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Abstract

In this paper, we extend the concept of moment-based
normalization of images from digit recognition to the
recognition of handwritten text. Image moments pro-
vide robust estimates for text characteristics such as size
and position of words within an image. For handwrit-
ing recognition the normalization procedure is applied
to image slices independently. Additionally, a novel
moment-based algorithm for line-thickness normaliza-
tion is presented. The proposed normalization methods
are evaluated on the RIMES database of French hand-
writing and the IAM database of English handwriting.
For RIMES we achieve an improvement from 16.7%
word error rate to 13.4% and for IAM from 46.6% to
37.3%.

1. Introduction

Text in handwritten images typically shows strong
variability in appearance due to different writing styles.
Appearance differs in the size of the words, slant,
skew and stroke thickness. Such variability calls for
the development of normalization and preprocessing
techniques suitable for recognition of handwritten text.
Among the most common preprocessing steps applied
in current state-of-the art systems are noise removal,
binarization, skew and slant correction, thinning, and
baseline normalization [3]. For slant correction, Pas-
tor et al. [17] proposed to use the maximum variance of
the pixels in the vertical projection and Vinciarelli et
al. [21] observed that non-slanted words show long,
continuous strokes. Juan et al. [20] showed that nor-
malizing ascenders and descenders of the text reduces
significantly the vertical variability of handwritten im-
ages. A linear scaling method applied to whole images
has been used in various systems to reduce the overall

size variability of images of handwritten text [6, 3, 8].
A drawback of all those approaches is that they rely
on assumptions that may or may not hold for a given
database. A second drawback is that all those methods
are applied to whole images making it difficult to ad-
dress local changes. Furthermore, the methods for slant
correction rely on binarization which is a non-trivial
problem in itself and should be avoided if possible, as
Liu et al. [13] found in their benchmark paper. Recently
España-Boquera et al. [7] proposed using trained Multi-
Layer-Perceptrons for image cleaning and normaliza-
tion. While they report competitive results on standard
databases, the training and labeling process is time con-
suming. In contrast to the methods mentioned until
now, methods based on image statistics and moments do
not suffer from heuristical assumptions and have been
extensively studied in the area of isolated digit recog-
nition. Casey [4] proposed that all linear pattern vari-
ations can be normalized using second-order moments.
Liu et al. [14] used Bi-moment normalization based on
quadratic curve fitting and introduced a method to put a
constrain on the aspect ratio when the x and y axis are
normalized independently [12]. Miyoshi et al. [16] re-
ported that computing the moments from the contour of
a pattern, and not from the pattern itself, improves the
overall recognition results.

We propose a moment-based normalization scheme
for handwritten images. We use the image gradient and
zero-th order moments to globally normalize the stroke
thickness of a pattern. The algorithm operates directly
on grey-scale images and is not susceptible to local dis-
tortions. The image is segmented into slices using a
sliding window and size and shift of the sliding window
are estimated using moments. Finally, local variability
in size and position is modelled independently in sepa-
rate slices using second-order moments.



2. Normalization scheme

Consider a grey-scale image f(x, y) : N × N 7→ N
of width W and height H and pixels values in the range
0− 255.

Geometric moments of a p+qth order of f are given
by:

mpq[f ] =
∑
x

∑
y

xpyqf(x, y) (1)

From now on we omit the bracket [f ] when its clear
to which function we refer. The central moments are
given by:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (2)

where x̄ = m10/m00 and ȳ = m01/m00 are the co-
ordinates of the centre of gravity of an object contained
in this image. The second-order moments µ20 and µ02

reflect how much pixels deviate from the center of grav-
ity. We interpret them as the size of the object in x and
y direction independently.

Image moments give us important information about
the structure and density of the object and form a basis
for normalization algorithms described in this section.

2.1. Stroke thickness normalization

Images of handwritten text usually vary in the thick-
ness of strokes, which correspond to a different pressure
applied to a pen. Therefore a stroke thickness normal-
ization procedure that reduces this variability would be
of our high interest. We denote the normalized grey-
scale image as f ′(x, y) : N× N 7→ N.

Let us consider a shape that resembles a long, thin,
straight stroke. We assume that this shape has some
dimension τ , to which we refer as a stroke thickness
of that shape. We further assume that τ is constant
throughout the whole shape and we make τ a subject
of a normalization procedure. We define the thicken-
ing as an operation that linearly increases the value τ
and express it by means of morphological dilation with
a structuring element of a radius r.

f ′(x, y) = max
rx,ry :d(rx,ry)<r

f(x+ rx, y + ry)

for r ≥ 0
(3)

with d(rx, ry) being the Manhattan distance from the
center of the structuring element. For negative values of
r we express this operation by means of morphological
erosion.

f ′(x, y) = min
rx,ry :d(rx,ry)<−r

f(x+ rx, y + ry)

for r < 0
(4)

Rivest [19] defined the image gradient g(f) as the
difference between the dilation and erosion of that im-
age with a structuring element of a radius ρ. We observe
that a sum over all values of f ′ is proportional to the
area of a thickened shape. We refer to it as m00[f ′], re-
calling the geometric moment definition. Furthermore
we observe that a sum over all values of the image gra-
dient g(f) is proportional to the change of that area. We
refer to it as m00[g(f)]. If we apply the thickening op-
eration to the shape with some radius r, the value of
m00[f ′] will increase linearly with respect to r and the
increase will be proportional to τ . Following this ob-
servations we compute the stroke thickness of the shape
as:

τ = 2ρ
m00[f ′]

m00[g(f)]
(5)

Note that in case of images it is not possible to com-
pute the gradient for ρ → 0. Therefore we use the
smallest value that does not require interpolation, which
is 1.

Figure 1 shows the plot of the values m00[f ′] and
m00[g(f ′)] computed on an image thickened with a
structuring element of radius r. If we now treat the
moment m00 as a function of r, we can observe that
its characteristic deviates from the one of a linear func-
tion for real-world images, as our assumption about the
geometrical structure of the object is only a rough es-
timate of handwriting shapes. The dilation or erosion
operation creates an effect similar to the median filter
and therefore reduces the overall gradient and the in-
crease rate of m00[f ′]. Therefore we use the moment of
the original gradient m00[g(f)] in computation of the
stroke thickness, because it gives the best estimate of
the change in the area under the thickening operation.

If we now denote the stroke thickness of the normal-
ized image f ′ as T , which is a parameter to be opti-
mized, the normalization procedure is equivalent to di-
lating (eroding) the image f with a radius r = T − τ .
The value of r is real therefore we have to interpolate
the image appropriately.

To further overcome the deviation of m00[f ′](r)
from the characteristic of a linear function we apply
an iterative algorithm in which we recompute the value
τ after dilating (eroding) the image. If the condition
T − τ < ε is not met, with ε being a certain, small
threshold, the value of r is reestimated and the normal-
ization step is repeated.
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Figure 1: Plot of the m00[f ′] and m00[g(f ′)] with re-
spect to r for a sample image

Note that erosion is not the inverse of dilation, there-
fore special considerations have to be made during im-
plementation so that the final oscillation over T does
not degrade the image.

Figure 2 shows sample images with different stroke
thickness and their normalized versions. The dilation
(erosion) operation will also degrade the quality of the
image if the parameter T is too small or too big, which
is a natural effect. Therefore it is crucial to find a correct
value for T during optimization.

(a)

(b)

Figure 2: a) Sample images and b) their thickness-
normalized versions

2.2. Segmentation

Consider a grey-scale image f of heightH and width
W which contains one line of text. The image is usually
cropped from a page of multiple lines of handwritten
text. The crop points can be affected by many factors
such as the size of ascenders and descenders, artefacts,
and segmentation errors. It is then possible as seen on
the figure 3, that the image contains too much or too

little whitespace and that the image height does not re-
flect the actual size of the text baseline. We then need to
reestimate the height of the image from the actual text
characteristics. We could use the original second-order
moments, but the their definition implies that the dis-
tance computed between pixels is squared and therefore
highly influenced by outliers. So we alter the computa-
tion formula of the vertical moment µ02 and define the
moment ν, which uses the absolute distance instead.

ν =
∑
x

∑
y

|y − ȳ|f(x, y) (6)

The height of the image is then recomputed by:

H ′ = β
ν

m00
(7)

The parameter β is merely for convenience and is
chosen in such a way that the average H is equal to av-
erage H ′ across a given corpus. The value of H ′ is a
better estimate of the vertical dimension of the image as
it depends on the density of the image. Figure 4 shows
an illustration of reestimated image height. Note that
we do not crop the image in any way, but we only use
the value of H ′ for the estimation of segmentation pa-
rameters.

Figure 3: Illustration of different bounding boxes of im-
ages with the same size of the baseline text

We segment the image with a sliding window of
height H , width γ1H ′, and shift γ2H ′. By relating the
size and shift of the sliding window to the image height
we ensure that different scaling of the original image
does not influence the aspect ratio and the quantity of
single slices. The crop points of a given slice are real
values and have to be rounded to natural values. We
then apply a horizontal cosine window to the slice in
order to smooth the borders. All slices segmented from
a single image are of the same size.

(a) (b)

Figure 4: a) Original and b) reestimated bounding box
of a sample image



2.3. Size and translation normalization

Let us use h to refer to a single slice of widthW1 and
height H1. We are now interested in a normalization
procedure that will allow us to normalize every slice
with respect to size and translation independently.

We reestimate the area subject to scaling using mo-
ments: δx = α

√
µ20[h]
m00[h]

δy = α
√

µ02[h]
m00[h]

(8)

where δx and δy are the new horizontal and vertical
dimensions of the slice. We use α = 4 for our experi-
ments.

Let us denote the normalized grey-scale image of
width W2 and height H2 as h′(x′, y′). The normaliza-
tion procedure that maps the normalized image to the
original image is implemented by the following back-
ward mapping:{

x = ( x
′

W2
− 1

2 )δx + x̄

y = ( y
′

H2
− 1

2 )δy + ȳ
(9)

This procedure not only resizes the image but also
shifts the center of gravity to the center of the image
[W2

2 ,
H2

2 ]. We use 32 for H2 and W2 is computed by
γ1H2.

Note that scaling x and y axis independently has
a negative effect of changing the original aspect ra-
tio. This can lead to serious pattern degradation and
affect inter-class distances. We will alleviate this prob-
lem by incorporating additional information about the
original object characteristics into the feature vector as
described later. The figure 5 shows a few slices ex-
tracted from one sample image and their normalized
versions. The objects in slices are shifted to the center
and stretched according to the normalization procedure
described earlier.

2.4. Feature extraction

We extract feature vectors from separate slices. One
slice is transformed into one feature vector. We use sim-
ple pixel values (appearance based features) normalized
to the range [0, 1] as features. Note that the size nor-
malization procedure affects the original aspect ratio as
described in the previous subsection. Therefore we pro-
vide the classifier with an additional information about
the original characteristics of the object by adding the
following complementary features to the feature vector.[

µ10

m00

W1
,

µ01

m00

H1
, 2

√
µ20

m00

W1
, 2

√
µ02

m00

H1

]
(10)

(a)

(b)

Figure 5: a) Sample image slices and b) their size-
normalized versions

The final feature vector is subject to PCA trans-
formation and number of components is reduced from
γ1(H2)2 + 4 to 30.

3. Experiments

We applied the moment normalization scheme to the
RIMES [1] and IAM [15] corpora and compared it to
the results obtained using standard preprocessing steps
[18] [11] and with results reported by other groups.

We use the RIMES corpus from the ICDAR 2011
competition. The corpus consist of 59,202 images with
French handwriting: 51,738 for training and 7464 for
validation. The validation set has been used before as
the test set for the ICDAR 2009 competition, therefore
we compare our results with official results from this
competition [10]. The problem is defined as an isolated
word recognition in a closed-vocabulary scenario with
the size of vocabulary of 5335 words. We use an uni-
gram language model with perplexity 45.2.

The IAM database consist of handwritten English
text sentences, which have been built upon the LOB cor-
pus. There are 6161 images for training, 920 for valida-
tion, and 2781 for testing. We apply a trigram language
model that has been built upon the LOB, Brown, and
Wellington corpora. The sentences appearing in IAM
validation and test sets have been excluded for the pur-
pose of language model training. For the lexicon we ex-
tract the 50k most frequent words therefore producing
an open-vocabulary scenario. The perplexity of the lan-
guage model is equal to 258.7. The OOV rate is equal
to 4.01% for validation set and 3.47% for test set.

The baseline system have been optimized in the work
by Pesch [18] and Jonas [11]. For classification we use
a HMM model with 12 states for RIMES and 10 states
for IAM with every two subsequent states sharing the



Table 1: Comparison with the results reported by other
groups on RIMES

Systems WER [%] CER [%]

preprocessing baseline 16.7 8.3
moment normalization 13.4 5.5
TUM (RNN) [10] 9.0 -
UPV (MLP, HMM) [10] 16.8 -
ParisTech (HMM) [10] 23.7 -
IRISA (HMM) [10] 25.3 -
SIEMENS (HMM) [10] 26.8 -

Table 2: Results for moment normalization on RIMES

Systems WER [%] CER [%]

size norm. w/o comp. features 18.2 8.1
size normalization 15.6 6.8

+ height reestimation 14.4 6.1
+ thickness normalization 13.4 5.5

BIM size normalization 16.4 8.7

same output probabilities. The model is trained with
the Viterbi algorithm using maximum likelihood (ML)
as training criterion. The output probabilities are trained
with Gaussian mixtures with 10 splits for RIMES and 7
splits for IAM. We use the language model scaling of 20
for both corpora. The parameters of the sliding window
γ1, γ2 have been experimentally optimized. We take
0.03 for γ2 and for γ1 32/16 for RIMES and 32/14 for
IAM.

The table 1 shows the comparison of the results on
the RIMES database. We achieve an excellent word
error rate of 13.4%, which is comparable with today’s
state of the art systems. This result is obtained just us-
ing moment normalization scheme and HMM, we do
not use neural network or other preprocessing steps, that
are commonly applied by other groups. The preprocess-
ing baseline result has been obtained by using the same
HMM and language model, but optimized with different
parameters. We have used the following preprocessing
steps as described by Pesch [18]: median blurring, con-
trast normalization, deslanting, baseline normalization.
The results from other groups are from the ICDAR 2009
competition [10].

The table 2 summarizes the development of the
normalization scheme. Simple second-order moments
revisited in this paper perform better than the BIM
method proposed by Liu [14]. The introduction of the
hight reestimation method described in section 2.2 im-
proves the error rate by 1% absolute. The stroke thick-
ness normalization method improves the result by fur-

Table 3: Comparison with the results reported by other
groups on IAM

Systems WER [%] CER [%]

Devel Eval Devel Eval

preprocessing baseline 35.0 46.6 16.9 16.6
moment normalization 26.6 37.3 10.6 18.1
Espana. et al. [7] (HMM) 32.8 38.8 - 18.6
Bertol. et al. [2] (HMM) 30.9 35.5 - -
Dreuw et al. [6] (HMM) 31.9 38.9 8.4 11.7
D. et al. [5] (MLP/HMM) 22.7 32.9 7.7 12.4
Bertol. et al. [2] (HMMs) 26.8 32.8 - -
Graves et al. [9] (RNN) - 25.9 - 18.2
E. et al. [7] (MLP/HMM) 19.0 22.4 - 9.8

Table 4: Results for moment normalization on IAM

Systems WER [%] CER [%]

size normalization 28.7 11.7
+ height reestimation 27.9 11.1

+ thickness normalization 26.6 10.6

ther 1%. We noticed a high influence of the comple-
mentary features described in section 2.4 on the recog-
nition performance. The word error rate on the Rimes
corpus increased by 2.6% when we excluded those fea-
tures from the feature vector.

The table 3 shows the comparison of the results on
the IAM database. We achieve a word error rate of
37.3% on the test set. The baseline has been obtained
using similar preprocessing steps to those applied on
RIMES as described by Jonas [11]. The results from
other groups in the middle part of the table are reported
for HMM models with Gaussian Mixtures and prepro-
cessing. The results in the lower part include system
combinations or neural networks and are some of the
best results reported so far for IAM. Dreuw [6] applied
a discriminative-trained HMM model to features pre-
processed with feed-forward neural networks. España-
Boquera [7] preprocessed the images with several neu-
ral networks, one network for each preprocessing step.
Graves [9] used recurrent neural network. Bertolami [2]
applied a voting strategy to several HMM models.

The table 4 summarizes the performance of different
normalization steps on IAM. The height reestimation
method and the thickness normalization method give
similar improvements to the ones seen on the RIMES
database. In all our experiments using the moment nor-
malization on original images outperformed the prepro-
cessing schemes.



4. Conclusions

We showed that the use of moments improves sig-
nificantly the recognition performance in handwriting
recognition and outperforms other preprocessing ap-
proaches. On the RIMES database our moment and
HMM based system is the best pure HMM system and
achieves a performance of 13.4 word error rate. Ad-
ditionally, moment-based normalization of slice height
and line thickness improves the result over the base-
line moment method. For the IAM database we ob-
serve similar results as on the RIMES database and a
total improvement of 9% over the baseline from 46.6 to
37.3. Finally, the second-order moment normalization
technique described in this paper requires no training, is
not based on heuristics but on image statistics, is fast to
compute and easy to integrate into existing systems.
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