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Abstract

In this paper, we empirically investigate the
impact of critical configuration parameters in
the popular cube pruning algorithm for decod-
ing in hierarchical statistical machine transla-
tion. Specifically, we study how the choice
of the k-best generation size affects trans-
lation quality and resource requirements in
hierarchical search. We furthermore exam-
ine the influence of two different granular-
ities of hypothesis recombination. Our ex-
periments are conducted on the large-scale
Chinese→English and Arabic→English NIST
translation tasks. Besides standard hierarchi-
cal grammars, we also explore search with re-
stricted recursion depth of hierarchical rules
based on shallow-1 grammars.

1 Introduction

Cube pruning (Chiang, 2007) is a widely used
search strategy in state-of-the-art hierarchical de-
coders. Some alternatives and extensions to the
classical algorithm as proposed by David Chiang
have been presented in the literature since, e.g. cube
growing (Huang and Chiang, 2007), lattice-based
hierarchical translation (Iglesias et al., 2009b; de
Gispert et al., 2010), and source cardinality syn-
chronous cube pruning (Vilar and Ney, 2012). Stan-
dard cube pruning remains the commonly adopted
decoding procedure in hierarchical machine transla-
tion research at the moment, though. The algorithm
has meanwhile been implemented in many publicly
available toolkits, as for example in Moses (Koehn
et al., 2007; Hoang et al., 2009), Joshua (Li et

al., 2009a), Jane (Vilar et al., 2010), cdec (Dyer et
al., 2010), Kriya (Sankaran et al., 2012), and Niu-
Trans (Xiao et al., 2012). While the plain hierar-
chical approach to machine translation (MT) is only
formally syntax-based, cube pruning can also be uti-
lized for decoding with syntactically or semantically
enhanced models, for instance those by Venugopal
et al. (2009), Shen et al. (2010), Xie et al. (2011),
Almaghout et al. (2012), Li et al. (2012), Williams
and Koehn (2012), or Baker et al. (2010).

Here, we look into the following key aspects of hi-
erarchical phrase-based translation with cube prun-
ing:

• Deep vs. shallow grammar.
• k-best generation size.
• Hypothesis recombination scheme.

We conduct a comparative study of all combinations
of these three factors in hierarchical decoding and
present detailed experimental analyses with respect
to translation quality and search efficiency. We fo-
cus on two tasks which are of particular interest to
the research community: the Chinese→English and
Arabic→English NIST OpenMT translation tasks.

The paper is structured as follows: We briefly out-
line some important related work in the following
section. We subsequently give a summary of the
grammars used in hierarchical phrase-based trans-
lation, including a presentation of the difference be-
tween a deep and a shallow-1 grammar (Section 3).
Essential aspects of hierarchical search with the
cube pruning algorithm are explained in Section 4.
We show how the k-best generation size is defined
(we apply the limit without counting recombined
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candidates), and we present the two different hy-
pothesis recombination schemes (recombination T
and recombination LM). Our empirical investiga-
tions and findings constitute the major part of this
work: In Section 5, we first accurately describe our
setup, then conduct a number of comparative exper-
iments with varied parameters on the two translation
tasks, and finally analyze and discuss the results. We
conclude the paper in Section 6.

2 Related Work

Hierarchical phrase-based translation (HPBT) was
first proposed by Chiang (2005). Chiang also in-
troduced the cube pruning algorithm for hierarchical
search (Chiang, 2007). It is basically an adaptation
of one of the k-best parsing algorithms by Huang
and Chiang (2005). Good descriptions of the cube
pruning implementation in the Joshua decoder have
been provided by Li and Khudanpur (2008) and Li
et al. (2009b). Xu and Koehn (2012) implemented
hierarchical search with the cube growing algorithm
in Moses and compared its performance to Moses’
cube pruning implementation. Heafield et al. re-
cently developed techniques to speed up hierarchical
search by means of an improved language model in-
tegration (Heafield et al., 2011; Heafield et al., 2012;
Heafield et al., 2013).

3 Probabilistic SCFGs for HPBT

In hierarchical phrase-based translation, a proba-
bilistic synchronous context-free grammar (SCFG)
is induced from a bilingual text. In addition to con-
tinuous lexical phrases, hierarchical phrases with
usually up to two gaps are extracted from the word-
aligned parallel training data.

Deep grammar. The non-terminal set of a stan-
dard hierarchical grammar comprises two symbols
which are shared by source and target: the initial
symbol S and one generic non-terminal symbol X .
Extracted rules of a standard hierarchical grammar
are of the form X → 〈α, β,∼ 〉 where 〈α, β〉 is a
bilingual phrase pair that may contain X , i.e. α ∈
({X } ∪ VF )+ and β ∈ ({X } ∪ VE)+, where VF

and VE are the source and target vocabulary, respec-
tively. The ∼ relation denotes a one-to-one corre-
spondence between the non-terminals in α and in β.
A non-lexicalized initial rule and a special glue rule

complete the grammar. We denote standard hierar-
chical grammars as deep grammars here.

Shallow-1 grammar. Iglesias et al. (2009a) pro-
pose a limitation of the recursion depth for hierar-
chical rules with shallow grammars. In a shallow-1
grammar, the generic non-terminal X of the stan-
dard hierarchical approach is replaced by two dis-
tinct non-terminals XH and XP . By changing the
left-hand sides of the rules, lexical phrases are al-
lowed to be derived from XP only, hierarchical
phrases from XH only. On all right-hand sides of
hierarchical rules, the X is replaced by XP . Gaps
within hierarchical phrases can thus be filled with
continuous lexical phrases only, not with hierarchi-
cal phrases. The initial and glue rules are adjusted
accordingly.

4 Hierarchical Search with Cube Pruning

Hierarchical search is typically carried out with a
parsing-based procedure. The parsing algorithm is
extended to handle translation candidates and to in-
corporate language model scores via cube pruning.

The cube pruning algorithm. Cube pruning op-
erates on a hypergraph which represents the whole
parsing space. This hypergraph is built employ-
ing a customized version of the CYK+ parsing al-
gorithm (Chappelier and Rajman, 1998). Given
the hypergraph, cube pruning expands at most k
derivations at each hypernode.1 The pseudocode
of the k-best generation step of the cube pruning
algorithm is shown in Figure 1. This function is
called in bottom-up topological order for all hy-
pernodes. A heap of active derivations A is main-
tained. A initially contains the first-best derivations
for each incoming hyperedge (line 1). Active deriva-
tions are processed in a loop (line 3) until a limit k
is reached or A is empty. If a candidate deriva-
tion d is recombinable, the RECOMBINE auxiliary
function recombines it and returns true; otherwise
(for non-recombinable candidates) RECOMBINE re-
turns false. Non-recombinable candidates are ap-
pended to the list D of k-best derivations (line 6).
This list will be sorted before the function terminates

1The hypergraph on which cube pruning operates can be
constructed based on other techniques, such as tree automata,
but CYK+ parsing is the dominant approach.

30



(line 8). The PUSHSUCC auxiliary function (line 7)
updates A with the next best derivations following d
along the hyperedge. PUSHSUCC determines the
cube order by processing adjacent derivations in a
specific sequence (of predecessor hypernodes along
the hyperedge and phrase translation options).2

k-best generation size. Candidate derivations are
generated by cube pruning best-first along the in-
coming hyperedges. A problem results from the lan-
guage model integration, though: As soon as lan-
guage model context is considered, monotonicity
properties of the derivation cost can no longer be
guaranteed. Thus, even for single-best translation,
k-best derivations are collected to a buffer in a beam
search manner and finally sorted according to their
cost. The k-best generation size is consequently a
crucial parameter to the cube pruning algorithm.

Hypothesis recombination. Partial hypotheses
with states that are indistinguishable from each other
are recombined during search. We define two no-
tions of when to consider two derivations as indis-
tinguishable, and thus when to recombine them:

Recombination T. The T recombination scheme
recombines derivations that produce identical
translations.

Recombination LM. The LM recombination
scheme recombines derivations with identical
language model context.

Recombination is conducted within the loop of
the k-best generation step of cube pruning. Re-
combined derivations do not increment the gener-
ation count; the k-best generation limit is thus ef-
fectively applied after recombination.3 In general,
more phrase translation candidates per hypernode
are being considered (and need to be rated with the
language model) in the recombination LM scheme
compared to the recombination T scheme. The more
partial hypotheses can be recombined, the more it-
erations of the inner code block of the k-best gen-
eration loop are possible. The same internal k-best

2See Vilar (2011) for the pseudocode of the PUSHSUCC

function and other details which are omitted here.
3Whether recombined derivations contribute to the genera-

tion count or not is a configuration decision (or implementa-
tion decision). Please note that some publicly available toolkits
count recombined derivations by default.

Input: a hypernode and the size k of the k-best list
Output: D, a list with the k-best derivations

1 let A← heap({(e,1|e|) | e ∈ incoming edges)})
2 let D ← [ ]
3 while |A| > 0 ∧ |D| < k do
4 d← pop(A)
5 if not RECOMBINE(D, d) then
6 D ← D ++ [d]

7 PUSHSUCC(d,A)

8 sort D

Figure 1: k-best generation with the cube pruning al-
gorithm.

generation size results in a larger search space for re-
combination LM. We will examine how the overall
number of loop iterations relates to the k-best gener-
ation limit. By measuring the number of derivations
as well as the number of recombination operations
on our test sets, we will be able to give an insight
into how large the fraction of recombinable candi-
dates is for different configurations.

5 Experiments

We conduct experiments which evaluate perfor-
mance in terms of both translation quality and
computational efficiency, i.e. translation speed and
memory consumption, for combinations of deep
or shallow-1 grammars with the two hypothesis
recombination schemes and an exhaustive range
of k-best generation size settings. Empirical re-
sults are presented on the Chinese→English and
Arabic→English 2008 NIST tasks (NIST, 2008).

5.1 Experimental Setup

We work with parallel training corpora of 3.0 M
Chinese–English sentence pairs (77.5 M Chinese /
81.0 M English running words after preprocessing)
and 2.5 M Arabic–English sentence pairs (54.3 M
Arabic / 55.3 M English running words after prepro-
cessing), respectively. Word alignments are created
by aligning the data in both directions with GIZA++
and symmetrizing the two trained alignments (Och
and Ney, 2003). When extracting phrases, we apply
several restrictions, in particular a maximum length
of ten on source and target side for lexical phrases,
a length limit of five on source and ten on target
side for hierarchical phrases (including non-terminal
symbols), and no more than two gaps per phrase.
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Table 1: Data statistics for the test sets. Numbers have
been replaced by a special category symbol.

Chinese MT08 Arabic MT08
Sentences 1 357 1 360
Running words 34 463 45 095
Vocabulary 6 209 9 387

The decoder loads only the best translation options
per distinct source side with respect to the weighted
phrase-level model scores (100 for Chinese, 50 for
Arabic). The language models are 4-grams with
modified Kneser-Ney smoothing (Kneser and Ney,
1995; Chen and Goodman, 1998) which have been
trained with the SRILM toolkit (Stolcke, 2002).

During decoding, a maximum length constraint
of ten is applied to all non-terminals except the ini-
tial symbol S . Model weights are optimized with
MERT (Och, 2003) on 100-best lists. The op-
timized weights are obtained (separately for deep
and for shallow-1 grammars) with a k-best gen-
eration size of 1 000 for Chinese→English and of
500 for Arabic→English and kept for all setups.
We employ MT06 as development sets. Trans-
lation quality is measured in truecase with BLEU

(Papineni et al., 2002) on the MT08 test sets.
Data statistics for the preprocessed source sides of
both the Chinese→English MT08 test set and the
Arabic→English MT08 test set are given in Table 1.

Our translation experiments are conducted with
the open source translation toolkit Jane (Vilar et
al., 2010; Vilar et al., 2012). The core imple-
mentation of the toolkit is written in C++. We
compiled with GCC version 4.4.3 using its -O2
optimization flag. We employ the SRILM li-
braries to perform language model scoring in the
decoder. In binarized version, the language mod-
els have a size of 3.6G (Chinese→English) and 6.2G
(Arabic→English). Language models and phrase ta-
bles have been copied to the local hard disks of the
machines. In all experiments, the language model
is completely loaded beforehand. Loading time of
the language model and any other initialization steps
are not included in the measured translation time.
Phrase tables are in the Jane toolkit’s binarized for-
mat. The decoder initializes the prefix tree struc-
ture, required nodes get loaded from secondary stor-
age into main memory on demand, and the loaded
content is being cleared each time a new input sen-

tence is to be parsed. There is nearly no overhead
due to unused data in main memory. We do not
rely on memory mapping. Memory statistics are
with respect to virtual memory. The hardware was
equipped with RAM well beyond the requirements
of the tasks, and sufficient memory has been re-
served for the processes.

5.2 Experimental Results

Figures 2 and 3 depict how the Chinese→English
and Arabic→English setups behave in terms of
translation quality. The k-best generation size in
cube pruning is varied between 10 and 10 000.
The four graphs in each plot illustrate the results
with combinations of deep grammar and recombi-
nation scheme T, deep grammar and recombination
scheme LM, shallow grammar and recombination
scheme T, as well as shallow grammar and recom-
bination scheme LM. Figures 4 and 5 show the cor-
responding translation speed in words per second for
these settings. The maximum memory requirements
in gigabytes are given in Figures 6 and 7. In order
to visualize the trade-offs between translation qual-
ity and resource consumption somewhat better, we
plotted translation quality against time requirements
in Figures 8 and 9 and translation quality against
memory requirements in Figures 10 and 11. Transla-
tion quality and model score (averaged over all sen-
tences; higher is better) are nicely correlated for all
configurations, as can be concluded from Figures 12
through 15.

5.3 Discussion

Chinese→English. For Chinese→English trans-
lation, the system with deep grammar performs gen-
erally a bit better with respect to quality than the
shallow one, which accords with the findings of
other groups (de Gispert et al., 2010; Sankaran et
al., 2012). The LM recombination scheme yields
slightly better quality than the T scheme, and with
the shallow-1 grammar it outperforms the T scheme
at any given fixed amount of time or memory allo-
cation (Figures 8 and 10).

Shallow-1 translation is up to roughly 2.5 times
faster than translation with the deep grammar. How-
ever, the shallow-1 setups are considerably slowed
down at higher k-best sizes as well, while the ef-
fort pays off only very moderately. Overall, the
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Figure 2: Chinese→English translation quality (truecase).
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Figure 3: Arabic→English translation quality (truecase).
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Figure 4: Chinese→English translation speed.
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Figure 5: Arabic→English translation speed.
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Figure 6: Chinese→English memory requirements.
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Figure 7: Arabic→English memory requirements.
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Figure 8: Trade-off between translation quality and speed
for Chinese→English.
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Figure 9: Trade-off between translation quality and speed
for Arabic→English.
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Figure 10: Trade-off between translation quality and mem-
ory requirements for Chinese→English.
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Figure 11: Trade-off between translation quality and mem-
ory requirements for Arabic→English.

shallow-1 grammar at a k-best size between 100 and
1 000 seems to offer a good compromise of quality
and efficiency. Deep translation with k = 2 000 and
the LM recombination scheme promises high qual-
ity translation, but note the rapid memory consump-
tion increase beyond k = 1000 with the deep gram-
mar. At k ≤ 1 000, memory consumption is not an
issue in both deep and shallow systems, but transla-
tion speed starts to drop at k > 100 already.

Arabic→English. Shallow-1 translation produces
competitive quality for Arabic→English translation
(de Gispert et al., 2010; Huck et al., 2011). The
LM recombination scheme boosts the BLEU scores
slightly. The systems with deep grammar are slowed

down strongly with every increase of the k-best size.
Their memory consumption likewise inflates early.
We actually stopped running experiments with deep
grammars for Arabic→English at k = 7 000 for the
T recombination scheme, and at k = 700 for the LM
recombination scheme because 124G of memory did
not suffice any more for higher k-best sizes. The
memory consumption of the shallow systems stays
nearly constant across a large range of the surveyed
k-best sizes, but Figure 11 reveals a plateau where
more resources do not improve translation quality.
Increasing k from 100 to 2 000 in the shallow setup
with LM recombination provides half a BLEU point,
but reduces speed by a factor of more than 10.
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Figure 12: Relation of translation quality and average
model score for Chinese→English (deep grammar).

 42.5

 43

 43.5

 44

 44.5

 45

-6.6 -6.5 -6.4 -6.3 -6.2 -6.1

B
LE

U
 [%

]

average model score

NIST Arabic-to-English (MT08)

deep, recombination T
deep, recombination LM

Figure 13: Relation of translation quality and average
model score for Arabic→English (deep grammar).
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Figure 14: Relation of translation quality and average
model score for Chinese→English (shallow-1 grammar).
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Figure 15: Relation of translation quality and average
model score for Arabic→English (shallow-1 grammar).

Actual amount of derivations. We measured the
amount of hypernodes (Table 2), the amount of actu-
ally generated derivations after recombination, and
the amount of generated candidate derivations in-
cluding recombined ones—or, equivalently, loop it-
erations in the algorithm from Figure 1—for se-
lected limits k (Tables 3 and 4). The ratio of the
average amount of derivations per hypernode after
and before recombination remains consistently at
low values for all recombination T setups. For the
setups with LM recombination scheme, this recom-
bination factor rises with larger k, i.e. the fraction
of recombinable candidates increases. The increase
is remarkably pronounced for Arabic→English with

deep grammar. The steep slope of the recombina-
tion factor may be interpreted as an indicator for un-
desired overgeneration of the deep grammar on the
Arabic→English task.

6 Conclusion

We systematically studied three key aspects of hier-
archical phrase-based translation with cube pruning:
Deep vs. shallow-1 grammars, the k-best generation
size, and the hypothesis recombination scheme. In
a series of empirical experiments, we revealed the
trade-offs between translation quality and resource
requirements to a more fine-grained degree than this
is typically done in the literature.

35



Table 2: Average amount of hypernodes per sentence and average length of the preprocessed input sentences on the
NIST Chinese→English (MT08) and Arabic→English (MT08) tasks.

Chinese→English Arabic→English
deep shallow-1 deep shallow-1

avg. #hypernodes per sentence 480.5 200.7 896.4 308.4
avg. source sentence length 25.4 33.2

Table 3: Detailed statistics about the actual amount of derivations on the NIST Chinese→English task (MT08).

deep
recombination T recombination LM

avg. #derivations avg. #derivations avg. #derivations avg. #derivations
per hypernode per hypernode per hypernode per hypernode

k (after recombination) (incl. recombined) factor (after recombination) (incl. recombined) factor
10 10.0 11.7 1.17 10.0 18.2 1.82

100 99.9 120.1 1.20 99.9 275.8 2.76
1000 950.1 1142.3 1.20 950.1 4246.9 4.47

10000 9429.8 11262.8 1.19 9418.1 72008.4 7.65

shallow-1
recombination T recombination LM

avg. #derivations avg. #derivations avg. #derivations avg. #derivations
per hypernode per hypernode per hypernode per hypernode

k (after recombination) (incl. recombined) factor (after recombination) (incl. recombined) factor
10 9.7 11.3 1.17 9.6 13.6 1.41

100 90.8 105.2 1.16 90.4 168.6 1.86
1000 707.3 811.3 1.15 697.4 2143.4 3.07

10000 6478.1 7170.4 1.11 6202.8 34165.6 5.51

Table 4: Detailed statistics about the actual amount of derivations on the NIST Arabic→English task (MT08).

deep
recombination T recombination LM

avg. #derivations avg. #derivations avg. #derivations avg. #derivations
per hypernode per hypernode per hypernode per hypernode

k (after recombination) (incl. recombined) factor (after recombination) (incl. recombined) factor
10 10.0 18.3 1.83 10.0 71.5 7.15

100 98.0 177.4 1.81 98.0 1726.0 17.62
500 482.1 849.0 1.76 482.1 14622.1 30.33

1000 961.8 1675.0 1.74 – – –

shallow-1
recombination T recombination LM

avg. #derivations avg. #derivations avg. #derivations avg. #derivations
per hypernode per hypernode per hypernode per hypernode

k (after recombination) (incl. recombined) factor (after recombination) (incl. recombined) factor
10 9.6 12.1 1.26 9.6 16.6 1.73

100 80.9 105.2 1.30 80.2 193.8 2.42
1000 690.1 902.1 1.31 672.1 2413.0 3.59

10000 5638.6 7149.5 1.27 5275.1 31283.6 5.93
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