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Abstract
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1 Introduction

Image retrieval and automatic classification or annotation of images are highly related research
fields. Obviously, image retrieval can be “solved” by image annotation straightforwardly: given a
database of images, annotate all of them and use textual information retrieval techniques. Multi
modal information retrieval, another highly related field allows to use e.g. visual and textual
information to retrieve relevant documents. All these tasks have in common that the somehow
the semantic gap has to be bridged and that therefore large amounts of data have to be processed,
features and descriptors are extracted from the data and these have to be combined to obtain a
satisfying solution.

In the domain of feature combination, machine learning algorithms are used quite commonly,
among them log-linear models that are discriminatively trained under the maximum entropy cri-
terion are very successful [2]. Maximum entropy, or logistic, models are commonly used in natural
language processing [1, 2], data mining [26], and image processing [18, 20, 24].

In this work, we present how the maximum entropy approach can on the hand be used for object
recognition and classification in images and on the other hand it can be used for discriminative
training of feature weights in an image retrieval system and thus learning to combine textual
information sources with visual information sources in a unified framework. In particular, we
describe how we used maximum entropy training for our submissions to the 2006 ImageCLEF
image retrieval and classification/annotation evaluation. The main contribution of this paper is
a method how feature weights for image retrieval can be trained given some queries and relevant
documents from the database that is going to be searched or a similar dataset.

The remainder of this paper is structured as follows: Section 2 described the retrieval frame-
work, the application of the maximum entropy approach to feature weight training and the exper-
iments we performed for the two image retrieval tasks in ImageCLEF 2006: medical retrieval and
photo/ad-hoc retrieval. Section 3 describes the experiments that were performed



2 Retrieval Tasks

ImageCLEF 2006 hosted two independent retrieval tasks: The medical retrieval task and the photo
retrieval task [9].

2.1 FIRE – The Flexible Image Retrieval System

For the retrieval tasks the Flexible Image Retrieval System (FIRE) development in our group was
used. FIRE is a research image retrieval system that was designed with extensibility in mind and
allows to combine various image descriptors and comparison measures easily.

Given a set of positive example images Q+ and a (possibly empty) set of negative example
images Q− a score S(Q+, Q−, X) is calculated for each image X from the database:

S(Q+, Q−, X) =
∑

q∈Q+

S(q, X) +
∑

q∈Q−

(1− S(q, X)). (1)

where S(q, X) is the score of database image X with respect to query q and is calculated as
S(q, X) = e−γD(q,X) with γ = 1.0. D(q, X) is a weighted sum of distances calculated as

D(q, X) :=
M∑

m=1

wm · dm(qm, Xm). (2)

Here, qm and Xm are the mth feature of the query image q and the database image X, respec-
tively. dm is the corresponding distance measure and wm is a weighting coefficient. For each dm,∑

X∈B dm(Qm, Xm) = 1 is enforced by re-normalization.
Given a query (Q+, Q−), the images are ranked according to descending score and the K

images X with highest scores S(Q+, Q−, X) are returned by the retriever.
Weights were chosen heuristically based on experiences from earlier experiments; furthermore

we used the weights of our run that performed best in the 2005 ImageCLEF medical retrieval
evaluation.

Another way to obtain suitable weights is described in the following section which requires
slight modifications of the decision rule.

2.2 Features

In the following we describe the image features we used in the evaluation, these features are
extracted offline from all database images.

Appearance-based Image Features. The most straight-forward approach is to directly use
the pixel values of the images as features. For example, the images might be scaled to a common
size and compared using the Euclidean distance. In optical character recognition and for medical
data improved methods based on image features usually obtain excellent results [19, 22, 23].

In this work, we used 32 × 32 versions of the images, these were compared using Euclidean
distance. It has been observed, that for classification and retrieval of medical radiographs, this
method saves as a not-top-bad baseline.

Color Histograms. Color histograms are widely used in image retrieval [4, 13, 27, 29]. Color
histograms are one of the most basic approaches and to show performance improvements, image
retrieval systems often are compared to a system using only color histograms. The color space is
partitioned and for each partition the pixels with a color within its range are counted, resulting
in a representation of the relative frequencies of the occurring colors. In accordance with [27], we
use the Jeffrey divergence to compare histograms.



Tamura Features. In [30] the authors propose six texture features corresponding to human vi-
sual perception: coarseness, contrast, directionality, line-likeness, regularity, and roughness. From
experiments testing the significance of these features with respect to human perception, it was
concluded that the first three features are very important. Thus in our experiments we use coarse-
ness, contrast, and directionality to create a histogram describing the texture [4] and compare
these histograms using the Jeffrey divergence [27]. In the QBIC system [13] histograms of these
features are used as well.

Global Texture Descriptor. In [4] a texture feature consisting of several parts is described:
Fractal dimension measures the roughness or the crinkliness of a surface. In this work the fractal
dimension is calculated using the reticular cell counting method [15]. Coarseness characterizes
the grain size of an image. Here it is calculated depending on the variance of the image. Entropy
is used as a measure of disorderedness or information content in an image. The Spatial gray-level
difference statistics (SGLD) describes the brightness relationship of pixels within neighborhoods.
It is also known as co-occurrence matrix analysis [16]. . The Circular Moran autocorrelation
function measures the roughness of the texture. For the calculation a set of autocorrelation
functions is used [14].

Invariant Feature Histograms. A feature is called invariant with respect to certain trans-
formations if it does not change when these transformations are applied to the image. The trans-
formations considered here are translation, rotation, and scaling. In this work, invariant feature
histograms as presented in [28] are used. These features are based on the idea of constructing
features invariant with respect to certain transformations by integration over all considered trans-
formations. The resulting histograms are compared using the Jeffrey divergence [27]. Previous ex-
periments have shown that the characteristics of invariant feature histograms and color histograms
are very similar and that invariant feature histograms often outperform color histograms [6]. Thus,
in this work color histograms are not used.

Patch Histograms. In object recognition and detection currently the assumption that objects
consist of parts that can be modelled independently is very common, which led to a wide variety
of bag-of-features approaches [11, 7, 25].

Here we follow this approach to generate histograms of image patches for image retrieval. The
creation is a 3-step procedure:

1. in the first phase, sub-images are extracted from all training images and the dimensionality
is reduced to 40 dimensions using PCA transformation.

2. in the second phase, the sub-images of all training images are jointly clustered using the EM
algorithm for Gaussian mixtures to form 2000-8000 clusters.

3. in the third phase, all information about each sub-image is discarded except its closest
cluster center. Then, for each image a histogram over the cluster identifiers of the respective
patches is created, thus effectively coding which “visual words” from the code-book occur in
the image.

2.3 Maximum Entropy Training for Image Retrieval

We propose a novel method based on maximum entropy training using the generalized iterative
scaling algorithm (GIS) to obtain feature weightings tuned toward a specific task. The maximum
entropy approach is promising here, because it is ideally suited to combine features of different
types and it yields good results in other areas like natural language processing [2] and image
recognition [20, 18]. In [18], the maximum entropy approach is used for automatic image annota-
tion. The authors partition the image into rectangular parts and consider these patches as “image
terms” similar to the usage of words in [2].



We consider the problem of image retrieval to be a classification problem. Given the query
image, the images from the database have to be classified to be either relevant (denoted by ⊕) or
irrelevant (denoted by 	). As classification method we choose log-linear models that are trained
using the maximum entropy criterion and the GIS algorithm.

As features fi for the log-linear models we choose the distances between the m-th feature of
the query image Q and the database image X:

f0(Q,X) := 1
fi(Q,X) := di(Qi, Xi).

Then, the score is replaced by the a-posteriori probability for class ⊕:

S(Q,X) := p(⊕|Q,X) (3)

=
exp [

∑
i λ⊕ifi(Q,X)]∑

k∈{⊕,	}
exp [

∑
i λkifi(Q,X)]

Given these scores, we return the K images from the database that have the highest score
S(Q,X), that is, the K images that are most likely to be relevant according to the classifier. Note
that here in comparison to the score calculation from Equation (1), the wi are replaced by the λ⊕i

and the λ	i and an additional renormalization factor is introduced to assure that the probabilities
sum up to one. Alternatively, Eq. 3 can easily be transformed to be of the form of Eq. 1 and
the wi can be expressed as a function of λ⊕i and λ	i. In addition to considering the first order
features alone as they are described above, we propose to use supplementary second order features
(i.e. products of distances) as this usually yields superior performance on other tasks. That is,
given a query image Q and a database image X we use the following set of features:

f0(Q,X) := 1
fi(Q,X) := di(Qi, Xi)

fi,j(Q,X) := di(Qi, Xi) · dj(Qj , Xj), i ≥ j

The increased number of features results in more parameters that are to be trained. This can be
compared to the transition from a linear support vector machine to a polynomial support vector
machine of degree two. In earlier experiments, features of higher degree have been tested and not
found to improve the results.

In the training process, the values of the λki are optimized. A sufficiently large amount of
training data is necessary to do so. We are given the database T = {X1, . . . , XN} of training
images with known relevances. That is, for each image Xn we are given a set Rn = {Y | Y ∈
T is relevant, if Xn is the query.}.

Because we want to classify the relation between images into the two categories “relevant”
or “irrelevant” on the basis of the distances between their features, we choose the following
way to derive the training data for the GIS algorithm: The distance vectors D(Xn, Xm) =
(d1(Xn1, Xm1), . . . , dI(XnI , XmI)) are calculated for each pair of images (Xn, Xm) ∈ T × T .
That is, we obtain N distance vectors for each of the images Xn. These distance vectors are then
labeled according to the relevances: Those D(Xn, Xm) where Xm is relevant with respect to Xn,
i.e. Xm ∈ Rn, are labeled ⊕ (relevant) and the remaining ones are labeled with the class label 	
(irrelevant).

Given these N2 distance vectors and their classification into “relevant” and “irrelevant” we
train the λki of the log-linear model from Eq. (3) using the GIS algorithm.

The GIS algorithm proceeds as follows to determine the free parameters of the model (3).
First an initial parameter set Λ(0) = {λ(0)

ki } is chosen, and then for each iteration t = 1, . . . , T the
parameters are updated according to

λ
(t)
ki = λ

(t−1)
ki + ∆λ

(t)
ki



Table 1: Summary of our runs submitted to the medical retrieval task. The numbers give the
weights (empty means 0) of the features in the experiments and the columns denote: En: English
text, Fr : french text, Ge: German text, CH : color histogram, GH : gray histogram, GTF : global
texture feature, IH : invariant feature histogram, TH : Tamura Texture Feature histogram, TN :
32x32 thumbnail, PH : patch histogram. The first group of experiments uses only textual infor-
mation, the second group uses only visual information, the third group uses textual and visual
information, and the last group both types of information and the weights are trained using the
maximum entropy approach. The last column gives the results of the evaluation.

run-tag En Fr Ge CH GH GTF IFH TH TN PH MAP
En 1 XXX

SimpleUni 1 1 1 1 1 1 XXX
Patch 1 XXX
IfhTamThu 2 2 1 XXX

EnIfhTamThu 1 2 2 1 XXX
EnFrGeIfhTamThu 2 1 1 2 2 1 XXX
EnFrGePatches2 2 1 1 1 XXX
EnFrGePatches2 2 1 1 2 XXX

ME * * * * * * * * * 0 XXX

= λ
(t−1)
ki +

1
F

log
Nki

Q
(t)
ki

,

Q
(t)
ki :=

∑
Xn,Xm

pΛ(t)(k|Xn, Xm)fi(Xn, Xm),

N⊕i :=
∑

Xn,Xm∈Rn

fi(Xn, Xm)

N	i :=
∑

Xn,Xm 6∈Rn

fi(Xn, Xm)

Here, F is a constant that depends on the training data. In some problems, this method is
problematic due to the high computational demands. Here, the number of parameters to be
estimated is small, i.e. 2I + 1, thus performance is not a problem. Due to the low computational
demands, this method can also be used to incorporate relevance estimates gathered from user
interaction. To do so, the current state of the classifier can be used as a starting point for further
training iterations with the training set enlarged by the newly gathered data. This process can
e.g. be performed once a day. As the training is performed in an offline manner, the speed of the
image retrieval engine is hardly decreased because the calculation of Equation (3) takes barely
longer than the calculation of Equation (1).

2.4 Medical Retrieval Task

We submitted 9 runs to the medical retrieval task, one of these using only text, three using only
visual information, and five using visual and textual information. For one of the combined runs
we used the above-described maximum entropy training method for the weights were we used the
queries and their qrels from last years medical retrieval task as training data. Table 1 gives an
overview about the runs we submitted to the medical retrieval task and the results obtained. The
run is performed with identical settings as our best run of last years evaluation.

2.5 Photo/Ad-Hoc Retrieval Task

For the Photo- and the ad-hoc retrieval task the newly created IAPR TC-12 database was used
which currently consists of 20,000 general photographs mainly from a vacation domain. For each



of the images a German and an English description exists.
Two tasks were defined on this dataset, an ad-hoc task of 60 queries of different semantic and

syntactic difficulty. The photo task of 30 queries was based on a subset aiming to investigate the
possibilities of purely visual retrieval, therefore some semantic constraints were removed from the
queries. All queries were formulated by a short textual description and 3 positive example images.

Due to short time, we were unable to tune any parameters and just chose to submit two purely
visual, full-automatic runs to both of these tasks.

For the runs entitled IFHTAM, we used a combination of invariant feature histograms and
Tamura texture histograms. Both histograms are combined by Jeffrey divergence and the invariant
feature histograms are weighted by a factor of 2. This combination has been seen to be a very
effective combination of features for databases of general photographs like for example the Corel
database.

For the runs entitled PatchHisto we used histograms of vector-quantized image patches with
2048 bins.

3 Automatic Annotation Tasks

In ImageCLEF 2006, two automatic annotation tasks were arranged. One concerned about the
automatic classification of medical radiographs and one concerned with the automatic classification
of everyday objects like backpacks, clocks, and plates. The medical annotation task was very
similar to last year’s task, but the number of images was slightly raised and the number of classes
was raised from 57 to 116. The automatic annotation task was somehow similar to the PASCAL
visual object classes challenge[12], here 20 classes had to be discriminated at once. The following
sections describe the methods we applied to these classification tasks and the experiments we
performed.

The task of the medical automatic annotation task and the non-medical automatic annotation
tasks are very similar, but differ in some critical aspects:

• Both tasks provide a relatively large training set and a disjunct test set. Thus, in both
cases it is possible to learn a relatively reliable model for the training data (this is somewhat
proven for the medical annotation task, and below we also show this for the non-medical
task.

• Both tasks are multi-class/one object per image classification tasks. Here they differ from
the PASCAL visual classes challenge which addresses a set of object vs. non object tasks
where several objects (of equal or unequal type) may be contained in an image.

• The medical annotation task has only gray scale images, whereas the non-medical tasks has
mainly color images. This is probably most relevant for the selection of descriptors.

• The images from the test and the training set are from the same distribution for the medical
task, whereas for the non-medical task, the training images are rather clutter-free and the
test images contain a significant amount of clutter. This is probably relevant and should be
addressed when developing methods for the non-medical task. Unfortunately, our models
currently do not address this issue which probably has a significant impact on the results.

3.1 Image Distortion Model

The image distortion model [22, 19] is a zeroth-order image deformation model to compare images
pixel-wise. Here, classification is done using the nearest neighbor decision rule: to classify an
image it is compared to all training images in the database and the class of the most similar
image is chosen. To compare images, the Euclidean distance can be seen as a very basic baseline,
and in earlier works it was shown that image deformation models are a suitable way to improve
classification performance significantly e.g. for medical radiographs and for optical character
recognition [21, 22]. Here we allow each pixel of the database images to be aligned to the pixels



from a 5×5 neighborhood from the image to be classified taking into account the local context
from a 3×3 Sobel neighborhood.

This method is of particular interest as it outperformed all other methods in automatic anno-
tation task of ImageCLEF 2005 [3].

3.2 Sparse Patch Histograms & Discriminative Classification

This approach is based on the widely adopted assumption that objects in images can be represented
as a set of loosely coupled parts. In contrast to former models[7, 8], this method can cope with
an arbitrary number of object parts. Here, the object parts are modelled by image patches that
are extracted at each position and then efficiently stored in a histogram. In addition to the patch
appearance, the positions of the extracted patches are considered and provide a significant increase
in the recognition performance.

Using this method, we create sparse histograms of 65536 (216 = 84) bins, which can either
be classified using the nearest neighbor rule and a suitable histogram comparison measure or a
discriminative model can be trained for classification. Here, we used a support vector machine
with a histogram intersection kernel and a discriminatively trained log-linear maximum entropy
model.

A detailed description of the method is given in [5].

3.3 Patch Histograms & Maximum Entropy Classification

In this approach, we use the histograms of image patches as described in Section 2.2 and maximum
entropy training [7, 8].

This method has performed very well in the 2005 annotation task of ImageCLEF [3] and in
the 2005 and 2006 visual object classes challenges of PASCAL [12].

3.4 Medical Automatic Annotation Task

We submitted three runs to the medical automatic annotation task: one run using the image distor-
tion model RWTHi6-IDM, with exactly the same settings as the according run from last year, which
clearly outperformed all competing methods [10] and two other runs based on sparse histograms
of image patches [5], where we used a discriminatively trained log-linear maximum entropy model
(RWTHi6-SHME) and support vector machines with a histogram intersection kernel (RWTHi6-SHSVM)
respectively. Due to time constraints we were unable to submit the method described in Section 3.3,
but we give comparison results here.

Results. The results of the evaluation are given in detail in the overview paper. Table 2 gives
an overview on the results and it can be seen that the runs using the discriminative classifier for
the histograms clearly outperform the image distortion model and that in summary our method
performed very good on the task.

The table also gives the result for the method presented in [7, 8], which we were unable to
submit in time. Interestingly, the results of this method are not very good although it is strongly
related to the sparse histogram method.

Interesting conclusions can be drawn when comparing our results to the results of other groups:
the medical informatics division of the RWTH Aachen University (RWTHmi) method uses the image
distortion model as a significant part of their method and combines it with various other global
image descriptors, which seem not to help the classification. The ULG run is interesting, as it was
one of the best performing methods from last year and is also closely related to our unsubmitted
run: it uses sparsely extracted sub-images and a discriminative classification framework. The runs
of University Freiburg (UFR) and INSA Rouen (MedIC) are included for comparison with the
best results from other groups. A more detailed overview about the results can be found in the
track overview paper [9].



rank run-tag error rate[%]
1 RWTHi6 SHME 16.2
2 RWTHi6 SHSVM 16.7

11 RWTHi6 IDM 20.5
- RWTHi6 - [7] 22.4XXX
2 UFR ns1000-20x20x10 16.7
4 MedIC-CISMef local+global-PCA335 17.2

12 RWTHmi rwthmi 21.5
23 ULG sysmod-random-subwindows-ex 29.0

Table 2: An overview over the results of the medical automatic annotation task. The first part
gives our results (including the error rate of an unsubmitted method for comparison to the results
of last year); the second part gives results from other groups that are interesting for comparison

Table 3: Results from the non-medical automatic annotation task.
rank Group ID run-tag Error rate

1 RWTHi6 SHME 77.3
2 RWTHi6 PatchHisto 80.2
3 cindi Cindi-SVM-Product 83.2
4 cindi Cindi-SVM-EHD 85.0
5 cindi Cindi-SVM-SUM 85.2
6 cindi Cindi-Fusion-knn 87.1
7 DEU-CS edgehistogr-centroid 88.2
8 DEU-CS colorlayout-centroid 93.2

Concluding it can be seen that the approach where local image descriptors were extracted at
every position in the image outperformed our other approaches and that probably the modelling
of absolute positions is suitable for radiograph recognition as it seems to be a suitable assumption
that radiographs are taken under controlled conditions and thus that the geometric layout of
images showing the same body region can be assumed to be very similar.

3.5 Non-medical Automatic Annotation Task

We submitted two runs to this task, one using the method with vector quantized histograms de-
scribed in Section 3.3 (run-tag PatchHisto) and the other using the method with sparse histograms
as described in Section 3.2 (run-tag SHME). These two methods were also used in the PASCAL vi-
sual object classes challenge 2006. The third method [17] we submitted to the PASCAL challenge
could not be applied to this task due to time and memory constraints.

Results. Table 3 gives the results of the non-medical automatic annotation task. On the
average, the error rates are very high. The best two results of 77.3% and 80.2% were achieved
with our discriminative classification method. For the submissions of the CINDI group, support
vector machines were used and the DEU-CS group used a nearest neighbor classification.

Obviously, the results are not satisfactory and large improvements should be possible.

4 Conclusion and Outlook

Acknowledgement

This work was partially funded by the DFG (Deutsche Forschungsgemeinschaft) under contract
NE-572/6.



References

[1] O. Bender, F. Och, and H. Ney. Maximum Entropy Models for Named Entity Recognition.
In 7th Conference on Computational Natural Language Learning, Edmonton, Canada, pages
148–152, May 2003.

[2] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A Maximum Entropy Approach to
Natural Language Processing. Computational Linguistics, 22(1):39–72, March 1996.

[3] P. Clough, H. Mueller, T. Deselaers, M. Grubinger, T. Lehmann, J. Jensen, and W. Hersh.
The CLEF 2005 Cross-Language Image Retrieval Track. In Workshop of the Cross–Language
Evaluation Forum (CLEF 2005), Lecture Notes in Computer Science, Vienna, Austria, page
in press, September 2005.

[4] T. Deselaers. Features for Image Retrieval. Diploma thesis, Human Language Technology and
Pattern Recognition Group, RWTH Aachen University, Aachen, Germany, December 2003.

[5] T. Deselaers, A. Hegerath, D. Keysers, and H. Ney. Sparse Patch-Histograms for Object
Classification in Cluttered Images. In DAGM 2006, Pattern Recognition, 26th DAGM Sym-
posium, volume nya of Lecture Notes in Computer Science, Berlin, Germany, page accepted
for publication, September 2006.

[6] T. Deselaers, D. Keysers, and H. Ney. Features for Image Retrieval – A Quantitative Compar-
ison. In DAGM 2004, Pattern Recognition, 26th DAGM Symposium, number 3175 in Lecture
Notes in Computer Science, Tbingen, Germany, pages 228–236, September 2004.

[7] T. Deselaers, D. Keysers, and H. Ney. Discriminative Training for Object Recognition using
Image Patches. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
San Diego, CA, pages 157–162, June 2005.

[8] T. Deselaers, D. Keysers, and H. Ney. Improving a Discriminative Approach to Object Recog-
nition using Image Patches. In DAGM 2005, Pattern Recognition, 26th DAGM Symposium,
number 3663 in Lecture Notes in Computer Science, Vienna, Austria, pages 326–333, August
2005.

[9] T. Deselaers, H. Mller, P. Clough, et al. ImageCLEF 06 overview.

[10] T. Deselaers, T. Weyand, D. Keysers, W. Macherey, and H. Ney. FIRE in ImageCLEF 2005:
Combining Content-based Image Retrieval with Textual Information Retrieval. In Workshop
of the Cross–Language Evaluation Forum (CLEF 2005), Lecture Notes in Computer Science,
Vienna, Austria, page in press, September 2005.

[11] G. Dork and C. Schmid. Object class recognition using discriminative local features. IEEE
Transactions on Pattern Analysis and Machine Intelligence, submitted 2004.

[12] M. Everingham, A. Zisserman, C. K. I. Williams, L. van Gool, M. Allan, C. M. Bishop,
O. Chapelle, N. Dalal, T. Deselaers, G. Dorko, S. Duffner, J. Eichhorn, J. D. R. Farquhar,
M. Fritz, C. Garcia, T. Griffiths, F. Jurie, D. Keysers, M. Koskela, J. Laaksonen, D. Larlus,
B. Leibe, H. Meng, H. Ney, B. Schiele, C. Schmid, E. Seemann, J. Shawe-Taylor, A. Storkey,
S. Szedmak, B. Triggs, I. Ulusoy, V. Viitaniemi, and J. Zhang. The 2005 PASCAL Visual Ob-
ject Classes Challenge. In Machine Learning Challenges. Evaluating Predictive Uncertainty,
Visual Object Classification, and Recognising Tectual Entailment (PASCAL Workshop 05),
number 3944 in Lecture Notes in Artificial Intelligence, Southampton, UK, pages 117–176,
2006.

[13] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz. Ef-
ficient and Effective Querying by Image Content. Journal of Intelligent Information Systems,
3(3/4):231–262, July 1994.



[14] Z. Q. Gu, C. N. Duncan, E. Renshaw, M. A. Mugglestone, C. F. N. Cowan, and P. M.
Grant. Comparison of Techniques for Measuring Cloud Texture in Remotely Sensed Satellite
Meteorological Image Data. Radar and Signal Processing, 136(5):236–248, October 1989.

[15] P. Habercker. Praxis der Digitalen Bildverarbeitung und Mustererkennung. Carl Hanser
Verlag, Mnchen, Wien, 1995.

[16] R. M. Haralick, B. Shanmugam, and I. Dinstein. Texture Features for Image Classification.
IEEE Transactions on Systems, Man, and Cybernetics, 3(6):610–621, November 1973.

[17] A. Hegerath, T. Deselaers, and H. Ney. Patch-based Object Recognition Using Discrimina-
tively Trained Gaussian Mixtures. In 17th British Machine Vision Conference (BMVC06),
Edinburgh, UK, page in press, September 2006.

[18] J. Jeon and R. Manmatha. Using Maximum Entropy for Automatic Image Annotation. In
Proceedings of the 3rd International Conference on Image and Video Retrieval, pages 24–32,
2004.

[19] D. Keysers, C. Gollan, and H. Ney. Classification of Medical Images using Non-linear Dis-
tortion Models. In Bildverarbeitung für die Medizin, Berlin, Germany, pages 366–370, March
2004.

[20] D. Keysers, F.-J. Och, and H. Ney. Maximum Entropy and Gaussian Models for Image
Object Recognition. In Pattern Recognition, 24th DAGM Symposium, Zürich, Switzerland,
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