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Abstract
Performing large vocabulary continuous speech recogni-

tion (LVCSR) for morphologically rich languages is considered
a challenging task. The morphological richness of such lan-
guages leads to high out-of-vocabulary (OOV) rates and poor
language model (LM) probabilities. In this case, the use of
morphemes has been shown to increase the lexical coverage
and lower the LM perplexity. Another approach used to im-
prove the LM probability estimates is to incorporate additional
knowledge sources in the LM estimation process using class-
based LMs (CLMs). Recently, the hierarchical Pitman-Yor LMs
(HPYLMs) have shown superiority over the modified Kneser-
Ney (MKN) smoothed N-gram LMs in terms of both perplexity
(PPL) and word error rate (WER) on word-based LVCSR tasks.
In this paper, hierarchical Pitman-Yor class-based LMs (HPY-
CLMs) are combined with morpheme level language model-
ing. This enables the application of the proposed models on
top of morpheme-based systems. Experiments are conducted on
Arabic and German LVCSR tasks. Consistent performance im-
provements are obtained for all the available corpora compared
to the conventional morpheme-based and class-based LMs.
Index Terms: language model, morpheme-based, class-based,
hierarchical Pitman-Yor, rich morphology

1. Introduction
Arabic and German are characterized by a complex morpho-
logical structure. Arabic belongs to the family of Semitic lan-
guages. It is in fact a highly inflected language having a large
number of different surface forms. The Arabic words are de-
rived from roots, by applying patterns to get stems and then at-
taching different affixes to obtain a large number of word forms.
Thus, a stem can be thought of as being further decomposed
into a root and a pattern [1]. On the other hand, German be-
longs to the family of Germanic languages. It is also cited as an
outstanding example of highly inflected languages, as a large
number of words can be derived from the same root. In addi-
tion, German makes a liberal use of noun compounding. Also,
the meaning of German words can be expanded through the use
of prefixes [2]. This huge lexical variety of Arabic and Ger-
man causes data sparsity problems and leads to high OOV rates
and poor LM probability estimates indicated by high LM per-
plexities. Normally, a conventional Arabic LVCSR system uses
a very large LM training corpora and recognition vocabulary.
Yet, still relatively high WERs are observed.

An alternative approach to deal with morphological rich-
ness is to use sub-lexical LMs [3, 4]. Typically, morpheme-
based LMs are used to reduce data sparsity, lower the OOV

rate and perplexity, and thereby achieve lower WERs. Mor-
phemes are the smallest linguistic components of the word that
hold semantic meanings. They are generated by applying mor-
phological decomposition to words based on supervised or un-
supervised approaches. The supervised approaches make use of
linguistic knowledge like in [5]. Other supervised methods rely
on carefully built morphological analyzers like in [6, 7, 8]. On
the other hand, the unsupervised approaches are statistical data-
driven approaches like in [9, 10]. Other unsupervised methods
are based on the minimum description length (MDL) principle
like in [11]. On the contrary, the unsupervised approaches do
not require any language specific knowledge.

Another approach to overcome the data sparseness and re-
duce the dependence of the word-based LMs on the discourse
domain, is to assign proper features (classes) to words and build
LMs over those features. This yields better smoothing and,
hopefully, better generalization to unseen word sequences. The
features can be generated based on linguistic methods [12], or
via data-driven approaches [13]. One approach for incorporat-
ing word features into LMs is the class-based LM (CLM )[14].
It combines the N-gram model over classes with the probabil-
ity distribution of words in classes in order to better estimate
smoothed probabilities of word sequences. This type of LM
can be used to perform N-best list rescoring.

Recently, there has been a considerable amount of research
aimed at improving the fundamental modeling of the N-gram
LMs. Among this, hierarchical Bayesian LMs [15] have suc-
ceeded to achieve a comparable performance to the state-of-the
art N-gram LMs smoothed with MKN smoothing. A hierarchi-
cal Pitman-Yor LM (HPYLM), initially introduced in [16], is
a type of Bayesian LM based on the Pitman-Yor (PY) process
that has been shown to improve the perplexity over the MKN
smoothed N-gram LM. In [17], the HPYLM has been imple-
mented as an extension to the SRILM toolkit [18] and WER
improvements have been reported for typical LVCSR tasks.

This paper presents a novel approach that attempts to com-
bine the benefits of all the aforementioned techniques. We
make use of the HPYLM methodology to build CLMs using
classes assigned on morpheme level. This is called morpheme
level HPYCLM. Thereby, we gain the advantages of using
morpheme-based LMs, along with the benefits of feature-rich
modeling, in addition to the improvement from the HPYLM.
Moreover, linear interpolation is performed to combine differ-
ent types of LMs. The results are compared to our best pre-
viously published results in [19, 20]. Although little improve-
ments are achieved over the best previous results, they are sys-
tematically consistent over all the available corpora.
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2. Word decomposition and class derivation
2.1. Arabic

The Arabic LM training data is processed using MADA 2.0 tool
[21]. MADA is a morphological analyzer and disambiguator
tool developed for Arabic language. It is built on top of the
Buckwalter Arabic morphological analyzer (BAMA) [22]. It
is able to associate a complete set of morphological tags with
each word in context. These tags are used to produce robust
word diacritization and tokenization. Based on this tokeniza-
tion, we produce decomposed words in the form of “prefix+
stem +suffix”, where the existence of the prefix and the suffix
is optional. The ‘+’ sign is used as a marker for full-word re-
combination. For a detailed description of the decomposition
process and constraints, see our previous work [7]. Moreover,
in [7], it was found out that having around 20k most frequent
decomposable full-words without decomposition (out of 256k
items) in the recognition vocabulary is quite helpful to achieve
high recognition performance.

Starting from the MADA morphological tags along with
the generated decomposition, we derive two different features
namely, “lexeme” and “morph”. Lexeme is an abstraction over
the inflected words that groups together all word forms that dif-
fer only in one of the morphological categories such as number
or gender. Morph is the morphological category of the word; it
includes the word part-of-speech (POS) and indicates whether
a conjunction, particle, article or a clitic are agglutinated to the
word. In addition, a third feature called “pattern” is derived
by subtracting root letters from the word. The root is generated
by the “Sebawai” tool [23]. Similarly, these features can be
defined for morphemes as well as for full-words. Thus, after
performing word decomposition, lexeme; morph; and pattern
features are assigned to the resulting morphemes separately. Fi-
nally, the LM training corpus is re-written so that every word or
morpheme is replaced by a vector of features as in the form:
{W-<word>:L-<lexeme>:M-<morph>:P-<pattern>}. A
sequence of individual vector components defines a feature
stream (class stream). An example of a feature vector for
the full-word �

éJ

�
Q̄å

�
�Ë @ð (and the eastern) using the well known

Buckwalter transliteration is: wAl$rqyp → {W-wAl$rqyp:M-
conj+art+AJ-FEM-SG:L-$rqy:P-wAlCCCyp}. Given that the
word wAl$rqyp is decomposed into wAl+ $rqyp and that
root(wAl$rqyp) = $rq, then the morpheme features are writ-
ten as: wAl$rqyp → {W-wAl+:M-conj+art:L-wAl+:P-NUL}
{W-$rqyp:M-AJ-FEM-SG:L-$rqy:P-CCCyp}. From these ex-
amples, it can be seen that a careful handling of word morpho-
logical features could help to produce valid features for mor-
phemes, these are called morpheme level classes.

2.2. German

The decomposition of German words is performed using a data-
driven tool called Morfessor [24]. It is a statistical tool that
automatically discovers the optimal decompositions for words
of a text corpus based on the MDL principle. It is mainly de-
signed to cope with languages having rich morphology, where
the number of morphemes per word is varying strongly [11].
In a previous work [25, 3], morphemes generated via the Mor-
fessor tool were successfully used to model a fraction of the
vocabulary words leading to a significant improvement in the
WER for German LVCSR compared to a traditional full-word
based system. Therein, it was found out that keeping 5k most
frequent decomposable full-words without decomposition (out
of 100k items) is quite helpful for recognition performance.

It is stated in [24] that ignoring word counts in a given cor-
pus and using only the corpus vocabulary to train the Morfessor
model produces decompositions that almost resemble the lin-
guistic morphemes. Therefore, we train our Morfessor model
using a vocabulary of distinct words that occur more than 5
times in the training corpus. This gives about 0.5 Million words.
Less frequent words are not included in training in order to
avoid irregularities that are harmful to the training process. In
addition, the resulting decompositions are modified to remove
very short and noisy morphemes. The final set of morphemes
appear linguistically meaningful, where the most dominant de-
compositions are mainly the decomposition of the compound
words and the stripping off the common prefixes.

Word features are generated using the TreeTagger [26]. It
is a probabilistic tool that uses decision trees for annotating text
with part-of-speech (POS) and lemma information. Lemma is
the canonical baseform of the word. The TreeTagger has been
successfully used to tag words of many languages including
German [26]. One of the useful properties of the TreeTag-
ger is that it operates successfully over morphemes as well as
full-words provided that the input morphemes are linguistically
meaningful which is true in our case. In addition to POS and
baseform, we derive a third feature called class-index. This is a
data-driven class-index assigned to every word or morpheme af-
ter running a data-driven classification algorithm. First, all the
discrete vocabulary items are converted into real valued vec-
tors using word-pair co-occurrence matrix and singular value
decomposition (SVD) [27, 28], then these vectors are clustered
into 250 clusters using a k-means approach. A detailed descrip-
tion of this algorithm is found in a previous publication [25].

Similar to Arabic, the LM training corpus is pre-
processed so that every word or morpheme is replaced by a
vector of features: {W-<word>:P-<pos>:B-<baseform>:I-
<class-index>}. An example of a feature vector is:
eingeschlafen → {W-eingeschlafen:P-VVPP:B-einschlafen:I-
224}; where VVPP means past participle verb. Given that
the word eingeschlafen (fallen asleep) is decomposed into
ein+ geschlafen, then the morpheme level features are writ-
ten as: eingeschlafen → {W-ein+:P-ART:B-ein:I-15} {W-
geschlafen:P-VVPP:B-schlafen:I-192}.

3. Morpheme level class-based LMs
Given a sequence of words W = w1, w2, ..., wM , a standard
N-gram LM is expressed as:

p(w1, w2, ..., wM ) ≈
M∏
i=1

p(wi|wi−1
i−N+1) (1)

If this model is built over decomposed words (morphemes),
then it is called a morpheme level model. However, instead of
building the N-gram LM over sequences of words1, we could
build the model over sequences of some selected class stream,
like sequences of lexemes, morphs or patterns. The CLM, ini-
tially described in [14], aims at combining the N-gram model
over classes with the probability distribution of words in classes
in order to better estimate smoothed probabilities over word se-
quences. Assuming that ambiguous class membership is used
(also called soft clustering), where a word can be a member of
multiple classes, then a bigram CLM is given by Equation 2,
where a word is denoted by wi and ci is the class assigned to
the word wi at time i.

p(wi|wi−1) =
∑

ci,ci−1

p(wi|ci)p(ci|ci−1)p(ci−1|wi−1) (2)

1Whatever stated for words is also valid for morphemes
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An analogous model could be estimated for morphemes with
properly assigned classes. In Equation 2, it can be seen that
there are only two component distributions required to estimate
the class-based probability. The first component is the probabil-
ity distribution over sequences of classes (called class N-gram).
The second component is the probability distribution of words
given classes (called class membership definition).

Normally, the standard word-based N-gram LMs perform
better in capturing the relations between words for in-domain
text. Therefore, an effective way to retain the advantages of both
word-based and class-based LMs is to combine them. The com-
bination may rely on backing-off or linear interpolation [29].
Here, we use linear interpolation of multiple word-based and
class-based LMs expressed as:

p(W ) =

I∑
i=1

λip
(i)
w (W ) +

J∑
j=1

λjp
(j)
c (W ) (3)

where W is the word sequence, p(i)w (W ) is ith word-based
probability, p(j)c (W ) is the jth class-based probability, λi, λj
are the interpolation weights optimized on the development cor-
pus, such that

∑I
i=1 λi+

∑J
j=1 λj = 1, and (I+J) is the total

number of the interpolated models.

4. Hierarchical Pitman-Yor LMs
A HPYLM is a type of Bayesian LM based on a coherent
Bayesian probabilistic model that explicitly declares prior as-
sumptions over the LM parameters [30]. It is based on the
Pitman-Yor (PY) process, a nonparametric generalization of the
Dirichlet distribution [31]. The PY process produces a power-
law distribution over word frequencies that is found to be one
of the most striking statistical properties in natural language.

Using the context of a unigram LM as in [16], let W be a
finite vocabulary of V words. Let G(w) be the probability of
each w ∈ W , and let G = [G(w)]w∈W be the vector of word
probabilities. We place a PY process prior on G:

G ∼ PY (d, θ,G0) (4)

where the parameters of the process are: a discount parameter
0 ≤ d < 1, a strength parameter θ > −d, and a mean vector
G0 = [G0(w)]w∈W . G0(w) is the prior probability of word w,
usually uniformly distributed, thus G0(w) = 1/V .

Let [xl] = x1, x2, ... be a sequence of words drawn from
G. The PY process is described as a generative procedure that
iteratively produces [xl] with G marginalized out. This can be
achieved by relating [xl] to another separate sequence of draws
[yk] = y1, y2, ... from the mean distributionG0 as follows. The
first word x1 is assigned the value of the first draw y1 from
G0. Let t be the current number of draws from G0 (currently
t = 1), ck be the number of words assigned the value of draw
yk (currently c1 = 1), and c =

∑t
k=1 ck be the current number

of draws from G. For each subsequent word xc+1, we either
assign it the value of a previous draw yk with probability ck−d

θ+c
(increment ck; set xc+1 ← yk), or we assign it the value of
a new draw from G0 with probability θ+dt

θ+c
(increment t; set

ct = 1; draw yt ∼ G0; set xc+1 ← yt).
The above procedure is often referred to as the Chinese

restaurant process [32]. Imagine a sequence of customers (cor-
responding to the draws from G) visiting a Chinese restaurant
with an infinite number of tables (corresponding to the draws
from G0), each of which can accommodate an infinite number
of customers. The first customer sits at the first available table,
and each subsequent customer either joins an already occupied

table (assign the word to a previous draw from G0), or sits at a
new table (assign the word to a new draw from G0).

Now, an N-gram LM can be described as a hierarchical ex-
tension of the PY process. An N-gram LM defines probabilities
over words given N − 1 context words. Given a context u, let
Gu(w) be the probability of the current word taking on value
w. A PY process is used as a prior for Gu = [Gu(w)]w∈W :

Gu ∼ PY (d|u|, θ|u|, Gπ(u)) (5)

where π(u) is the suffix context of u after dropping the earliest
word. We recursively place a prior overGπ(u) using 5, but with
parameters θ|π(u)|, d|π(u)|, and a mean vectorGπ(π(u)). This is
repeated until reachingGφ with an empty context, then a global
uniform prior G0 is placed on Gφ, where G0(w) = 1/V :

Gφ ∼ PY (d0, θ0, G0) (6)

Starting from a posterior distribution over seating arrange-
ments in a hierarchical Chinese restaurant, the predictive proba-
bility of a word w after a context u can be inferred using Gibbs
sampling. A detailed inference scheme is described in [30].

5. Experimental setup
5.1. Arabic system

Arabic acoustic models (AMs) are triphone models trained on
1100h of audio material taken from two domains: broadcast
news (BN) and broadcast conversation (BC). The basic AMs
are trained using maximum likelihood (ML) method. Then, a
discriminative training based on minimum phone error (MPE)
criterion is performed to enhance the models. The LM training
corpora have around 206 Million running words including data
from Agile Arab text, FBIS, TDT4 and GALE BN and BC data.
A morpheme-based system with a 256k vocabulary is used. The
20k most frequent full-words are preserved without decompo-
sition [7]. The speech recognizer works in 3 passes. In the
first pass, within-word AMs are used without adaptation. The
second pass uses across-word AMs with constrained maximum
likelihood linear regression (CMLLR) adaptation. Then, a third
pass with maximum likelihood linear regression (MLLR) adap-
tation is performed. In each pass, a morpheme-based bigram
LM is used to construct the search space and to produce lat-
tices. Then, these lattices are rescored using a morpheme-based
4-gram LM. Both the bigram and 4-gram LMs are smoothed
using MKN smoothing. Additionally, in the third pass, we pro-
duce a set of N-best lists (N=500) which are rescored with 4-
gram conventional or trigram HPYCLMs using different classes
as described in Section 2.1. All LMs are estimated using the
SRILM toolkit [18] with Bayesian LM extensions [17]. The
recognition performance is evaluated on the GALE 2007 dev
and eval sets [dev07: 2.5h; eval07: 4h].

5.2. German system

German AMs are also triphone models that are ML trained us-
ing 343h of audio material taken from BN, European parliament
plenary sessions (EPPS), read articles, dialogs, and web data.
The LM training corpus consists of around 188 Million running
full-words including the official data of the Quaero project. A
morpheme-based system with a 100k vocabulary is used. The
5k most frequent full-words are preserved without decomposi-
tion [25]. The speech recognizer works in 2 passes. In the first
pass, across-word AMs are used without speaker adaptation.
A morpheme-based trigram LM is used to construct the search
space and to produce lattices, then lattices are rescored with a 4-
gram LM. Both the bigram and trigram LMs are smoothed using
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MKN smoothing via the SRILM toolkit. The second pass per-
forms speaker adaptation based on both CMLLR and MLLR. A
standard trigram LM is used to generate N-best lists (N=500),
then N-best rescoring is performed using 4-gram conventional
or trigram HPYCLMs using different classes as described in
Section 2.2. The recognition performance is evaluated on the
Quaero 2009 dev and eval corpora [dev09: 7.5h; eval09: 3.8h].

6. Experiments
Table 1 shows the baseline recognition results for word- and
morpheme-based LMs on Arabic and German corpora after
a conventional 4-gram LM lattice rescoring. It can be seen
that significant improvements are achieved in WER using a
morpheme-based LM compared to word-based LMs. On top
of morpheme-based systems, Tables 2(a) and 2(b) present the
recognition results after the final rescoring using MKN and
HPY LMs built over different classes for both Arabic and Ger-
man corpora. The column labeled “MKN” shows the results
using a MKN smoothed N-gram LM interpolated with a MKN
smoothed CLM using the available features as classes. In the
last row of each table, the interpolation is extended to include
all the CLMs built on all the available classes (1 N-gram LM + 3
CLMs). In a similar fashion, the column labeled “MKN+HPY”
shows the results using an interpolation of: MKN smoothed
LM, a MKN smoothed CLM, a HPYLM, and a HPYCLMs.
Similarly, in the last row, the interpolation is extended to in-
clude all the CLMs built on all the available classes (2 N-gram
LMs + 6 CLMs). We can see that the best results are obtained
when using the HPYLMs with all the available classes. This
means that both the use of multiple features and the application
of HPY models are beneficial. Significant WER reductions of
[dev07: 0.5% absolute (3.5% relative); eval07: 0.4% absolute
(2.5% relative); dev09: 0.7% absolute (2.2% relative); eval09:
0.6% absolute (2.1% relative)] are achieved compared to the
baseline morpheme-based systems in Table 1. Although little
improvements in the recognition performance are achieved over
the conventional CLMs (that do not use the HPY models), the
improvements are quite persistent and systematically consistent
over all the available corpora. The observed WER improve-
ments are considered statistically significant using a bootstrap
method of significance analysis described in [33], the probabil-
ity of improvement (POIboot) ranges between 95% and 98%.
It is worth noting that the character error rate (CER) improve-
ments are almost going in-line with the WER improvements.

Table 1: WER[%], CER[%], OOV[%] & PPL for WB: word-
based system, MB: morpheme-based system; CER: character
error rate.

Arabic German
voc/LM metric dev07 eval07 dev09 eval09
WB WER 14.9 16.5 32.8 28.4

CER 6.9 8.7 14.5 12.9
OOV 1.36 1.85 4.6 4.5
PPL 442 577 326 344

MB WER 14.2 16.1 32.3 28.0
CER 6.6 8.7 14.4 12.7
OOV 0.51 0.64 4.1 3.9
PPL 392 510 379 406

7. Conclusions
We have introduced a novel methodology that combines the
benefits of: morpheme-based LMs, feature-rich CLMs, along
with HPYLMs to perform LVCSR for Arabic and German as

Table 2: WER[%], CER[%] & PPL after final pass rescoring
using MKN: MKN smoothed N-gram + MKN smoothed CLM,
MKN+HPY: MKN smoothed N-gram + MKN smoothed CLM
+ HPY N-gram + HPYCLM; CER: character error rate.

(a) Arabic: 256k morpheme-based system (20k full-words + 236k
morphemes) (L: lexeme; M: morph; P: pattern).

MKN MKN+HPY
class metric dev07 eval07 dev07 eval07
L WER 13.9 15.9 13.7 15.8

CER 6.6 8.7 6.6 8.6
PPL 375 484 354 458

M WER 13.9 16.0 13.8 15.8
CER 6.6 8.7 6.6 8.7
PPL 386 500 362 471

P WER 14.0 16.0 13.9 15.8
CER 6.6 8.7 6.6 8.7
PPL 389 505 363 474

L,M,P WER 13.8 15.8 13.7 15.7
CER 6.6 8.6 6.6 8.6
PPL 372 480 353 456

(b) German: 100k morpheme-based system (5k full-words + 95k
morphemes) (B: baseform; P: POS-tag; I: class-index).

MKN MKN+HPY
class metric dev09 eval09 dev09 eval09
B WER 32.2 27.7 31.9 27.5

CER 14.4 12.5 14.2 12.4
PPL 357 379 342 363

P WER 31.9 27.5 31.8 27.4
CER 14.3 12.5 14.2 12.4
PPL 355 378 343 365

I WER 31.9 27.5 31.7 27.4
CER 14.4 12.4 14.2 12.4
PPL 354 375 342 362

B,P,I WER 31.8 27.5 31.6 27.4
CER 14.2 12.5 14.2 12.4
PPL 343 362 333 352

examples of morphologically rich languages. The morpheme-
based modeling aims at increasing the lexical coverage and re-
ducing the data sparseness, while the use of morpheme level
features in CLMs attempts to achieve better generalization to
unseen word sequences. At the same time, the use of HPYLMs
improves the smoothness of the N-gram probabilities over the
conventional MKN smoothing for both normal and class-based
models. We used different types of morphological and data-
driven features for building CLMs. The best results are achieved
by interpolating all the normal and the class-based LMs to-
gether. Proper tests have shown the statistical significance of
the obtained WER improvements compared to the conventional
morpheme-based LMs alone. Little but systematically consis-
tent improvements are achieved over the conventional CLMs.
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level feature-based language models for German LVCSR,” in In-
terspeech, Portland, OR, USA, Sep. 2012.

[21] N. Habash and O. Rambow, “Arabic diacritization through full
morphological tagging,” in Proc. Human Language Technology
Conf. of the North American Chapter of the ACL, vol. Companion,
Rochester, NY, USA, Apr. 2007, pp. 53 – 56.

[22] T. Buckwalter, Buckwalter Arabic Morphological Analyzer Ver-
sion 2.0. Linguistic Data Consortium (LDC) catalogue, 2004,
no. LDC2004L02.

[23] K. Darwish, “Building a shallow Arabic morphological analyzer
in one day,” in ACL Workshop on Computational Approaches to
Semitic Languages, Philadelphia, PA, USA, Jul. 2002.

[24] M. Creutz and K. Lagus, “Unsupervised morpheme segmenta-
tion and morphology induction from text corpora using Morfes-
sor 1.0,” Computer and Information Science Helsinki University
of Technology, Finland, Tech. Rep., Mar. 2005.

[25] A. El-Desoky, M. Shaik, R. Schlüter, and H. Ney, “Morpheme
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