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Abstract
German is a morphologically rich language having a high de-
gree of word inflections, derivations and compounding. This
leads to high out-of-vocabulary (OOV) rates and poor language
model (LM) probabilities in the large vocabulary continuous
speech recognition (LVCSR) systems. One of the main chal-
lenges in the German LVCSR is the recognition of the OOV
words. For this purpose, data-driven morphemes are used to
provide higher lexical coverage. On the other hand, the proba-
bility estimates of a sub-lexical LM could be further improved
using feature-rich LMs like maximum entropy (MaxEnt) and
class-based LMs. In this work, for a sub-lexical level German
LVCSR task, we investigate the use of the multiple morpheme
level features as classes for building class-based LMs that are
estimated using the state-of-the-art MaxEnt approach. Thus, the
benefits of both the MaxEnt LMs and the traditional class-based
LMs are effectively combined. Furthermore, we experiment
the use of Maximum a-posteriori adaptation over the MaxEnt
class-based LMs. We show consistent reductions in both the
OOV recognition error rate and the word error rate (WER) on a
German LVCSR task from the Quaero project, compared to the
traditional class-based and the N -gram morpheme based LM.
Index Terms: open-vocabulary, German LVCSR, features,
maximum entropy, class-based

1. Introduction
German is one of the morphologically rich languages having
high degree of word inflections, derivations and compounding
leading to a wide lexical variety. This causes high OOV rates,
data sparsity, and high LM perplexities in the language model-
ing. Conventional LVCSR systems use a fixed vocabulary con-
sisting of full-words. The words which are not present in the
vocabulary are called OOV words and cannot be recognized. In
addition, during the recognition, an OOV word potentially sub-
stituted by one or more in-vocabulary words leading to neigh-
boring word errors which increases the overall WER [1].

To overcome the OOV problem, sub-words are used in the
language modeling. In general, a LM comprising sub-words
with or without a fraction of full-words is called a sub-lexical
LM. There are different types of sub-word units, for instance
morphemes or syllables [2, 3]. A morpheme is defined as the
smallest linguistic unit having a semantic meaning. In general,
morphemes could be extracted using linguistic or data-driven
morphological decomposition. When sub-lexical LMs are used,
the data sparsity problem is relatively reduced compared to the
full-word LMs, leading to lower OOV rates and higher lexical
coverage. Further, as the count based statistics are improved,

the LM probability estimates are better estimated [1, 2, 4]. Al-
ternatively, the probability estimates of a sub-lexical LM could
be further improved using language dependent features. One of
the main objective of this work is to decrease the WER and also
the OOV WER over N -gram backoff sub-lexical system us-
ing feature-rich LMs. In this work, we investigate the state-of-
the-art LMs like maximum entropy LMs and class-based LMs,
which provide modular structure to incorporate various knowl-
edge sources as features.

Class-based LMs are initially introduced in [5]. A class-
based LM combines the N -gram model over classes with the
probability distribution of words in classes leading to the es-
timation of better smoothed probabilities of word sequences.
Class-based LMs have a reduced parameter space due to clus-
tering. AnN -gram model is a special case of a class-based LM,
where each word is a class itself. On the other hand, the fun-
damental principle of MaxEnt is initially introduced in [6]. The
MaxEnt LMs are investigated in [7, 8, 9]. MaxEnt LM uses the
information obtained from various knowledge sources as fea-
ture constraints. In general, the knowledge sources could be dif-
ferent types of features having different constraints (i.e., prob-
ability distribution functions). MaxEnt LM estimates a unified
model in a feature space by selecting the distribution function
of the highest entropy satisfying all the constraints from an in-
tersection of all the imposed feature constraints. A token based
LM is investigated, which uses word level linguistic features to
generate MaxEnt LM on Wall Street Journal (WSJ) task [10].
Linguistic features are also used to estimate whole sentence
MaxEnt LMs on switchboard conversational telephone speech
task [11]. Recently, an improved class-based LM, namely
Model-M, is introduced which combines the strengths of both
the MaxEnt principle and the class-based LM [12]. Significant
improvements in the results are reported in terms of the WER
on the WSJ task using the Model-M. Similarly, class-based LMs
for many European languages have been investigated using lin-
guistic and data-driven features [13]. MaxEnt LMs are exper-
imented for the Arabic task using morphological features [8].
Also, for the Greek task, class-based LMs and the MaxEnt LMs
are compared by using the linguistic features [14].

2. Feature-rich MaxEnt LMs
Although, MaxEnt LMs provide the flexibility to incorporate
various features, they are computationally expensive (CPU and
memory resources, normalization factor, Z(h) : Eq. 2 in Sec-
tion 3.4) depending on the vocabulary size and the number of
applied feature constraints. On the other hand, for a morpho-
logically rich language like German, using MaxEnt LMs could
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help decreasing the perplexity and WER. MaxEnt LMs have
been already successful on other inflectional languages for rel-
atively small vocabularies (< 60k) [8, 14]. As we focus on a
German large vocabulary task using sub-lexical LMs, we exper-
iment the use of rich morphological features generated on a sub-
lexical level using both linguistic and data-driven approaches.
This paper presents an approach that attempts to gain the ben-
efits of the feature-rich LMs using the MaxEnt and the class-
based LM, while at the same time retain the advantages of sub-
lexical LMs. As we experiment on a large vocabulary, certain
assumptions are made due to the high resource requirements
for generating a MaxEnt models. In this work, all the investi-
gated classes (or morphemic features) are treated as indepen-
dent classes. Separate MaxEnt models are trained for differ-
ent features. Then, these MaxEnt models are used to construct
class-based LMs. Thus, the benefits of both MaxEnt and class-
based LMs are combined using interpolation to estimate better
generalized LMs, as uniform as possible.

To verify our proposed approach, we select the same mor-
phemic features for the German LVCSR system as described in
our previous work [15]. Three different types of morphological
features generated using both the linguistic and data-driven ap-
proaches are used. We have shown that feature-rich morpheme
based LMs are better than full-word LMs in terms of perplexity
and WER. Thus, we focus our investigation only on morpheme
based LMs. We compare our proposed approach with the tradi-
tional class-based and the N -gram backoff LMs. The use of the
maximum a-posteriori (MAP) adaptation is also investigated on
the generated MaxEnt class-based LMs.

3. Detailed Methodology
In this section, the details of the used morphemes and their cor-
responding morphological features, and the definitions of the
class-based LMs, MaxEnt LMs and the proposed combined ap-
proach, followed by supervised and unsupervised MAP adapta-
tion and interpolation are explained.

3.1. Morphemes

To obtain morphemes, the words are decomposed using an
open-source tool called Morfessor which is based on the Min-
imum Description Length principle [16]. The decomposition
model is trained using a vocabulary of unique words which
occur more than 5 times. The morphemes are post-processed
in the generated model to avoid very short and noisy mor-
phemes, which could be harmful during recognition. An exam-
ple of a post-processed decomposition is: förderung+ s+ ge+
setz → förderungs+ ge+ setz. The decomposed word entries
are added in the lexicon. To obtain pronunciations for miss-
ing lexicon entries, grapheme-to-phoneme (G2P) conversion is
used. The pronunciations are aligned for the sub-words from its
corresponding full-word pronunciation using the expectation-
maximization (EM) algorithm as described in [4].

3.2. Morphological features

In this work, three types of morphological features are used as
different knowledge sources. The Part-of-Speech (POS) tags
are generated using the probabilistic TreeTagger developed by
the University of Stuttgart [17]. We use the same tool to extract
the lemma of the word. A lemma is the canonical baseform
of the word. We observe that most of the post-processed mor-
phemes are linguistically meaningful, as shown in Section 3.1.
Therefore, the TreeTagger could be successfully used to anno-

tate the morphemes with POS and lemma tags. We call these
features as morpheme level features. Apart from the above men-
tioned linguistic features, the data-driven feature is also used,
called index, which represents a class identity derived by ap-
plying word classification using singular value decomposition
(SVD) principle. To compute the index of the morpheme we
convert all the vocabulary entries into a real valued vectors us-
ing word-pair co-occurrence matrix and apply SVD. We classify
the obtained vectors into N clusters (N=250) using k-means al-
gorithm [18].

3.3. Class-based LMs

A standard class-based LM combines the N -gram model over
classes with the probability distribution of words in classes. In
principle, a word/sub-word can belong to a single class or can
be shared across different classes. The former case is referred
to as hard class membership, while the latter case is referred
to as ambiguous class membership or soft clustering. In our
experiments, we consider ambiguous class membership for the
POS features only. If a word is represented as w and c is a
class respectively, then an example bigram class-based LM is
estimated as :

p(wi|wi−1) =
∑

ci,ci−1

p(wi|ci)p(ci|ci−1)p(ci−1|wi−1) (1)

We create modified Kneser-Ney smoothed class-based N -
gram LMs using open-source SRILM toolkit [19].

3.4. MaxEnt Class-based LMs
The formulation to generate MaxEnt LMs to use them effec-
tively in the class-based LM methodology is described. If w is
a word/morpheme taken from a vocabulary W , f(.) is the fea-
ture function, λ is an optimal weight, h is the context, Z(h) is
the normalization factor for all the seen contexts, MaxEnt model
can be computed using Eq. 2.

pme(w|h) =
e
∑

i λifi(w,h)

Z(h)
(2)

Where, Z(h) =
∑
wiεW

e
∑

j λjfj(wi,h)

The separate MaxEnt models for all the morphological fea-
tures as discussed in Section 3.2 using N -grams as context are
generated using Eq. 2. Once the optimal weights λi are esti-
mated, the MaxEnt model is smoothed using Gaussian priors.
To generate a MaxEnt class-based LM for a given class (fea-
ture), we combine the MaxEnt model over this class stream with
a probability distribution of words in classes, using in Eq. 1.

3.5. Adaptation

In general, adapted LMs are known to perform better than non-
adapted LMs in cases of domain mis-match or if the LM corpus
is diverse. In general, the LM data is obtained from multiple do-
mains for LVCSR. It is often unrealistic to significantly reduce
the WER without adapting the LM to in-domain data [20]. For
this purpose, we apply LM adaptation over MaxEnt class-based
LMs. We perform MAP adaptation using Gaussian priors over
the MaxEnt models (from Section 3.4). The MaxEnt model is
trained on background data including the N -gram features of
the in-domain data. The prior parameters computed from the
background data are used to learn the parameters from the in-
domain data. During MaxEnt training, the prior has zero mean
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during Gaussian prior smoothing. But during adaptation, the
prior distribution is centered at the background data parameters.
The regularized log-likelihood of the adaptation training data is
maximized during adaptation. As an in-domain data, we inves-
tigate two different types of adaptation, namely supervised and
unsupervised [21]. In supervised adaptation, the development
data is used as an in-domain data. Whereas, for an unsupervised
adaptation, the automatic transcriptions are used from the first
pass recognition. Here, the adaptation is performed over both
morpheme and feature based MaxEnt models. The MaxEnt and
adapted models are created using SRILM-extension [22].

3.6. Interpolation

N -gram backoff LMs are known to perform better in captur-
ing the short range context dependencies. The reason is, when
the data is sufficiently available, the likelihood estimates of the
frequently occurring N -grams are generally better estimated
and reliable. In our experiments, we interpolate morpheme
LMs (N -gram and MaxEnt) with class-based LMs (N -gram
and MaxEnt) as [23]:

p(W ) =

I∑
i=1

λip
(i)
w (W ) +

J∑
j=1

λjp
(j)
c (W ) (3)

Where, for the word or morphemic sequenceW , p(i)w (W ) is
the ith word-based probability, p(j)c (W ) is the jth class-based
probability, λi and λj are the optimized interpolation weights
using development data, satisfying the condition

∑I
i=1 λi +∑J

j=1 λj = 1. For our experiments, we interpolate 8 LMs
: 2 morphemic LMs (1 MaxEnt and 1 N -gram ), 6 class-based
LMs (3 MaxEnt and 3N -gram). Alternatively in Eq. 3, MaxEnt
model could also be referred to as an adapted MaxEnt model for
adaptation experiments.

4. Experimental setup
For the German LVCSR experiment, across word, triphone con-
text, Maximum Likelihood trained acoustic models are used.
We use 343 hours of audio data mainly from broadcast news
(BN), European parliament plenary sessions (EPPS), spoken di-
alogs and pod-cast data. A part of the LM training corpus from
the multi-domain corpora (BN, EPPS, pod-casts, web data and
blogs) is selected. This data is assumed to be close to in-domain
data.

The LM training corpus consists of around 188 Million run-
ning full-words including the official Quaero project data. The
top N most frequent words (N=100k) are selected as a vocab-
ulary from the full-word text. From our previous sub-lexical
LVCSR experiments, it is found that keeping 5k most frequent
full-words without decomposition (out of 100k items) is quite
helpful for the recognition process in terms of the WER [15].
For this reason, 100k top most frequent words (5k full-words +
95k morphemes) are selected. Alternatively, 75k baseforms, 50
POS and 250 index features are used.

Our speech recognizer works in 2 passes. A 3-gram back-
off LM is created to construct the search space. The first pass
uses speaker independent acoustic model. Then, speaker adap-
tation is applied using constrained maximum likelihood linear
regression (CMLLR) and maximum likelihood linear regres-
sion (MLLR). After the second pass, the generated lattices are
rescored using a 4-gram LM. In this work, all the proposed LMs
are generated using 4-gram as context length. The N -best lists
are rescored using the interpolated LMs as described in Sec-
tion 3.6. To evaluate the performance of our proposed models,

Quaero1 Development-2009 corpus (7.5 hours) and Evaluation-
2009 corpus (3.8 hours) is used.

4.1. Experimental considerations

In our sub-lexical experiments, we need to reconstruct the full-
words from the morphemes. An identifier ‘+’ is marked at
the end of each non-boundary morpheme. After recognition,
the recognized morphemes are combined using the pre-defined
marker to regenerate the full-words. For example: förderungs+
ge+ setz → förderungsgesetz. Alternatively, the OOV rate of
any corpus is computed in such a way that a word is considered
an OOV if and only if it is not found in the vocabulary and it is
not possible to compose it using in-vocabulary sub-words. We
call this as an effective OOV rate.

5. Results
In this Section, the detailed results are described in terms of
the word error rate, OOV rate, and the perplexity of the N -
gram backoff full-word system (FW) and the sub-lexical sys-
tem (MW) are shown in Table 1. The results of the proposed
approach in comparison to the class-based LM experiments as
shown in Table 2.

Table 1: Baseline recognition results using 100k vocabulary
(FW: full-word system,MW: morpheme system,OOV: effective
Out-of-vocabulary Rate [%], PPL: Perplexity, CER: Character
Error Rate)

sys dev09 eval09
OOV/PPL WER/CER OOV/PPL WER/CER

[%] [%]
FW 4.6/326 32.8/14.5 4.5/344 28.4/12.9
MW 4.1/379 32.3/14.4 3.9/406 28.0/12.7

As shown in Table 1, the development corpus and the eval-
uation corpus has comparable OOV rates for the full-word and
the morpheme based system for the experimented vocabulary.
For comparison of all the experimental results, the morpheme
system is considered as our reference baseline. The perplexi-
ties of the full-word and the morpheme based system are not
comparable due to the different vocabularies. For the LM adap-
tation, the supervised and unsupervised adaptation experiments
are conducted using the development corpus and the recognition
pass-1 transcriptions respectively (from Section 3.5).

6. Error Analysis
In this Section, the experimental results are validated using er-
ror analysis. Recognition related errors arising from the pro-
posed methodology are compared to the full-word and mor-
pheme based line systems. Different types of the errors are an-
alyzed, namely word error rate, in-vocabulary error rate and the
OOV recognition error rate followed by the significance tests
for the sub-lexical experiments.

6.1. Word Error Rate (WER)

As shown in Table 2 the results are tabulated in terms of the
WER. It is observed that for all the investigated features (B,P,I),
MaxEnt models (class-based and N -gram), interpolated with
the conventional class-based models and the backoff N -gram
models give consistent improvements interms of reduction both
in the perplexity and WER. Similar improvements interms of

1http://www.quaero.org
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Table 2: WERs[%] & PPLs for 100k morpheme-based sys-
tem after 2nd pass rescoring using BO: backoff N-gram + BO
class-based , BO+MaxEnt: BO N-gram + BO class-based
+ MaxEnt + MaxEnt class-based ; B: baseform; P: POS; I:
index ; sp/unsp adap: supervised/unsupervised adaptation,
CER:character error rates, met.:error metric

BO BO+MaxEnt
class met. dev09 eval09 dev09 eval09
B WER 32.2 27.7 32.0 27.5

CER 14.4 12.5 14.2 12.4
PPL 357 379 338 357

P WER 31.9 27.5 31.8 27.4
CER 14.3 12.5 14.3 12.4
PPL 355 378 338 357

I WER 31.9 27.5 31.7 27.4
CER 14.4 12.4 14.3 12.3
PPL 354 375 339 358

B,P,I∗ WER 31.8 27.5 31.7 27.4
CER 14.2 12.5 14.3 12.4
PPL 343 362 330 346
WER – – 29.9† 27.4

with CER – – 13.5 12.3
sp adap PPL – – 174 332

WER – – – 27.4
with CER – – – 12.4
unsp adap PPL – – – 274

the WER are achieved using both the supervised and unsuper-
vised adapted models. On the other hand, we notice that, al-
though the obtained improvements are marginal (abs.: 0.1 to
0.2) they are consistent for all the investigated features under
high WER conditions. Unsupervised adaptation did not help in
further reducing the WER except perplexity. We emphasize that
the interpolated non-adapted model (1N -gram LM + 1 MaxEnt
LM + 3 class-basedN -gram LMs + 3 MaxEnt class-based LMs)
provides a similar WER as the adapted models. This system is
referred to as the best system in the remaining Sections of this
paper (in Table 3 as s3). For this system, we report significant
improvements interms of reductions in WER of around [1.9%
(rel.) and 0.6% (abs.)] for the dev-09 corpus, and [2.1% (rel.)
and 0.6% (abs.)] for the eval-09 corpus respectively compared
to the morpheme based baseline system (MW: Table 1).

6.2. In-vocabulary Error Rate (IER)

As shown in Table 3, vocabulary related error analysis is per-
formed. The impact of the proposed LMs is evaluated by
computing the different types of the word errors, namely in-
vocabulary error rate (IER) and OOV error rate (OER), apart
from the WER. The IER is computed as the ratio of mis-
recognized in-vocabulary words to the total number of in-
vocabulary words. Using the best system (s3), we report re-
ductions in IER of around [1.3% (rel.) and 0.3% (abs.)] for the
dev-09 corpus, and [3.1% (rel.) and 0.7% (abs.)] for the eval-09
corpus respectively compared to the morpheme based baseline
system (s2). In general, when the sub-words are mixed with
the full-words in the morpheme based LMs, an increase in IERs
is observed [2, 4]. Although our best system (s3) caused more
IERs compared to the full-word system (s1), they are relatively

∗best system interms of the WER
†WER/PPL are not meaningful on the dev corpora. Here, they rep-

resent the difficulty of the high word error rate LVCSR task.

less IERs compared to the morpheme system (s2).

Table 3: Error Analysis (sys: system, IER: in-vocabulary error
rate, OER: OOV error rate, Tot: Total WER, s1: full-word
system, s2: N -gram morpheme system, s3: Interpolated non-
adapted BO+MaxEnt system )

error rate [%]
sys. dev09 eval09

IER OER Tot IER OER Tot
s1 21.4 100 32.8 20.7 100 28.4
s2 24.0 65.0 32.3 22.5 60.5 28.0
s3 23.7 63.5 31.7 21.8 59.4 27.4

6.3. OOV Error Rate (OER)

The OOV error rate (OER) is computed as the ratio of mis-
recognized OOV words which are not present in the 100k full-
word vocabulary to the total number of OOV words. As shown
in Table 3, using our best system (s3), we report reductions in
OER of around [2.3% (rel.) and 1.5% (abs.)] for the dev-09
corpus, and [1.8% (rel.) and 1.1% (abs.)] for the eval-09 corpus
respectively compared to the baseline morpheme system (s2).

6.4. Statistical Significance Test

A significance test comparing the WER of our best system (s3)
to the morpheme based baseline system (s2) was performed us-
ing the method described in [24]. The experimental results were
found to be statistically significant (under 10% significant level,
p-value ≤ 0.1).

7. Conclusions
For a German open vocabulary LVCSR system, morphologi-
cally rich features are effectively used as classes to estimate
class-based LMs in the framework of state-of-the-art MaxEnt
LMs. This helps to estimate better generalized LMs to unseen
word sequences. Two linguistic features and one data-driven
feature are used. It is shown that the performance of our pro-
posed combined language modeling approach is better than the
conventional class-basedN -gram approach in terms of both the
perplexity and the word error rate. Marginal but consistent and
statistically significant WER improvements are obtained. Al-
though small improvements are achieved (interms of the word
and character related errors), their consistency confirm the use-
fulness of using morphological features in the MaxEnt class-
based LMs for the German LVCSR task. It is verified that using
morphemic features as knowledge sources in a better estimated
sub-lexical LM helps to recognize significant number of OOVs.
In parallel, significant reductions are also obtained for the in-
vocabulary error rates and the OOV recognition error rates over
both the development and the evaluation corpora compared to
the morpheme based baseline system. As a future work, this
approach could be further improved by taking into account the
mutual dependencies among the features.
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pheme and Syllable Based Sub-words for Polish LVCSR,” in
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing, Prague, Czech Republic, May 2011, pp. 4680 – 4683.

[4] A. El-Desoky, M. Shaik, R. Schlüter, and H. Ney, “Sub-lexical
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