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ABSTRACT
We present an efficient framework to estimate the rule probabilities for a hierarchical phrase-
based statistical machine translation system from parallel data. In previous work, this was
done with bilingual parsing. We use a more efficient approach splitting the bilingual parsing
into two stages, which allows us to train a hierarchical translation model on larger tasks.
Furthermore, we apply leave-one-out to counteract over-fitting and use the expected count from
the inside-outside algorithm to prune the rule set. On the WMT12 Europarl German→English
and French→English tasks, we improve translation quality by up to 1.0 BLEU and 0.9 TER while
simultaneously reducing the rule set to 5% of the original size.

KEYWORDS: statistical machine translation, hierarchical decoding, translation model training,
forced derivation.
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1 Introduction

In hierarchical machine translation, discontinuous phrases with “gaps” are allowed and the
model is formalized as a synchronous context-free grammar (SCFG). This grammar consists
of bilingual rules, which are based on bilingual standard phrases and discontinuous phrases.
Each bilingual rule rewrites a generic non-terminal X into a pair of strings f̃ and ẽ with both
terminals and non-terminals in both languages

X → 〈 f̃ , ẽ〉. (1)

In the following, we denote f̃ as source side and ẽ as target side of a bilingual rule. Obtaining
these rules is based on a heuristic extraction from automatically word-aligned bilingual training
data. Just like in the phrase-based approach, all bilingual rules of a sentence pair are extracted
given an alignment. The standard phrases are stored as lexical rules in the rule set. In addition,
whenever a phrase contains a sub-phrase, this sub-phrase is replaced by a generic non-terminal
X . With these hierarchical phrases we can define the hierarchical rules in the SCFG. However,
this extraction method causes two problems. First, this approach does not consider, whether
a rule is extracted from a likely alignment or not. The rule probabilities which are in general
defined as relative frequencies are computed based on the joint counts C(X → 〈 f̃ , ẽ〉) of a
bilingual rule X → 〈 f̃ , ẽ〉

pH( f̃ |ẽ) =
C(X → 〈 f̃ , ẽ〉)∑
f̃ ′ C(X → 〈 f̃ ′, ẽ〉) . (2)

Thus, the probabilities depend only on simple counts from a word alignment. Another issue is
the large number of extracted rules which is exponential in sentence length (Lopez, 2008). To
reduce the size of the hierarchical translation model, threshold pruning, which is based on the
counts of the rules, can be applied. However, this is connected to the first mentioned difficulty.
Using these counts to prune the rule set may reduce the rule set size, but the translation quality
can get worse (Zens et al., 2012). An alternative is a more consistent pruning regarding the
translation process.

In this work, we present an approach to directly estimate the rule probabilities by applying
an expectation-maximization (EM) inspired algorithm. The rule probabilities are computed
in both translation directions, i.e. source-to-target pH( f̃ |ẽ) and target-to-source pH(ẽ| f̃ ), and
are combined in a weighted log-linear model with other features to find the best translation.
Similar to the classical EM algorithm, our algorithm is divided into an expectation step and
a maximization step. For the expectation step, we parse the training data to get all possible
synchronous derivations between the source and target sentences. The parsing is done with a
two-parse algorithm where separately first the source sentence and then the target sentence
is parsed. From the resulting parse tree of the target parse, the used rules are extracted.
Both parsing steps are done with the CYK+ parsing algorithm. After parsing, we apply the
inside-outside algorithm on the generated target parse tree to compute expected counts for
each applied rule. As maximization step, we update the rule probabilities using the expected
counts.

On the German→English and French→English Europarl task from NAACL 2012 Workshop on
Statistical Machine Translation (WMT12), we show that our presented approach improves the
translation quality by up to 1.0 BLEU and 0.9 TER while the rule set is reduced by 95% of the
original size.
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The paper is organized as follows. In the following Section, we give a short overview of related
work. In Section 3, we describe our forced derivation step in detail. Finally, we discuss the
experimental results in Section 4, followed by a conclusion.

2 Related Work

In recent years, several works have investigated the direct training of the translation model to
close the gap between the extraction and the translation process.

In (Marcu and Wong, 2002), a joint probability model is presented which estimates phrase
translation probabilities from a parallel corpus. For aligning the phrases and estimating the
probabilities, the EM algorithm is applied. In (Birch et al., 2006) the joint probability model is
constrained by a word alignment to limit the complexity.

The problem of over-fitting due to the EM algorithm is analyzed in (DeNero et al., 2006) and a
solution is proposed in (Wuebker et al., 2010) by applying leave-one-out. We will adopt the
leave-one-out method in this work and show that its benefits translate to the hierarchical case.

Another approach to learn from decoding on the training data is presented in (Duan et al.,
2012). In this work, a training method based on forced derivation trees is described. This
structure is used to train apart from a translation model, a distortion model, a source language
model and a rule sequence model. As first step, they verified their method on a phrase-based
system. However, this method can be adapted for the hierarchical approach.

Besides these publications about phrase training for the phrase-based approach, several works
have been presented for hierarchical machine translation during the past years. In most of these
papers the idea of bilingual parsing on parallel corpora is described.

In (Blunsom et al., 2008) a discriminative model using derivations as a hidden variable is
presented. In training, they perform a synchronous parsing of the source and target sentences
using a modified CYK algorithm over two dimensions with a time complexity of O (J3 I3) where
J is the source sentence length and I the target sentence length. Further, the inside-outside
algorithm is employed. The experiments were carried out on a subset of the French→English
Europarl corpus (170K sentences) and show comparable results. Another observation is that
their model improves as they increase the number of parsable training sentences. Starting from
this observation, we will apply our approach on a larger training corpus and show, that we
improve the translation quality on a recent task.

Bilingual parsing on parallel corpora is also described in (Huang and Zhou, 2009), (Čmejrek
et al., 2009) and (Čmejrek and Zhou, 2010). They also use the EM algorithm to recompute
the translation probabilities. In order to do that, in (Huang and Zhou, 2009) the EM algorithm
for SCFG is introduced. In the maximization step, the expected counts from the inside-
outside algorithm are used to update the translation probabilities for non-lexical rules only.
Experiments on the Chinese→English IWSLT 2006 task (40K sentences without punctuation
and case information) result in a significantly better BLEU score. In (Čmejrek et al., 2009)
and (Čmejrek and Zhou, 2010), this work is extended and they report improvement on a
subset of the German→English Europarl corpus (300K sentences without punctuation and case
information).

In (Heger et al., 2010), a standard hierarchical machine translation system is combined with
phrases trained as in (Wuebker et al., 2010). Experimental results on Arabic→English IWSLT
and English→German WMT task show improvements in translation quality and motivate to
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investigate the impact of phrase training for the hierarchical approach.

In (Dyer, 2010) a synchronous parsing algorithm is introduced that is based on two successive
monolingual parses. Instead of performing one bilingual parse for a given sentences pair, a
two-parse algorithm is applied. This improves the average run-time. The authors reported
speed improvement on the same task as in (Blunsom et al., 2008). We apply this approach to
reduce the run-time of our forced derivation procedure.

Compared to previous described approaches for training the hierarchical translation model,
we are now able to employ forced derivation on larger task. Furthermore, we estimate the
inside-outside probabilities on the target chart only and calculate the expected count for all type
of rules. We also apply a threshold pruning on the rule set using the estimated expected counts.
This leads to a more consistent pruning and a smaller rule set. Another difference is that we
perform leave-one-out to counteract over-fitting. Further, in the forced derivation procedure,
we include the log-linear combination of all features which are used in the translation process
except for the language model.

3 Forced Derivation

In the forced derivation procedure, the two-parse algorithm and the inside-outside algorithm
are the expectation step of the EM-inspired algorithm. During the expectation step, the expected
counts are calculated. First, we need all possible synchronous derivations given the parallel
training data. From the resulting parse trees, all applied rules are extracted and the expected
count of each rule is estimated with the inside-outside algorithm. In general, a bilingual parser
parses all parallel sentences of the training data based on the full extracted rule set of the
training data (Huang and Zhou, 2009). However, to calculate all parses efficiently, we apply the
two-parse algorithm instead of full bilingual parsing. The two-parse algorithm performs two
monolingual parses, one on the source language sentence f J

1 and one on the target language
sentence eI

1. Each parse is done using the CYK+ algorithm as described in (Chappelier and
Rajman, 1998). The main advantage of the CYK+ algorithm is that it does not require the
grammar to be in Chomsky Normal Form and we can use hierarchical translation rules directly.
of the grammar in the algorithm itself. Similar to the CYK algorithm, the basic data structure is
a chart with J(J+1)

2
cells where J is in this case the size of the source sentence f J

1 . The source
sentence can be generated by the grammar if the start symbol of the grammar S is found in
top cell (J , 1), i.e. S⇒∗ f J

1 . The time complexity is O (J3) and O (I3) respectively. The resulting
charts have a space complexity of O (J2) and O (I2) for the representation of all derivations. In
the hierarchical approach of (Chiang, 2005), the set of non-terminals consists of a start symbol
S and a generic non-terminal X . Furthermore, the number of non-terminals n on the right hand
side of the rules is limited to two. In addition to the hierarchical and lexical rules, a rule set R
is extended with an initial rule and a glue rule

S→ 〈X , X 〉, S→ 〈SX , SX 〉. (3)

GivenR , the parallel training corpus is parsed with the two-parse algorithm. First, we parse the
source sentence f J

1 with the source sides of the rules of the given rule set R and a sentence pair
( f J

1 , eI
1). Note, we ensure that each source sentence can always be parsed by employing several

heuristics during the extraction process to get all necessary rules. From the chart we extract the
target side of the used rules. This is done by simply traversing from the top cell (J , 1) through
the chart. Then the non-terminals on the left hand side and the non-terminals of the target
side are annotated with the source span of the corresponding non-terminals in the chart. The
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annotated rules are stored in a new rule set Rt . Moreover, we annotate applied initial rules
and glue rules. Hence, the set of non-terminals now consists of several annotated start symbols
and generic non-terminals. In our implementation, the left hand side with the annotated target
side of the bilingual rule and a pointer to the corresponding original rule including all features
is stored. Further, to keep the time and memory usage low, we limit the number of target sides
for each rule in the described extraction step.

In the second pass, the target sentence eI
1 is parsed using the annotated target sides of the

bilingual rules in the new rule set Rt . The annotation of non-terminals of the rules in the first
parse ensures that rules applied in the target parse cover only one span in the source sentence.
The target sentence is generated by the new grammar and the forced derivation procedure is
successful, if the start symbol SJ

1 is found in cell (I , 1). In contrast to the source parse, it is
possible that a target parse is not found due to the fact that we prune necessary target sides
as describe before. If a target sentence can not be parsed, we discard the sentence pair. The
generated parse tree represents all possible synchronous derivations between the source and
target sentence and the used rules are extracted from the chart as we save a pointer to the
corresponding source side of the rule. Again, the extraction procedure starts from the top cell
(I , 1) and traverses through the chart of the target parse.

3.1 Inside-Outside Algorithm

For the estimation of the rule probabilities we employ the inside-outside algorithm to calculate
the expected count for each rule used in the forced derivation step. In the maximization step
the expected counts are used to update the rule probabilities. As described in (Čmejrek et al.,
2009), we calculate the expected count based on the inside and outside probabilities depending
on the number of non-terminals in the rule. Due to the fact that we do not perform full bilingual
parsing, we apply the inside-outside algorithm on the target parse only. Considering a sentence
pair ( f J

1 , eI
1), the expected count CF D(rn) is computed for a rule rn applied in target parse. Note,

the expected counts for a rule are summed up over all sentence pairs of the training data. For
the maximization step, we use the expected counts CF D(rn) of a rule rn = X → 〈 f̃ , ẽ〉 to update
the rule probability pF D( f̃ |ẽ)

pF D( f̃ |ẽ) =
CF D(X → 〈 f̃ , ẽ〉)∑
f̃ ′ CF D(X → 〈 f̃ ′, ẽ〉) . (4)

This is also done for the target-to-source translation probability pF D(ẽ| f̃ ).

3.2 Leave-one-out

Another issue of phrase model training in general is over-fitting. Due to the fact that all rules
which are extracted from a sentence pair are used in the forced derivation step, longer rules
are often preferred. Even though those long rules only match for a few sentences of the
training data and do not generalize very well, they tend to be assigned very high translation
probabilities. In (Wuebker et al., 2010) a leave-one-out method is described which counteracts
the over-fitting. This method modifies the translation probabilities in the forced derivation step
for each sentence pair. The occurrences of a given rule in a sentence pair ( fn, en) are subtracted
from the rule counts obtained from the full training data resulting in the modified translation
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probability

pl1o,n( f̃ |ẽ) =
C(X → 〈 f̃ , ẽ〉)− Cn(X → 〈 f̃ , ẽ〉)∑
f̃ ′ C(X → 〈 f̃ ′, ẽ〉)− Cn(X → 〈 f̃ ′, ẽ〉) (5)

where Cn(X → 〈 f̃ , ẽ〉) is the count for the rule X → 〈 f̃ , ẽ〉, that was extracted from this sentence
pair. Singleton rules, which are rules occurring only in one sentence, are handled differently.
These rules get a low probability depending on the source and target rule lengths. Note,
the non-terminals on the right hand side of the rules are treated such as terminals. Without
leave-one-out, the longer rule

X → 〈Und [. . . ] Strafen, It [. . . ] should〉 (6)

is applied. Such long rules are used only in few sentence pairs and will hardly generalize well to
unseen test data. Using leave-one-out, three shorter, more general rules are used for generating
this part of the sentence pair

X → 〈Und zwar X , It X 〉, X → 〈sollen X , X should〉, X → 〈derartige Strafen, says that this〉. (7)

4 Experiments

Our experiments were carried out on the German→English and French→English Europarl
task from the NAACL 2012 Workshop on Statistical Machine Translation. For both tasks, we
selected parallel sentences according to two criteria: Only sentences of maximum 100 tokens
are considered and the ratio of the vocabulary size of a sentence and the number of its tokens
is minimum 80% i.e. we remove sentences that have too many repeated words. The German
text was further preprocessed by splitting German compound words using the frequency-based
method described in (Koehn and Knight, 2003). For the experiments, we used the open
source translation toolkit Jane (Vilar et al., 2010), which has been developed at RWTH and is
freely available for non-commercial use. We extended the hierarchical phrase-based machine
translation system based on (Chiang, 2005) with the two-parse algorithm and the inside-outside
algorithm as described in Section 3.

4.1 Experimental Setup

Given the training data, we created a word alignment with GIZA++ (Och and Ney, 2003). The
resulting alignment was used to extract the initial rule set. As the initial rule set is extracted
heuristically, we name it heuristic rule set in the following. In contrast, the produced rule set after
the forced derivation procedure is called learned rule set. First, we built a baseline system which
is a standard hierarchical phrase-based SMT system with ten features in a log-linear model:
translation and word lexicon probabilities in both translation directions (source-to-target and
target-to-source), rule penalty, word penalty, language model score and three binary features for
hierarchical rules. Furthermore, we used the heuristic rule set to perform our proposed forced
derivation procedure and initialized the weights of each rule in the EM-inspired algorithm with
log-linear combination of all features. We used a standard set of non-optimized parameters
for the log-linear combination. We applied length-based leave-one-out as described in Section
3 and compared to a setup without leave-one-out. For all experiments, we used a 4-gram
language model with modified Kneser-Ney smoothing which was trained with the SRILM toolkit
(Stolcke, 2002). Further, we used the cube prune algorithm (Huang and Chiang, 2007) to
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perform the search. The scaling factors of the features were optimized for BLEU (Papineni et al.,
2001) on the development set with Minimum Error Rate Training (Och, 2003) on 100-best lists.
The performance of the different setup was evaluated on the development (newstest2010) and
the test set (newstest2011) using the two metrics BLEU and TER (Snover et al., 2006).

4.2 Experimental Results

The results of our different experiments are presented in Table 2. Our approach is abbreviated to
FD (forced derivation). First, we did different preliminary experiments on the German→English
task. We then applied the best methods on the French→English task to verify our proposed
approach.

During the forced derivation procedure, around 93% of the parallel sentences of the
German→English corpus and around 97% of French→English corpus were parsed with the
two-parse algorithm. The non-parsable sentences were skipped. In general, those are longer
sentences, which are misaligned usually caused by liberal or wrong translation. For a batch
of 2000 sentences, the parsing took on average 2.5 hours (without rule set loading time) on a
single machine.

First, we performed our proposed method with and without leave-one-out (Table 1). The
length-based leave-one-out (lbl1o) method outperforms forced derivation without leave-one-out
in terms of BLEU and is also slightly better than the baseline. Further, we pruned the final
learned rule set by dropping all rules which got a summed up expected count lower than a
given threshold. The results for different threshold values are shown in Table 1. Discarding
such rules seems to improve the translation quality and in addition reduces the size of the rule
set. We ran several setups using different thresholds and compared them on the development
set. Even the full learned rule set does not contain all rules of the initial rule set. The reason for
that is the pruning in the forced derivation procedure and the skipped non-parsable sentences.
Note, that the pruning settings are weaker then in the translation process. We tested the best
setup (cutoff 0.1) on the test translation set and achieved an improvement of 0.4 points in BLEU

and 0.3 points in TER. The final rule set size is reduced by more than 95%. It seems that the
greatest improvement is achieved by this reduction. The results of the experiment using the
heuristic rule set filtered to contain the same rules as the pruned learned rule set (baseline
filtered) are similar to the setup using the translation probabilities learned with the EM-inspired
algorithm. This observation shows that using filtered rules performs as least as good as using
the full rule set. However, due to the reduced rule set, following experiments were consuming
less computation time and memory.

We achieved further improvement applying a log-linear interpolation of the learned rule set with
the heuristic one as proposed in (DeNero et al., 2006). The log-linear interpolations pint( f̃ |ẽ)
are computed as

pint( f̃ |ẽ) =
�

pH( f̃ |ẽ)
�1−ω · �pF D( f̃ |ẽ)

�ω (8)

where ω is the interpolation weight, pH the heuristic rule set and pF D the learned rule set.
Only the intersection of both tables is retained. The interpolation weight was adjusted on the
development set and set to ω= 0.2. Our final result shows an improvement of 0.7 BLEU points
and 0.8 TER points over the baseline on the test translation set of the German→English task.

For the the French-English task, we applied forced derivation with length-based leave-one-out
and a cutoff threshold of 0.1. Similar to the German→English task, we got an improvement of
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cutoff dev % of full rule set
threshold BLEU

[%]
all type of rules hierarchical only

0.2 21.0 3.2 3.0
0.15 21.4 3.9 3.6
0.1 21.4 4.9 4.7
0.01 21.2 13.2 15.0
full (length-based l1o) 21.0 92.0 94.3

full (without l1o) 20.3 92.0 94.3
baseline 20.8 100 100

Table 1: Preliminary experiments on the development set of the German→English WMT12 task.
setup German→English French→English

BLEU
[%]

TER
[%]

BLEU
[%]

TER
[%]

baseline 19.1 63.4 24.6 57.2

baseline (filtered) 19.5 63.3 - -
FD +lbl1o +cutoff 0.1 19.5 63.1 25.0 57.2
fixed interpolation ω= 0.2 19.8 62.6 25.6 56.3

Table 2: Final results for the German→English and French→English WMT12 task.

0.4 points in BLEU while the rule set size was reduced by more than 95%. With the log-linear
interpolation, we gained further 0.6 BLEU points. In sum, we achieved an improvement of 1.0
points in BLEU and 0.9 points in TER over the baseline on the French-English task.

Conclusion

In this paper, we have introduced an efficient method to perform the direct estimation of rule
probabilities for hierarchical machine translation. Based on an EM-inspired algorithm, the
expectation is computed with the two-parse algorithm that generates all possible synchronous
derivations between a source and target sentence. We applied the inside-outside algorithm
to calculate the expected counts and to estimate rules probabilities. To avoid over-fitting, we
used length-based leave-one-out. By pruning rules with a low expected count, it is possible to
significantly reduce the rule set size.

Compared to previous work, we have also shown improvements on an medium sized task. On
the WMT12 Europarl German→English task we improved translation quality by 0.4 BLEU points
with the trained rule set and 0.7 BLEU points using the interpolation. Furthermore, the rule set
size was reduced by over 95%. In addition, we showed improvements of up to 1.0 BLEU and 0.9
TER on the WMT12 Europarl French→English task.

In future work, a leave-one-out strategy considering non-terminals in a more sophisticated way
could further improve forced derivation.
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