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ABSTRACT

Hierarchical Multi Layer Perceptron (MLP) based long-term fea-
ture extraction is optimized for TANDEM connectionist large vo-
cabulary continuous speech recognition (LVCSR) system within
the QUAERO project. Training the bottleneck MLP on multi-
resolutional RASTA filtered critical band energies, more than 20%
relative word error rate (WER) reduction over standard MFCC
system is observed after optimizing the number of target labels.
Furthermore, introducing a deeper structure in the hierarchical bot-
tleneck processing the relative gain increases to 25%. The final
system based on deep bottleneck TANDEM features clearly outper-
forms the hybrid approach, even if the long-term features are also
presented to the deep MLP acoustic model. The results are also
verified on evaluation data of the year 2012, and about 20% relative
WER improvement over classical cepstral system is measured even
after speaker adaptive training.

Index Terms— LVCSR, MRASTA, MLP, bottleneck, hierarchi-
cal, deep neural network, hybrid, TANDEM

1. INTRODUCTION

Becoming a major component, neural networks (NN) are widely
used in recent automatic speech recognition systems. Besides the
probabilistic TANDEM approach proposed by [1] for Gaussian Mix-
ture Models (GMM), the hybrid (e.g. MLP based) acoustic mod-
els have been also explored as an alternative approach within the
Hidden Markov Model framework [2, 3]. Estimating class poste-
rior probabilities, the neural network based feature extraction can
be considered as a non-linear feature transformation technique. The
bottleneck approach, which can be interpreted as dimension reduc-
tion method using non-linear discriminant analysis, was introduced
for speech recognition in [4]. The bottleneck features consistently
outperform the posterior features, and are usually concatenated with
MFCC. Based on the recent success of deep neural networks in hy-
brid acoustic modeling, the first steps of investigation of deep bottle-
neck features have been already taken in [5, 6].

Using short-term features, we have shown in our previous work
that the hybrid MLP-HMM acoustic model achieved better perfor-
mance than GMM-HMM, even with speaker adapted features [7].
However, the experiments also revealed that the gain over GMM-
HMM is mainly related to the longer context used during the training
of the high performing MLP acoustic model.

In order to incorporate long-term speech information in GMM-
HMM, hierarchical processing of multi-resolution RASTA filtering
was proposed in [8]. As [9] has shown, the combination of the bottle-
neck and hierarchical concept resulted in better performance. More-
over, training the hierarchical MLPs on concatenated MRASTA and
critical band energies led to lower WER in [10]. The previous works
applied simple 5-layer bottleneck structures, where the NNs esti-
mated phoneme posteriors.

Therefore, in this paper we generalize the hierarchical bottle-
neck feature extraction in the following two ways before extending
our previous investigation in [7] on long-term features. First, the out-
put layer is optimized; second, deeper structures are used for bottle-
neck MLP training. Besides the comparison of the TANDEM with
baseline MFCC systems, the best results are contrasted with deep
pretrained MLP hybrid systems.

The paper is organized as follows: Section 2 gives an overview
of related works followed by a short description of the training and
testing corpora in Section 3. Section 4 gives the details of the fea-
ture extraction. We describe the experimental setups in Section 5
followed by results (Section 6). The paper closes with conclusion in
Section 7.

2. RELATION TO PRIOR WORK

While the previous studies about deep bottleneck features investi-
gated only short-term features [5, 6], in this paper we apply the
MRASTA based long-term speech representation of [11]. The state-
of-the-art version of the MRASTA features [9] includes hierarchical
processing introduced by [8], and the bottleneck concept of [4]. This
work generalizes it further by introducing context-dependent targets
and deep structures. The paper also extends the comparison of hy-
brid and TANDEM approaches on long-term features [7].

3. CORPUS DESCRIPTION

Within the QUAERO project about 300 hours of manually tran-
scribed speech data was collected to train the acoustic models
and the MLPs. The corpus is based on various web resources
containing recordings of broadcast news and conversations. Dur-
ing the optimization of long-term hierarchical bottleneck structure
the evaluation corpus of 2011 is used, whereas the final recogni-
tion performance is also measured on the evaluation set of 2012
(Eval12) to validate the improved BN features. Development sets
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(Dev11/Dev12) are used only for tuning system parameters like
language model scale and time distortion penalties. Table 1 shows
the corpus statistics of the training and testing data.

Table 1. Statistics of QUAERO French training and testing corpora

Training Dev11
Eval11/

Eval12
Dev12

total data [h] 317 2.9 3.1 3.8
# running words 3.9M 36k 38k 45k

4. FEATURE EXTRACTION

4.1. Cepstral features

From the audio files, vocal tract length normalized (VTLN) cepstral
features are extracted, where the warping factors are estimated using
a text-independent Gaussian mixture classifier trained on the acous-
tic training corpus. The preemphasized power spectrum is computed
every 10 ms over a Hanning window of 25 ms. After integration of
the warped power spectrum by 20 triangular filters equally spaced
on Mel-scale, their logarithm is taken. The 16 MFCCs are com-
puted from the logarithmic critical band energies (CRBE) and then
segmentwise mean and variance normalized. Finally, linear discrim-
inant analysis (LDA) is applied by projecting MFCCs within a slid-
ing window of length 9 to a 45 dimensional subspace.

4.2. Bottleneck MRASTA features

The original RASTA filters were introduced to extract features which
are less sensitive to linear distortion [12]. Covering the modula-
tion frequency range found relevant for speech perception, multi-
resolutional smoothing of temporal trajectories of the CRBE was
proposed in [11] by applying two-dimensional bandpass filters. In
our setup one second trajectory of each critical band is filtered by
first and second derivatives of the Gaussian functions, where the
standard deviation varies between 8 and 60 ms resulting in 12 tempo-
ral filters per band. After the MRASTA filtering, the first frequency
derivatives are calculated according to [11]. Since the 20 logarith-
mized CRBE are extracted from the MFCC pipeline, they are also
vocal tract length normalized.

To incorporate the high dimensional MRASTA representation of
the speech signal in the GMM-HMM, we follow the BN approach
proposed by [9]. Tied-state posterior estimates are derived from a
hierarchical processing of two bottleneck MLPs: the input of the first
MLP in this hierarchy is based on the fast modulation frequencies of
the MRASTA filtering, whereas the second MLP is trained on the
slow modulation frequencies and the BN output of the first MLP. In
both cases, the inputs are augmented with CRBEs (AMRASTA).

Fig. 1 shows the MLP structures applied in this study, where
we introduced deeper structure (up to 3 hidden layer) before and
after the BN) in each level of the hierarchy. The number of target
classes is optimized experimentally, see Section 6. If it is not ex-
plicitly stated, the bottleneck layer contains 42 nodes. In the first
experiment, where a classical 5-layer BN-MLP is used, the number
of nodes in the hidden layers is fixed to 7000 in accordance with

our previous investigations. Using deeper structures the size of the
non-bottleneck layers is limited to 3000.

For better initialization of the deep BN-MLP the discriminative
pretraining of [2] is modified in the following way for bottleneck
structures. In the first step classical 3-hidden-layer BN network is
trained. After that the bottleneck layer is replaced by three randomly
initialized layers, where the middle one is again a bottleneck. In
the next step, only the four weight matrices correspond to the new
layers are trained. The weight update is followed again by inserting
new layers. In each growing step the data is seen by the network
only once. After the desired depth is achieved, the whole network is
fine-tuned.

The linear output of the final bottleneck layer is reduced by Prin-
cipal Component Analysis (PCA) retaining 95% of the total variabil-
ity, and concatenated with the LDA transformed MFCC. All activa-
tions of the nodes within the output layer are transformed by the
softmax function, whereas the sigmoid transfer function is applied
in all other layers. All MLPs are trained using the cross-entropy
criterion and approximate triphone tied-state posterior probabilities.
The nets are trained using backpropagation algorithm in the mini-
batch mode (512 frames). To prevent overfitting and for adjusting
the learning rate parameter, 10% of the training corpus (chosen ran-
domly) is used as cross-validation set.

5. EXPERIMENTAL SETUP

5.1. Acoustic Modeling

Instead of training the acoustic models from scratch, an initial align-
ment is generated by one of our previous best systems [7], and used
to estimate the decision tree for the state-tying, the LDA transforma-
tion matrix for cepstral features, and the GMM and MLP parameters.
The speaker adapted features are extracted using Constrained Maxi-
mum Likelihood Linear Regression (CMLLR) [13] with the simple
target model approach [14]. No additional MLLR [15] model adap-
tation is applied to GMM-HMM in order to be able to compare the
performance of GMM-HMM with MLP-HMM fairly. Furthermore,
no discriminative training is performed due to computational bene-
fits.

To apply MLP as a hybrid acoustic model in the HMM frame-
work, the class posterior probabilities are converted to emission like-
lihoods where the state prior probabilities are estimated on the train-
ing corpus and scaled (optimized on the development set). In our
experiments, the deep hybrid MLP models have 8 hidden layers with
3000 nodes each, and the networks are initialized by discriminative
pre-training [16]. In order to perform speaker adapted recognition
with hybrid model, the best available features (CMLLR transformed
MFCC+BN3x3k

AMRASTA) are taken.
As observed in [17], MLP can benefit from speaker normalized

features. Therefore, not only the deep hybrid acoustic model but the
deep BN features are also retrained on speaker normalized features
in the final experiment. The block diagram of the modified two-pass
recognition is shown in Fig. 2. In this case, both the TANDEM and
hybrid neural networks are trained on the same (speaker normalized
BN-reduced) features. This concept follows [5], where it was ob-
served that BN features trained on speaker adapted features led to
lower error rates than speaker adapted BN features.
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Fig. 1. Deep hierarchical AMRASTA bottleneck features trained on context-dependent triphone tied-states. Feature dimensions are indicated
in round brackets.
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Fig. 2. Two-pass recognition with bottleneck features retrained on
speaker adapted features. For adaptation the output of the speaker
independent system trained on concatenated cepstral and AMRASTA
bottleneck features is used.

5.2. Language Modeling

For the recognition of Eval11 set the same language model is used as
in our previous work [7]. The recognition results on the Dev12 and
Eval12 sets are achieved by applying a new LM estimated for the
evaluation of 2012. The vocabulary contains 200k words, and the
perplexity value for the smoothed, unpruned 4-gram LM is 122. All
the recognition experiments are carried out with the freely available
RASR decoder [18].

6. EXPERIMENTAL RESULTS

6.1. Optimization of BN MRASTA features

Based on our previous study [7] where we concluded that the MLP-
HMMs outperformed the GMM-HMMs due to the longer temporal
context the models incorporate, the long-term MRASTA features
were optimized in the first experiment. According to our former
investigation, 3-hidden-layer BN-MLPs are used with 7000 hidden
nodes in the non-bottleneck layers. Furthermore, the short-term
features based hybrid (MLP(MFCC)) and bottleneck TANDEM
(BN1x7k

MFCC) systems were also retrained on the extended training cor-

pus. In this case, the input dimension of the MLPs is 297, resulting
from nine frames of MFCC vectors, their full first-order, and part
of the second-order time derivatives. As can be seen in Fig 3,
the hierarchical long-term BN features clearly outperformed the
short-term BN ones. The features reached their best performance
when they were trained on 1500 tied-states, and even outperformed
the hybrid system with very deep MLP structures. As a more fair
comparison with the long-term BN TANDEM approach, a hybrid
system was trained where the MRASTA filter outputs and CRBEs
are also presented to the deep network (MLP(MFCC+AMRASTA)).
The result indicates that the hybrid model can also benefit from the
long-term features outperforming the GMM-HMM using simple,
5-layer BN structures. However, increasing the number of hidden
layers in the bottleneck structures improved the BN AMRASTA
features significantly, resulting in relative 4% lower error rate com-
pared to our best hybrid system. Training a classical 3-hidden-layer
BN features having the similar number of parameters as the deepest
bottleneck structure (which corresponds to about 30k nodes in the
non-bottleneck layers) hardly resulted in a better performance than
BN1x7k

AMRASTA. Therefore the performance gain originates mainly in the
deeper structure. Futher comparison has been made between the hy-
brid and GMM acoustic modeling where one second of CRBEs were
presented to the deep MLP and BN-MLP without any hierarchical
or MRASTA processing (input vector dimension is 20·101=2020).
The results (MLP(CRBE) and GMM(MFCC+BN3x3k

CRBE)) can indicate
the necessity of the hierachical structure and MRASTA prepro-
cessing for deep neural networks. Increasing the bottleneck up to
82 nodes resulted mainly in slight degradation. The initialization
method described in Section 4.2 resulted in an (inconsistent) max-
imal improvement of 0.1% absolute. In summary, the total gain of
our hierarchical deep BN TANDEM system over classical MFCC
GMM-HMM is more than 25% relative. Our observations were also
confirmed on the Eval12 test set (see Table 2).

6.2. Speaker adapted results

In the second set of experiments the optimized long-term features
were investigated after speaker adaptation. Since the direct estima-
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Fig. 3. Optimization of augmented multi-resolution RASTA (AM-
RASTA) based bottleneck (BN) features for GMM-HMM on Eval11
corpus. The number and the size of the hidden layer before and after
the BN are indicated by superscript. The absolute performance in
word error rate (WER) and the relative WER reduction (∆WERrel)
over MFCC GMM-HMM is given on the left and right hand side, re-
spectively. Color indicates whether the final feature vector contains
90ms (gray) or 1sec (black) of speech information.

tion of CMLLR transformation matrices on the high dimensional
MRASTA features can become inaccurate, the same features are
used for both the hybrid MLP and GMM models to carry out the
speaker normalized experiments. In another experiment we slightly
modified the standard 2-pass recognition system (Fig. 2), and BN
features were trained on speaker adapted features.

Table 2. Speaker independent (SI) and adapted (SA) recognition
results on Eval11 and Eval12 test sets using different features and
acoustic models (AM)

AM Features
Test set

Eval11 Eval12

SI

GMM
MFCC 23.6 24.4
MFCC+BN3x3k

AMRASTA 17.3 18.5
MLP MFCC+AMRASTA 18.1 19.3

SA

GMM
MFCC 21.9 22.7
MFCC+BN3x3k

MRASTA 16.6 17.6
+deep BN retraining 16.1 17.4

MLP MFCC+BN3x3k
MRASTA 16.9 17.8

In contrast to our previous study where only short-term features
were used, the deep bottleneck TANDEM GMM-HMM based on
long-term features slightly outperformed the hybrid MLP-HMM by
about 1.5% relative (see Table 2). The performance gap increased
further if the TANDEM features were retrained after the adaptation.
The relative differences between the two systems are 4% and 2%

on Eval11 and Eval12, respectively. It is worth mentioning that the
GMM-HMMs are estimated using ML criterion only. Comparing
the best NN based system with a classical GMM-HMM trained on
stand-alone MFCC, more than 20% relative improvement are ob-
served even after the 2nd pass.

7. CONCLUSIONS AND FUTURE WORK

Continuing our previous work, hybrid and TANDEM acoustic mod-
eling approaches were compared using long-term features. Accord-
ing to our expectation the long-term TANDEM features improved
the recognition rate substantialy compared to the BN features trained
on short-term MFCC. Moreover, introducing the deep structure in
the hierarchical bottleneck concept resulted in a significant gain,
clearly outperforming the hybrid MLP approach. Our observation
remained valid after speaker adaptation, although the performance
gap decreased between the two modeling approaches.

This study aimed to compare GMM- and MLP-HMM using
common features and feature adaptation methods. In the future
we plan to analyze the effect of model adaptation techniques as
well. The investigation also have to be extended on sequence-level
discriminatively trained models.
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