in training, thus supporting speaker adaptive training.

For MLLR, a regression class tree approach [23] is used
to adjust the number of regression classes to the amount of
adaptation data available. As a variation, it is possible to do
adaptation using only the offset part (and not the matrix part)
of the affine transform.

All the adaptation methods can be utilized for both un-
supervised and supervised adaptation. fMLLR as well as
MLLR estimation can make use of weighted observations,
as produced by the confidence measures described in the
previous section, allowing for confidence based unsupervised
adaptation.

D. Acoustic Model Training

RASR includes tools for the estimation of Gaussian mixture
models by both standard maximum likelihood training and
discriminative training using the minimum phone error (MPE)
criterion [24]. All training steps can be parallelized in a cluster
computer environment, which is indispensable for state-of-the-
art amounts of training data.

The offered documentation (cf. Section IX) includes training
recipes (configuration files and shell scripts), which can be
easily adapted for other tasks.



IV. LANGUAGE MODELING

The toolkit does not include tools for the estimation of
language models. However, the decoder supports N-gram lan-
guage models in the ARPA format, produced e.g. by the SRI
Language Modeling Toolkit [25]. The order of the language
model is not limited by the decoder. Class language models,
defined on word classes instead of words, are supported as
well. Alternatively, a weighted finite state automaton repre-
senting a (weighted) grammar can be used.

V. DECODER

The decoder included in our toolkit is based on the history
conditioned lexical tree (HCLT) search [26]. HCLT search
is a one-pass dynamic programming algorithm which uses
a pre-compiled lexical prefix tree as representation of the
pronunciation dictionary. The search space is constructed
dynamically by integrating parts of the LM as needed during
search. Thereby the decoder can deal with huge vocabularies
and complex language models in a memory efficient way [27].

The beam search strategy retains for every time step only
the most promising hypotheses. Hypotheses with a too low
score compared to the best state hypothesis are eliminated by
acoustic pruning. The beam width, i.e. the number of surviving
hypotheses, is defined by a threshold. Language model pruning
is applied to the word start hypotheses after applying the
language model, which further decreases the active search
space. In addition, histogram pruning restricts the absolute
number of active hypotheses.

The acoustic pruning can be refined by incorporating the
language model probabilities as early as possible using a
language model look-ahead [28]. The anticipated language
model probability for a certain state in the tree is approximated
by the best word end reachable.

The tree lexicon is constructed from the tied HMM-state
sequences of the pronunciations of the words in the vocabulary.
Across-word context dependent models are supported by the
decoder as well [29].

The decoder can generate word graphs (lattices) which is a
compact representation of the set of alternative word sequences
with corresponding word boundaries [30]. This word graph can
be used in later processing steps. Our system produces word
graphs as finite-state automata with attached word boundaries
or alternatively in the HTK standard lattice format.

The computation of acoustic likelihoods can be optionally
accelerated by the use of SIMD instructions [31], batched
computations, and density pre-selection. Scalar quantization
can be applied to both acoustic feature vectors and means of
the mixture models, thus reducing the score computation to
integer operations.

VI. LATTICE PROCESSING

Lattice processing tools can be used for the post-processing
of the word graphs generated by the decoder. RASR includes a
feature-rich framework for lattice processing. Major methods
implemented in this framework are: several techniques for
confusion network (CN) construction, CN decoding, lattice-

and CN-based system combination [32], n-best list generation,
and word confidence score estimation.

The individual methods can be combined with basic opera-
tions (e.g. lattice pruning, file operations, format conversion)
to form a data processing network similar to Flow (cf. Sec-
tion II-A), yielding an implementation of a complete post-
processing pipeline.

VII. FINITE-STATE AUTOMATA

RASR uses finite-state automata for several tasks. The
computation of dynamic time alignments, required for acoustic
model training and speaker adaptation, uses automata for the
construction and representation of the search space. Further-
more, the word lattices generated by the speech recognizer
are represented by finite-state automata. Therefore, the lattices
generated can easily be post-processed by algorithms defined
on weighted finite state transducers.

Finite-state automata are handled by the included RWTH
FSA Toolkit [33], which is also available separately under an
open source license.

VIII. EXTENSIONS

RWTH OCR 2 is an add-on for RASR which adds support
for image (sequence) processing and can be used to develop
competitive handwriting recognition systems [10].

For educational purposes, we offer a small add-on contain-
ing two basic and simple decoders, which can be used in lab
courses for example.

IX. DOCUMENTATION

The documentation is organized in a wiki 3 and covers all
steps of the acoustic model training, multi-pass recognition,
and describes the common concepts of the software and the
used file formats. Emerging questions are answered by our
developers in a support forum.

For a quick introduction, we created a step-by-step recipe
for the development of a small (100 words) recognizer based
on the freely available CMU Census Database. A more verbose
tutorial describes the development of an open vocabulary
ASR system from scratch, including acoustic model training,
language model training, grapheme to phoneme conversion,
and system evaluation based on RASR and other open source
software tools [34]. Both tutorials can be found in the wiki.

In addition, we offer the acoustic model (triphones, 900K
densities), the 4-gram language model (7.5M multi-grams),
and the pronunciation dictionary (60K words) developed for
our EPPS English system together with a ready-to-use one-
pass recognition setup.

2http://www.hltpr.rwth-aachen.de/rwth-ocr
3http://www.hltpr.rwth-aachen.de/rasr/manual
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