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Abstract

One of the major components of Statisti-
cal Machine Translation (SMT) are gen-
erative translation models. As in other
fields, where the transition from genera-
tive to discriminative training resulted in
higher performance, it seems likely that
translation models should be trained in a
discriminative way. But due to the nature
of SMT with large vocabularies, hidden
alignments, reordering, and large training
corpora, the application of discriminative
methods is only feasible when using effec-
tive speed up techniques. We will show
that translation models trained with Condi-
tional Random Fields (CRFs) using classes
are useful in translation, even in addition
to a strong baseline. Results with an inde-
pendent CRF translation system and n-best
list rescoring will be presented. To design
the tandem of CRF translation model and a
phrase based baseline we will evaluate two
different ways of n-best list integrations.

1 Introduction

Over the last decade a variant of Maximum En-
tropy (ME) models for sequences, Conditional
Random Fields (CRFs) (Lafferty et al., 2001) and
Hidden CRFs (HCRFs) (Quattoni et al., 2007)
have shown high accuracies in various fields in-
cluding part-of-speech tagging (Lafferty et al.,
2001), semantic tagging (Hahn et al., 2010),
chunking (Sha and Pereira, 2003), speech recog-
nition (Zweig and Nguyen, 2009), and language
modeling (Roark et al., 2004). But design-
ing (H)CRFs for Statistical Machine Translation

(SMT) seems to be a serious challenge. In SMT a
sequence xJ1 = x1, . . . , xJ composed of symbols
from a large vocabulary X (of size 10k-100k) is
mapped to a sequence yI1 = y1, . . . , yI composed
of symbols which are from a large vocabulary Y
(10k-100k). The critical points are that the vo-
cabularies are both very large, and an alignment
is seldom provided with the corpora. As CRFs
include a summation over all possible target se-
quences (equation 1), the computational complex-
ity of CRFs can be expressed by a polynomial of
the target vocabulary size |Y| with a degree equal
to the size of the feature describing the largest tuple
in the target sequence (n-gram in language model-
ing (LM)).

Authors have published approaches to move
computation time to the lower degree parts of the
polynomial, e.g. (Lavergne et al., 2010). How-
ever, this only changes constants in the complex-
ity, not the overall complexity. Blunsom and Cohn
(2006) and Niehues and Vogel (2008) avoid this
problem by improving the alignment A used for
the phrase extraction of a phrase based translation
(PBT) system. In this case the source and target
sequences are given, and the effective target vo-
cabulary are either active or non-active alignments
points p(A|yI1 , xJ1 ), which is faster to compute than
a sequence from Y, but reference alignments are
needed, which are usually not provided with a ma-
chine translation corpus. Another approach is to
manually constrain the summation to a reduced set
of target sequences. Blunsom et al. (2008) pro-
pose to extend a hierarchical machine translation
system and constrain the summation to the deriva-
tions given by this system, while (Lavergne et al.,
2011) use a PBT system and use the phrase table to



constrain the summation. Unfortunately, both ap-
proaches could only improve constrained systems.
In (He and Deng, 2012) the authors propose to
constrain the summation to 100-best lists produced
by a generative machine translation system for the
training corpus. Up to our knowledge He and Deng
(2012) reports the first improvements over a strong
baseline with a system similar to CRFs.

Over the last years at the same time a different
approach to speed up ME model estimation be-
came popular for neural network (NN) language
modeling (LM). In (Goodman, 2001) the usage
of an intermediate variable c is proposed, called
classes. They model the translation problem as a
product of first translating the source sequence into
the classes and then the classes into the target se-
quence. This approach was adopted to NN and im-
proved training time significantly (Morin and Ben-
gio, 2005).

The main contribution of this work is to trans-
fer the idea to use intermediate classes (Goodman,
2001) together with n-best rescoring to SMT.

In section 2 CRFs are summarized together with
an extension for hidden variables and a possible
implementation, followed by the concept of inter-
mediate word classes in section 3, while section 4
focuses on the necessary extensions of CRFs to be
used in SMT, we discuss the experimental results
in section 5, and conclude with section 6.

2 Conditional Random Fields (CRF)

Linear Chain Conditional Random Field (LC-
CRF) introduced by (Lafferty et al., 2001) is a
maximum entropy approach modeling the con-
ditional probability of a target sequence yI1
with respect to a source sequence xJ1 using a
cumulative feature function H(yi−1, yi, x

J
1 ) =∑L

l=1 λlhl(yi−1, yi, x
J
1 ):

p(yI1 |xJ1 ) =
e
∑I

i=1H(yi−1,yi,x
J
1 )∑

ỹI1
e
∑I

i=1H(ỹii−1,x
J
1 )

(1)

The feature weights λL1 are estimated by max-
imization of the conditional log-likelihood L,
which is commonly extended by prior distributions
pn(λ

L
1 ) ∝ e−

cn
n
|λL1 |nn , e.g. L1 c1 and L2 c2 regular-

ization:

L =

K∑
k=1

log p({yI1}k|{xJ1 }k)−
2∑

n=1

cn||λL1 ||nn

(2)

with k = 1, . . . ,K summing over the training cor-
pus and {yI1}k the k-th reference translation.

To support a latent variable, e.g. an alignment
A, various authors (Quattoni et al., 2007; Koo and
Collins, 2005; Yu and Lam, 2008) suggested a
summation in the numerator and the denominator
of equation 1:

p(yI1 |xJ1 ) =
∑

A e
∑I

i=1H(A,yi−1,yi,x
J
1 )∑

Ã

∑
ỹI1 ,I(A)

e
∑I

i=1H(Ã,ỹi−1,ỹi,xJ1 )

(3)
Three types of features hl(yi−1, yi, x

J
1 ) were

used to support the conditional probability, first
source-n-gram features depending only on one tar-
get symbol yi and a combination of source sym-
bols x

A(j)+γ2
A(j)+γ1

relative to the currently aligned
source word xA(j) (with γ1 ≤ γ2), with γ1, γ2 =
−5, . . . , 5, γ1 + γ2 +1 ≤ 3, second target-n-gram
features describing the relation of a consecutive set
of target symbols yi, yi−1, and third word stem fea-
tures, including prefixes and suffixes up to length
4 and capitalization.

Lehnen et al. (2012) described the use of be-
gin (b), continue (c), and skip (s) labels (inspired
by (Ramshaw and Marcus, 1995)) for each target
vocabulary word to support monotonous HCRFs
(equation 3). At each source symbol the last target
symbol is continued, a new one begins, or two tar-
get symbols begin. Each target symbol is labeled
to make this mapping bijective. At each source
symbol all aligned target words are known and at
each target symbol all aligned source symbols are
known. Features are applied to all combinations of
source and target symbols. This modeling restricts
the summation over I to I < 2J .

The applied CRF software was realized with
weighted finite state transducers (Mohri, 2009). A
chain represents the source sentence, which is aug-
mented by the target vocabulary, and composed
with a LM like automaton. In augmentation, all
features were applied without a dependency on the
target context (yn, xN1 ), while the LM like automa-
ton was weighted with all features depending only
on the target context (yn−1, yn). From the final



number of average # of ele- average # of ele-
classes ments per class ments per pos.

250 223 162
500 111 66

Table 1: Two sets of unsupervised word classes
estimated by the method described in (Och, 1995).

automaton, the best path can be selected by uti-
lization of a single source shortest distance (SSSD)
operation on a tropical semi-ring, or the posterior
weights in the log-likelihood (equation 2) can be
calculated by a posterior operation with respect to
a log-semi-ring (Lehnen et al., 2011).

3 Word Classes

Maximum Entropy approaches in general and
CRFs in particular have an unfavorable computa-
tional complexity with respect to the size of the
used target vocabulary |Y|. In general, at least a
linear dependency could be expected due to the
sums in the denominator in equation 3. In (Good-
man, 2001) the probability p(yI1 |xJ1 ) was factor-
ized with the help of a clustering function γ : y 7→
c, clustering target words y to classes c:

p(yI1 |xJ1 ) =
∑
cI1

p(yI1 |cI1, xJ1 ) p(cI1|xJ1 ) (4)

≈ max
cI1

{
p(yI1 |cI1, xJ1 ) p(cI1|xJ1 )

}
If γ is a strict partitioning clustering, the

∑
cI1

and respectively maxcI1
can be removed, because

p(yI1 |cI1, xJ1 ) = 0 for all γ(yi) 6= ci. This con-
cept greatly reduces the computational complex-
ity as the effective target vocabulary in p(cI1|xJ1 )
is the class vocabulary |C| � |Y| and the com-
putation in p(yI1 |cI1, xJ1 ) can be restricted to only
those words e which are part of the already se-
lected class |γ−1(c)| � |Y|. In this publica-
tion we used the unsupervised maximum entropy
word class estimation described in (Och, 1995) and
(Kneser and Ney, 1993) already used in the prepa-
ration of Giza++ estimations, resulting in two sets
of word classes in table 1.

4 CRF models for SMT

Training the CRFs introduced in section 2 directly
for p(yI1 |xJ1 ) with a full translation vocabulary

with a size of 55k was infeasible. Thus we ap-
plied word classes (section 3) and split the transla-
tion process into three steps. The first step models
p(cI1|xJ1 ) with a HCRF (equation 3). This trained
model is used to maximize the alignment A with
respect to the reference source xJ1 and target se-
quences yI1 , and finally a model p(yI1 |cI1, A, xJ1 )
with a LCCRF (equation 1) using the given align-
ment A is estimated (see figure 1). Alignments
A in the context of HCRF (dashed lines in fig-
ure 1) are only needed to define the position A(j)
of source-to-target features xA(j)+γ2A(j)+γ1

. Features are
not restricted to the aligned words and may include
surrounding words.

As described in section 2 search can be real-
ized by utilization of a Single Source Shortest Dis-
tance (SSSD) operation on the final automaton.
With the decomposition into two steps p(cI1|xJ1 )
and p(yI1 |cI1, A, xJ1 ) the search is realized by con-
secutive application of SSSD in both automata. We
added a LM score and a word penalty by composi-
tion to the final automaton

−cLM · log(pLM ) + cWP ,

to compensate that the CRF models have only been
trained on the bilingual part of the corpus, and
some of the CRF models lack target-n-gram fea-
tures (yn−1, yn). Prior to composition with the
LM the word labels begin (b), continue (c), and
skip (s) where replaced with the pure word in case
of begin (B) and skip (s) and by an ε-label in case
of continue (c). Composing the LM automaton
with the full search space of the (H)CRF automata
is computationally infeasible, raising the need of
posterior pruning before LM composition with a
beam pruning threshold of 5. Contrary to phrase
based systems, the resulting models are able to
estimate a score

∑I
i=1H(A, yi−1, yi, x

J
1 ) for any

sequence of words, including Out of Vocabulary
words (OOVs). In the case of an OOV, the features
of the CRF with respect to the current word are
not activated, but the features from the surround-
ing region are still activated. However, in SMT it
is often desirable to leave OOVs, which are often
named entities, untranslated. So the used software
detects OOVs and translates them with an OOV-
label. There is no further processing of the OOV,
all OOVs are translated to the same OOV label.

N-best list rescoring is realized by adding
scores in addition to the model scores provided



Figure 1: Example of decomposition p(yI1 |cI1, xJ1 ) / p(cI1|xJ1 ). First the English source sentence is trans-
lated to a class sequence by a HCRF and finally to the French target sequence by a LCCRF. The dashed
lines mark the alignment with the maximum score of the HCRF, while the LCCRF has to use exactly
one alignment marked with solid lines. Features are not restricted to the aligned source words and are
permitted to use surrounding words as well.

Figure 2: Example of the reordering strategy. A phrase is marked with round boxes. The phrase align-
ment is used to reorder the English source sequence, afterwards the same approach as in figure 1 is
applied. In parameter estimation and n-best rescoring the number of target words in a target phrase is
restricted to the number of target words in the target phrase as expected by the phrase alignment.

by the translation system. An (H)CRF score
H(aI1, c

I
1, x

J
1 ) =

∑I
i=1H(ai, c

i
i−1, x

J
1 ) can be

added in multiple ways. As fully normalized log-
probability

− log(p(cI1|xJ1 )) =

− log

∑
aI1

eH(aI1,c
I
1,x

J
1 )


+ log

∑
ãI1

∑
c̃I1

eH(aI1,c
I
1,x

J
1 )

 ,

only the numerator of the probability

Nsum = − log

∑
aI1

eH(aI1,c
I
1,x

J
1 )

 , (5)

or the maximum of the numerator

Nmax = − log

(
max
aI1

eH(aI1,c
I
1,x

J
1 )

)
= −max

aI1

H(aI1, c
I
1, x

J
1 ), (6)

which equates to the maximum approximation in
the alignment. In early experiments it turned out
that the full normalization did not improve the
translation quality, and as the calculation of the
full normalization is much more computational de-
manding, we did not use it.

(H)CRFs we used do not support reordering di-
rectly, only the features support crossing features
(e.g. (xi−1, yi) and (xi, yi−1) could be used at the
same time). To support reordering in parameter es-
timation we apply Forced Alignments (FA) (Wue-



training dev test
Ted part 2010 2010
En Fr En Fr En Fr

sent. 107k 934 1.664
words 2M 2M 21k 20k 32k 34k
voc. 44k 56k 3.3k 3.8k 3.8k 4.7k
OOVs - - 316 392 322 401

Table 2: IWSLT 2011 evaluation data en→fr

bker et al., 2010) to generate a reference phrase
alignment between source and target in the training
data (see figure 2). Afterwards the source sequence
was reordered with respect to this phrase align-
ment (between line one and two in figure 2). Addi-
tionally, the phrase alignment fixed the number of
slots to be filled by the CRF model, i.e. in a phrase
with M source and N target words, the CRF model
was forced to produce exactly N target words. Dur-
ing search similarly an unconstrained PBT system
was used to generate a phrase sequence. In n-best
rescoring the source was reordered as in training
with this phrase sequence, applying the same slot
constrain. Where in SSSD search only the source
was reordered and no restriction on the slots was
applied. We have to note that with considering the
reordering, some information from a PBT system
is passed to the SSSD search.

Even though the intermediate classes speed up
the training, and we also implemented the concept
of (Lavergne et al., 2010), a full training of CRFs
using target bigram features is not possible. To per-
mit the training of CRFs with bigram features we
included a posterior pruning step in training before
applying the bigram features and after the source-
n-gram features have been applied. The posterior
pruning restricts the number of possible transla-
tions in

∑
ỹI1 ,I(A)

of equation 3 to a reduced num-
ber of summands. As only paths with low scores
where removed, most of the probability mass is
preserved.

5 Experimental Results

The experiments were conducted on training and
test sets extracted from the English to French data
of the International Workshop on Spoken Lan-
guage Translation (IWSLT) 2011. The (H)CRF
models were trained on the TED part of the train-
ing data, and the IWSLT 2011 development and
test sets were applied in optimization and eval-

word re- dev 2010 test 2010
class. ord. Bleu Ter Bleu Ter

1 PBT 1 (all data) 28.3 55.9 31.8 50.2
2 PBT 2 (TED) 25.8 58.3 29.4 52.3

unigram, with LM
3 250 no 22.7 60.8 25.7 55.1
4 500 no 22.9 60.7 25.7 55.2
5 250 yes 22.8 60.9 26.6 54.1
6 500 yes 22.8 60.5 26.6 54.1

bigram, without LM
7 250 no 21.6 60.5 24.6 55.1
8 250 yes 21.5 62.3 25.4 55.4

bigram, with LM
9 250 no 21.8 61.3 25.2 55.6

10 250 yes 21.7 61.5 25.1 55.3

Table 3: Results with SSSD search within the CRF
framework, and without using a PBT system. Lan-
guage model scales and word penalty were se-
lected to optimize BLEU on the dev set.

uation. As baseline system we were provided
with the best single PBT system from (Peitz et
al., 2012) for English to French and a PBT sys-
tem with forced alignments only trained on the
TED training data. The first phrase-based system
used the SCSS software variant of the Jane soft-
ware package (Wuebker et al., 2012) and made use
of all available in-domain and out-domain data,
part-of-speech-based adjective reordering as pre-
processing step, a LM with all available mono-
lingual training data, and a 7-gram word class
language model. The second system also uses
the SCSS software variant of the Jane software
package. However, it was trained solely on the
TED portion of the training data with the gener-
ative training scheme presented in (Wuebker et al.,
2010) applying forced alignment. Models include
translation probabilities and lexical smoothing in
both directions, word and phrase penalty, distance-
based reordering model, an n-gram target language
model and three binary count features, and a 4-
gram language model trained on the TED, Eu-
roparl, News-Commentary and Shuffled News cor-
pora from the workshop. From the Shuffled News
data 1/8 of the sentences were selected with the
technique presented in (Moore and Lewis, 2010).



5.1 SSSD search within CRF framework

Table 3 contrasts the results of the two PBT sys-
tems (line 1 and line 2) with an independent
CRF translation tandem p(cI1|xJ1 ) / p(yI1 |cI1, xJ1 ).
Line 3 to 6 replaced the bigram features in model
p(cI1|xJ1 ) with a LM estimated on all available
monolingual training data in IWSLT projected to
classes, while line 7 and line 8 used bigram fea-
tures instead of a LM, and line 9 and line 10 used
both. Results were very less affected by the choice
of features in p(yI1 |cI1, xJ1 ). A LM or bigram fea-
tures in p(yI1 |cI1, xJ1 ) did not result in a change
in translation performance. Using reordering im-
proves the generalization of the systems testified
by approximately 1 bleu improvement on test ex-
cept in the case of line 10. With p(cI1|xJ1 ) there
seems to be a unfavorable interaction between the
bigram feature and the LM avoiding an addition
of the modeling power of both. The translation
performance was not competitive to the PBT sys-
tems even when the PBT was restricted to the same
training data (line 2). PBT systems are well de-
signed systems with a decade of detailed develop-
ment, and it could be expected that some aspects
of a translation are captured in a PBT but not in
this CRF system, e.g. reordering, why we decided
to design an combination of both via n-best rescor-
ing.

5.2 N-best rescoring

Both PBT systems were used to create 1000-best
lists. Of all hypotheses with the same resulting
word sequence but different phrase segmentation
only the one with the best score was added to
the n-best list, resulting to a search space with
an average of 475 n-best hypotheses per sentence
for the development set and 505 n-best hypothe-
ses per sentence for the test set were created with
the first PBT system and 312 n-best hypotheses
per sentence for the development set and 329 n-
best hypotheses per sentence for the test set with
the second PBT system. To augment these lists
CRF-models modeling p(cI1|xJ1 ) and p(yI1 |cI1, xJ1 )
for 250 and 500 classes with and without reorder-
ing were trained without bigram features. Ad-
ditionally, two CRF-models were trained to cap-
ture p(cI1|xJ1 ) for 250 classes with bigram features.
Training CRF-models with bigrams on 500 classes
was still to computational demanding. These mod-
els were used to augment the n-best lists with the

word re- dev 2010 test 2010
class. ord. Bleu Ter Bleu Ter

1 PBT 2 (TED) 25.8 58.3 29.4 52.3
(oracle best) 37.3 47.6 43.7 39.7
(oracle worst) 14.3 75.2 16.3 70.2

PBT 2 + Nsum

2 250 no 25.8 58.3 29.4 52.3
3 500 no 26.6 57.5 30.2 51.5
4 250 yes 26.7 57.6 29.7 51.9
5 500 yes 25.8 58.3 29.4 52.3

PBT 2 + Nmax

6 250 no 25.8 58.3 29.4 52.3
7 500 no 26.5 57.6 30.0 51.4
8 250 yes 26.5 57.7 29.9 51.6
9 500 yes 25.8 58.3 29.4 52.3

PBT 2 + Nsum (including target bigram)
10 250 no 26.4 57.7 29.4 51.9
11 250 yes 27.1 56.9 30.1 51.2

Table 4: Results of N-best rescoring adding the
(H)CRF scores on top of the scores in the n-best
lists of the second PBT system trained on TED
data. Line 1 indicates the result of the baseline sys-
tem. Bold face numbers mark the best result with
respect to the dev set.

scores Nsum, and Nmax. Using fully normalized
probabilities did not change the translation quality.
On the final augmented n-best lists the weights for
n-best list scores were retrained via Minimum Er-
ror Rate Training (MERT) (Och and Ney, 2004),
initialized with the best weights of the n-best list
generating SCSS system.

Experiments have shown that the second model
p(yI1 |cI1, xJ1 ) did not change the translation qual-
ity, and got a zero weight by the MERT train-
ing. The results with only the first model p(cI1|xJ1 )
are shown in table 4 and table 5. To have a fair
comparison the parameters of the baseline system
(line 1) were reoptimized, too. We have marked
the systems giving the best results with respect to
the development set. The best systems on the de-
velopment set produce the best results on the test
set, but in some cases the MERT optimization was
not able to include the CRF score in a useful way
and do not gain an improvement in performance.
Best improvements in table 4 were +0.3, +0.6, +0.7
in bleu and -0.4, -0.9, -1.1 in ter, and +0.4, +0.3,



word re- dev 2010 test 2010
class. ord. Bleu Ter Bleu Ter

1 PBT 1 28.3 55.9 31.8 50.2
(oracle best) 40.8 43.9 46.8 36.7
(oracle worst) 16.4 72.8 18.4 68.6

PBT 1 + Nsum

2 250 yes 28.3 55.9 31.8 50.2
3 500 no 28.7 55.6 32.2 49.5
4 250 yes 28.4 55.6 32.0 49.7
5 500 yes 28.5 55.6 32.2 49.5

PBT 1 + Nmax

6 250 no 28.3 55.9 31.8 50.2
7 500 no 28.6 55.8 32.1 50.0
8 250 yes 28.3 55.9 31.8 50.2
9 500 yes 28.3 55.8 31.8 50.2

PBT 1 + Nsum (including target bigram)
10 250 no 28.8 55.3 32.2 49.5
11 250 yes 28.3 55.9 31.8 50.2

Table 5: Results of N-best rescoring adding the
(H)CRF scores on top of the scores in the n-best
lists of the first and stronger PBT system. Line 1
indicates the result of the baseline system. Bold
face numbers mark the best result with respect to
the dev set.

+0.4 in bleu and -0.7, -0.2, -0.7 in ter in table 5.
The size of improvements were not influenced by
the used n-best lists, thus the improvement is not
due to adaptation effects. The results with Nsum

seem to be a bit more stable than the results with
Nmax, which can be explained by a reduced sensi-
tivity to single bad alignments between the source
and target sequence. A gain in using the reordering
could not been verified in the n-best experiments.

6 Conclusion

In this paper, we have presented the combina-
tion of intermediate classes, which became pop-
ular over the last years in the context of neural
network language models, and conditional random
fields (CRFs) for statistical machine translation.
We have shown that intermediate classes give a
useful alternative to other speed up techniques al-
ready tested by different authors. The technique
could e.g. be further extended by a better class se-
lection, and an integrated training of the models
p(yI1 |cI1, xJ1 ) and p(cI1|xJ1 ). Additionally we have

provided a strategy to include CRF scores with
PBT systems via n-best rescoring.
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