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Abstract

In this paper we present an appearance-based sign language recognition sys-
tem which uses a weighted combination of different featuresin the statistical
framework of a large vocabulary speech recognition system.The perfor-
mance of the approach is systematically evaluated and it is shown that a sig-
nificant improvement can be gained over a baseline system when appropriate
features are suitably combined. In particular, the word error rate is improved
from 50% for the baseline system to 30% for the optimized system.

1 Introduction

Appearance-based approaches, i.e. no explicit segmentation is performed on the input
data, offer some immediate advantages for automatic sign language recognition over sys-
tems that require special data acquisition tools. In particular, they may be used in a “real-
world” situation where no special data recording equipmentis feasible. Automatic sign
language recognition is an area of high practical relevancebecause sign language often is
the only means of communication for deaf people.

According to the sign language linguist Stokoe a first phonological model is defined
in [10] to represent a sign as a kind of “chireme”, as vowels and consonants are similar to
phonemes in spoken language.

Signs can also be represented as sequences of movement- and hold-segments [7],
where the movement-segment represents configuration changes of the signer (hand po-
sition, hand shape, etc.), and the hold-segment representsthat the configuration of the
signer remains stationary.

In continuous signing, processes with effects similar to co-articulation in speech do
also occur, but these processes do not necessarily occur in all signs. In [11] movement
epenthesis, which occurs most frequently, is modeled to model hand movements without
meaning (intersign transition periods).

Although a couple of groups work in the field of linguistic modeling and processing of
sign language, only few groups try to automatically recognize sign language from video,
e.g. in [1] colored gloves are suited to be able to segment thefingers. Their approach
requires a valid segmentation of the data that is used for training and of the data that
is used to be recognized. This restricts their approach to rather artificial tasks under
laboratory conditions.



In [12], appearance-based features are used for the recognition of segmented words of
sign language. Simple, down-scaled images are used as features and various transforma-
tion invariant distance measures are employed for the recognition process.

We present an approach to the automatic training and recognition of continuous Amer-
ican sign language (ASL). The training and the recognition do not need segmented words
because the models are automatically determined. We employa tracking method which
uses dynamic programming to locate the dominant hand. Then,geometric features are
extracted from this dominant hand and used as features in thelater steps of the training
and recognition process. These features are combined with down-scaled intensity images.
In the recognition process Fisher’s linear discriminant analysis (LDA) is applied to reduce
the number of parameters to be trained and to ease discrimination of the classes [3].

In Section 2 we introduce the framework underlying the presented approach, Section 3
shortly introduces the applied tracking method, and in Section 4 we present the features
that are used in our approach. Section 5 presents the database that is used in the experi-
ments, which are presented and interpreted in Section 6. Finally, the paper is summarized
and concluded in Section 7.

2 System Overview

In this section we give an overview of the automatic sign language recognition system
which is used to recognize sentences of ASL. The system is based on a large vocabulary
speech recognition system [6]. This allows us to adopt the techniques developed in auto-
matic speech recognition and transfer the insights from this domain into automatic sign
language recognition because there are large analogies between those areas. Common
speech recognition systems are based on the Bayes’ decisionrule. The basic decision rule
for the classification ofxT
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wheresT
1 is the sequence of states, andPr(st |st−1,wN

1 ) andPr(xt |st ,wN
1 ) are the transition

probability and emission probability, respectively. In training, the model parameters are
estimated from the training data using the maximum likelihood criterion and the EM
algorithm with Viterbi approximation.
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Figure 1: System overview.

As the language model, transition and emission probabilities can be weighted by ex-
ponentiation with exponentsα, β andγ, respectively, the probability of the knowledge
sources are estimated as:
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Thus, the decision rule is reformulated as:
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The exponents used for scaling,α, β andγ are named language model scale, time distor-
tion penalty, and word penalty, respectively.

The system overview is shown in Fig. 1. The tracking of the dominant-hand will be
described in Section 3. In Section 4.1 we describe how we extract the geometric fea-
tures from the tracked hand patches which are combined with appearance-based features
described in Section 4.2.

3 Tracking Using Dynamic Programming

The tracking method introduced in [2] is employed in this work. The used tracking algo-
rithm prevents taking possibly wrong local decisions because the tracking is done at the
end of a sequence by tracing back the decisions to reconstruct the best path. The tracking
method can be seen as a two step procedure: in the first step, scores are calculated for each
frame starting from the first, and in the second step, the globally optimal path is traced
back from the last frame of the sequence to the first.

Step 1. For each positionu = (i, j) in framext at time t = 1, ...,T a scoreq(t,u) is
calculated, called the local score. The global scoreQ(t,u) is the total score for the best
path until timet which ends in positionu. For each positionu in imagext , the best
predecessor is searched for among a set of possible predecessors from the scoresQ(t −



1,u′). This best predecessor is then stored in a table of backpointersB(t,u) which is used
for the traceback in Step 2. This can be expressed in the following recursive equations:

Q(t,u) = max
u′∈M(u)

{(Q(t −1,u′)−T (u′,u)}+q(t,u) (6)

B(t,u) = argmax
u′∈M(u)

{(Q(t −1,u′)−T (u′,u)}, (7)

whereM(u) is the set of possible predecessors of pointu andT (u′,u) is a jump-penalty,
penalizing large movements.

Step 2. The traceback process reconstructs the best pathuT
1 using the score tableQ

and the backpointer tableB. Traceback starts from the last frame of the sequence at
time T usingcT = argmaxuQ(T,u). The best position at timet −1 is then obtained by
ct−1 = B(t,ct). This process is iterated up to timet = 1 to reconstruct the best path.

Because each possible tracking center is not likely to produce a high score, pruning
can be integrated into the dynamic programming tracking algorithm for speed-up.

One possible way to track the dominant hand is to assume that this object is moving
more than any other object in the sequence and to look at difference images where motion
occurs to track these positions. Following this assumption, we use a motion information
score function to calculate local scores using the first-order time derivative of an image.
The local score can be calculated by a weighted sum over the absolute pixel values inside
the tracking area. More details and further scoring functions are presented in [2].

4 Features

In this section we present how we extract features from the dominant hand of the signer
and how we extract appearance-based features from the videosequences. These different
features are then weighted and combined in the statistical framework of a large vocabulary
speech recognition system to recognize the signs.

4.1 Geometric Features

To extract features from the tracked hand patches of the signer, the hand is segmented
using a simple chain coding method [4]. In total 34 features are extracted and can roughly
be categorized into four groups:

Basic Geometric Features. The first group of the features contains features describing
basic properties including the size of the area of the hand, the length of the border of
the hand, thex andy coordinates of the center of gravity, the most top-left and right-
bottom points of the hand and the compactness. The definitionof the features is based on
basic methods of image processing [9]. In total, nine features are calculated, where the
definition of each is very well-known, except for compactness. The compactness of the
area is calculated by:

Compactness=
4 ·π ·A

B2 , (8)

which ranges from 0 to 1. The compactness is 0 for lines and 1 for circles.



Moments. The second group consists of features that are based on moments [9]. A total
of 11 features is calculated. The two dimensional(p+ q)th order moments of a density
distribution functionρ(x,y) are defined as:

mpq = ∑
x

∑
y

xpypρ(x,y). (9)

If ρ(x,y) is piecewise continuous and it has non-zero values only in the finite part of the
two dimensional plane, then the moments of all orders exist and the sequence{mpq} is
uniquely determined byρ(x,y) and vise versa. The small order moments of theρ(x,y)
describes the shape of the region. For examplem00 is equal to the area size, andm01

andm10 gives thex andy coordinates of the center of gravity, and alsom11, m20 andm02

yield the direction of the main axis of the distribution. Thesmall order of the moments
is calculated in first group of the features. The momentsm02, m03, m11, m12, m20, m21

andm30 which are invariant against translation are calculated in this group and used as
features.

The inertia parallel to the main axisJ1 and the inertia orthogonal to the main axisJ2,
both invariant against translation, rotation and flipping are calculated by:
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The orientation of the main axis, invariant to translation and scaling is calculated by:

Orientation=
180

2π
arctan(

2m11
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). (11)

The eccentricity, ranges from zero for a circle to one for a line is calculated by:

Eccentricity=
(m20−m02)

2 +4m11
2

(m20+m02)2 . (12)

The eccentricity is invariant against translation, rotation, scaling and flipping.

Hu Moments. Here, seven features are extracted by determining the first seven moment
invariants as described in [5].
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All Hu moments are invariant against translation, rotation, scaling and flipping except
thehu7 which is not invariant against flipping.

Combined Geometric Features. Here, seven features are calculated, taking into ac-
count the distance between the center-of-gravity for the tracked object and certain posi-
tions in the images. Additionally, the distance between theleft most point and right most
point to main axis and the distance between the front most andrear most point to center
of gravity along main axis are calculated.

Thus, we end up with 34 geometric features that are extractedfrom the hand patches.

4.2 Appearance-based Features

In this section, we briefly introduce the appearance-based features used in our continu-
ous ASL sentence recognition system. In [13], different appearance-based features are
explained in more detail, including the intensity image, skin color intensity, and differ-
ent kinds of first- and second-order derivatives to recognize segmented ASL words. The
results show that down-scaled intensity images perform very well. According to these
results we employ these features in the work presented here.

The features are directly extracted from the images of the video frames. We denote
by Xt(i, j) the pixel intensity at position(i, j) in the framet of a sequence,t = 1, . . . ,T.

We transfer the matrix of an image to a vectorxt and use it as a feature vector. To
decrease the size of the feature vector, according to the informal experiments, we use the
intensity image down-scaled to 32×32 pixels denoted byX′

t :

xt,d = X′
t (i, j), d = 32· j + i, (14)

wherext = [xt,1, ...,xt,D] is the feature vector at timet with the dimensionD = 1024.

5 Database
The National Center for Sign Language and Gesture Resourcesof Boston University has
published a database of ASL sentences1 [8]. Although this database is not produced
primarily for image processing and recognition research, the data is available to other
research groups and, thus, can be a basis for comparisons of different approaches.

The image frames are captured by a black/white camera, directed towards the signer’s
face. The movies are recorded at 30 frames per second and the size of the frames are
312×242 pixels. We extract the upper center part of size 195×165 pixels. (Parts of the
bottom of the frames show some information about the frame and the left and right border
of the frames are unused.)

To create our database for signer-independent ASL sentencerecognition which we
call RWTH-Boston-104, we use 201 annotated video streams ofASL sentences. We
separate the recordings into a training and evaluation set.To optimize the parameters
of the system, the training set is split into separate training and development parts. To

1http://www.bu.edu/asllrp/ncslgr.html



Table 1: Corpus statistics for RWTH-Boston-104 database.
Training set Evaluation

Training Development set

Sentences 131 30 40

Running words 695 172 216
Unique words 103 65 79
Singletons 37 38 45

Figure 2: Example frames of the RWTH-Boston-104 database showing the 3 signers.

optimize parameters in training process, the system is trained by using 131 sentences from
the training set and evaluated using the 30 sentences from the development set. When
parameter tuning is finished, the training data and development data, i.e. 161 sentences,
are used to train one model using the optimized parameters. This model is then evaluated
on the so-far unseen 40 sentences from the evaluation set. Corpus statistics of the database
are shown in Table 1.

In the RWTH-Boston-104 database, there are three signers, one male and two females.
The ASL sentences of the training and evaluation set are signed by all three signers to be
used in a signer-independent recognition system. The signers are dressed differently and
the brightness of their clothes is different. The signers and some sample frames of the
database are shown in Figure 2.

6 Experimental Results

Here, we present experiments which are performed on the RWTH-Boston-104 database
using the described recognition framework with the presented features. The development
set is used to optimize the parameters of the system including language model scaleα,
time distortion penaltyβ , and word penaltyγ, as well as the weights that are used to
combine the different features.

In Table 2 the word error rate (WER) of the system using intensity images down-
scaled to 32× 32 and geometric features on development and evaluation setare reported.
The WER is equal to the number of deletions, substitutions and insertions of words di-
vided by the number of running words. In development processonly 131 sentences are
used to train the model, while 161 sentences are used for finaltraining. Therefore the
error rate of the system on development set is higher than on the evaluation set. Also, it
can be seen that the geometric features alone slightly outperform the appearance-based
features for the development and for the evaluation set.

In the following, we perform experiments to find the best setup for the dimensionality
reduction using LDA for the image-features and the geometric features individually. The
results are given in Table 3. When using intensity image features with a very small number



Table 2: Word error rates [%] of the system.
Features Development set Evaluation set

image down-scaled to 32× 32 67 54
Geometric Features 61 50

Table 3: Word error rates [%] of the system employing LDA.
image down-scaled to 32× 32 Geometric Features

Number of Development Evaluation Development Evaluation
components set set set set

150 61 40 – –
90 60 36 – –
44 60 37 – –
34 61 39 57 42
20 66 49 58 41
15 78 63 54 42
10 79 67 52 35
5 – – 61 37

of components, the smaller number of components yields larger word error rates because
the system looses the information of the image frames. However, when the feature vectors
are too large, the word error rate increases because too muchdata that is not relevant
for the classification disturbs the recognition process. For the image features the best
dimensionality is 90 and for the geometric features, the best dimensionality is 10.

Given these results, we now combine the different features.Therefore we start from
the previous experiments, i.e. we use the 90 most discriminatory components of the LDA
transformed image features and the 10 most discriminatory features of the LDA trans-
formed geometric features (see Fig. 1).

Because the word error rate of the system relies on the scaling factorsα, β and γ
the experiments are done with the optimized parameters fromthe previous experiments.
Weighting the features, the word error rate of the system on development and evaluation
set, using geometric features’ parameters and intensity image’s parameters, are shown in
Figure 3 and Figure 4, respectively.

The graphs show the word error rate with respect to the weightof intensity features.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0  0.2  0.4  0.6  0.8  1

E
R
[
%
]

weight(original image) = 1 - weight(geometric features)

Development set
Evaluation set

Figure 3: WER [%] using feature weighting, tuned by geometric features’ parameters.
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Figure 4: WER [%] using feature weighting, tuned by intensity image’s parameters.

The weight of intensity image features and geometric features are chosen such that they
add to 1.0. The experiments are performed for both the evaluation set and the development
set and it can be seen that optimizing the settings on the development set leads to good
results on the evaluation data as well. In Figure 3 the parameters that are optimized for the
geometric features are used and the weight for geometric andintensity features is altered.
The best WER is achieved for a weighting of 0.2 and 0.8 for the geometric and intensity
images respectively for the development and the evaluationset.

The same experiment, but with the settings optimized for theintensity features is
performed and the experimental results are given in Figure 4. Here, the best WER is
obtained for the development set with a weighting of 0.4 and 0.6 respectively. And this
also leads to a good result on the evaluation data, i.e. the word error rate of 31%, Although
the best word error rate of 30% is achieved on the evaluation set.

Interestingly, using the parameters for the intensity features slightly outperforms the
parameters for the geometric features. These results are due to the higher dimensionality
of the intensity features and thus the scaling factorsα, β , andγ optimized for the intensity
images suit the new situation with a feature vector of an evenhigher dimensionality better.

A direct comparison to other approaches from other researchgroups is not possible,
because the results on the RWTH-Boston-104 database are published here as a first time.
The database is publicly available to other groups to evaluate their own approaches.

7 Conclusion
We presented an automatic sign language recognition system. It is shown that a suit-
able combination of different features yields strongly improved word error rates over two
different baseline systems. Also LDA is a useful means of selecting the most relevant
information from feature vectors.

Even though the word error rates are high, they are still competitive to other published
results which do not use special data acquisition devices and try to build a robust speaker
independent system to recognize continuous sign language sentences.

One reason for the high word error rate is the high number of singletons in the
database. Additionally we still have to cope with the problem of automatic word mod-
elling, which shows that feature extraction is important but also that problems like move-
ment epenthesis, word length modelling, and data sparseness have to be considered in
continuous sign language recognition in future.
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