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Abstract

In this work we present and compare different methods of estimating phrase trans-
lation probabilities for statistical machine translation (SMT).

Given a source sentence, a phrase-based SMT system produces a translation by
segmenting the sentence into phrases and translating those phrases separately. The
phrase translation table, which contains the bilingual phrase pairs and the corre-
sponding probabilities, is an essential part of a phrase-based SMT system. We
examine different methods for training phrase translation probabilities. In contrast
to state-of-the-art heuristics, the proposed training procedure is consistent with
the translation decoder. By combination of the current state of the art with novel
models we develop a method which performs equal or better than the baseline in all
tested setups. Current state of the art is to use phrases heuristically extracted from
word-aligned bilingual corpora. This makes translation quality strongly dependent
on the quality of the underlying word alignment algorithms. We propose several
novel phrase models and develop a procedure to train them. Different from previ-
ous similar approaches, we make use of the leaving-one-out method to counteract
overfitting effects. The models we introduce consider both bilingual phrase trans-
lation probabilities and monolingual phrase prior probabilities. Further, different
strategies of incorporating the information gained from training into the heuristic
model are considered. In additional experiments we tested the impact of initializa-
tion on the translation results and also utilized the training process to re-estimate
word alignments.

The performance of the different approaches is measured and compared on two
standard data sets, a small Chinese-English corpus and a medium sized German-
English corpus. We show that on the German-English corpus our proposed phrase
models lead to improvements of translation quality over the baseline system which
represents the current state of the art. A method is developed, which consistently
performs better or equal to the baseline system in all setups we experimented on.
This method is based on a phrase table interpolation.
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Kurzfassung

In dieser Arbeit werden verschiedene Methoden zur Schätzung der Übersetzungs-
wahrscheinlichkeiten von Phrasen in statistischer maschineller Übersetzung (SMT)
präsentiert und verglichen.

Ein phrasenbasiertes SMT-System zerlegt einen Quellsatz in kontinuierliche Seg-
mente und übersetzt die Segmente (Phrasen) einzeln. Die Phrasentabelle, welche
die bilingualen Phrasenpaare und die dazugehörigen Wahrscheinlichkeiten enthält,
ist ein wichtiger Bestandteil eines solchen Systems. Für das Training der Über-
setzungswahrscheinlichkeiten werden verschiedene Techniken untersucht, die im
Gegensatz zu den Heuristiken konventioneller Systeme konsistent mit dem Suchver-
fahren für die freie Übersetzung sind. Durch Kombination eines konventionellen
Systems mit neuartigen Phrasenmodellen wird eine Methode entwickelt, die in allen
durchgeführten Versuchen vergleichbare oder bessere Übersetzungen liefert als die
Baseline. Konventionelle Systeme basieren auf Phrasen, die heuristisch aus Wort-
alignierten bilingualen Korpora extrahiert werden. Die Qualität der Übersetzungen
hängt deswegen stark von der Qualität der zugrunde liegenden Wort-Alignments
ab. In dieser Arbeit werden mehrere neuartige Phrasenmodelle eingeführt und eine
Technik für deren Training entwickelt. Anders als in bisherigen Ansätzen wird von
der Leaving-One-Out-Methode Gebrauch gemacht, um Überanpassung zu vermei-
den. Sowohl für bilinguale Übersetzungswahrscheinlichkeiten als auch für mono-
linguale A-Priori-Verteilungen werden Modelle eingeführt. Darüber hinaus werden
verschiedene Strategien untersucht, die im Training gewonnenen Informationen in
das heuristische Modell einzubinden. In weiteren Experimenten wurde der Einfluss
der Initialisierung auf die Übersetzungen geprüft, sowie mithilfe des Trainingsver-
fahrens neue Wort-Alignments generiert.

Die verschiedenen Ansätze werden auf zwei Datensätzen verglichen, einem kleinen
Chinesisch-Englischen Korpus und einem Deutsch-Englischen Korpus mittlerer Grös-
se. Auf dem Deutsch-Englischen Datensatz führen Die eingeführten Phrasenmodelle
zu einer Verbesserung der Übersetzungsqualität gegenüber der Baseline. Weit-
erhin wird eine Methode entwickelt, die in allen Versuchen vergleichbare oder
bessere Übersetzungen produziert als die Baseline und auf der Interpolation von
Phrasentabellen basiert.
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1 Introduction

1.1 Statistical Machine Translation

Machine Translation (MT) is the task of automatically producing a translation in
one natural language from a given text written in another natural language. In spite
of the research devoted to this topic in the past decades it is still considered to be
an unsolved problem. But even though with current technology it is not possible
to build a system that produces high quality translations regardless of domain, we
can make good use of automation in a number of translation related tasks.

For information retrieval for example, a precise translation of a document may not
be necessary. To get a rough idea of the contents of a text in a foreign language, a
sketchy and potentially flawed translation can be sufficient for a human reader.

Another possible application is to aid human translators in their work. Providing
them with one or several suggested preliminary translations can speed up their
efforts.

Some translation tasks require understandable translations, but only on a limited
domain. This restricts the vocabulary and thus reduces the complexity of the
process. Exchanging travel information and making appointments are two examples
of such tasks.

We distinguish between two conceptually different approaches to machine transla-
tion.

• Rule-based Approach:
For rule-based systems human experts devise a set of fixed rules which are
used to transform a text into an intermediary representation from which the
translation is produced. To condense the semantics of a sentence, these rules
can exploit syntactical structures and morphological dependencies. However,
in order to capture the complex interdependencies within a natural language,
a large number of rules is required. Producing this set of rules is a time con-
suming process and ensuring consistency gets more and more difficult as the
number of rules increases.

1



1 Introduction

• Data-driven Approach:
In the data-driven approach we use bilingual and monolingual corpora as a
main knowledge source. Here, MT is treated as a statistical decision prob-
lem. Given a source language sentence, the system has to decide for the best
translation in the target language. We model the underlying probability dis-
tributions, tune the models on the data from our knowledge source and make
use of statistical decision theory to address the problem.

In this work the statistical approach is taken. Statistical decision theory is a well
understood field, providing us with sound ways of combining knowledge sources to
construct a global decision criterion and growing in reliability as more and bigger
training corpora become available.

One important method for statistical machine translation (SMT) provided by deci-
sion theory is the Bayes decision rule. Given a source language sentence fJ

1 = f1 . . . fJ

which is to be translated into a target language sentence eI
1 = e1 . . . eI , we choose the

hypothesis êÎ
1 which maximizes the posterior probability Pr(eI

1|f
J
1 ) [Och & Ney 02]:

êÎ
1 = arg max

I,eI
1

{

Pr(eI
1|f

J
1 )

}

(1.1)

With the decision rule specified, three problems have to be addressed in SMT
[Ney 01]:

• the modeling problem, i.e. how to structure the dependencies of source
and target language sentences;

• the search problem, i.e. how to find the best translation candidate among
all possible target language sentences;

• the training problem, i.e. how to estimate the free parameters of the models
from the training data.

In this work we will concentrate on a specific aspect of the training problem, namely
the training of the phrase translation table which will be introduced in Section 2.1.

2



1.2 Related work

1.2 Related work

Our research focuses on two central points: Generative phrase models and the use
of forced alignment to train them. In this section we will review some previous
work on these topics.

[DeNero & Gillick+ 06] give a detailed analysis of the difficulties with training a
generative phrase model. They introduce a model similar to one we propose in
Section 4 and train it with the Expectation-Maximization (EM) algorithm (cf.
[Dempster & Laird+ 77]). Their results show that it can not reach a performance
competitive to extracting a phrase table from word alignment by simple surface
heuristics [Zens & Och+ 02]. Several reasons are revealed in [DeNero & Gillick+ 06].
When given a correct phrase segmentation and alignment for a bilingual sentence
pair we can not assume that competing segmentations are wrong. This stands in
contrast to word-based translation models, where we can assume only one word
alignment to be correct. As a result, different segmentations are recruited for dif-
ferent examples during training. That in turn leads to overfitting which shows in
overly determinized estimates of the phrase translation probabilities. Furthermore
they found that the trained phrase table shows a highly peaked distribution in
opposition to the flat distribution given by the surface heuristic, which leads to
undesired effects at decoding time. Our work differs from [DeNero & Gillick+ 06]
in a number of ways, addressing those problems. To limit the effects of overfitting,
we apply the leaving-one-out method in training. In addition to that we do not
restrict the training to phrases consistent with the word alignment, as was done
in [DeNero & Gillick+ 06]. Thus we allow recovery from flawed word alignments.
Thirdly, our models address the problem of competition between equally correct
phrase segmentations by integrating into our estimates a number of different seg-
mentations for each training sentence.

In [Liang & Buchard-Côté+ 06] a discriminative translation system is described.
For training of the parameters for the discriminative features they propose a strat-
egy they call bold updating. It is similar to our training procedure, the forced
alignment method which we describe in Section 3.1.

Forced alignment can also be utilized to train a phrase segmentation model, as is
shown in [Shen & Delaney+ 08]. They report small but consistent improvements
by incorporating this segmentation model, which works as an additional prior prob-
ability on the monolingual target phrase. We will consider this method to refine
our model in Section 4.3.3.

3



1 Introduction

1.3 Outline of this work

This work is structured as follows. In Chapter 2 we will review the principles of
phrase-based statistical machine translation, give a detailed account of the RWTH
system used for experimenting and describe the state-of-the-art method for esti-
mating phrase translation probabilities, which will serve as our baseline. Chapter
3 concentrates on the topic of training our phrase models, and the forced align-
ment method which is applied for this purpose. The novel feature functions and
generative phrase models we propose are specified in Chapter 4. We compare the
performance of our novel models experimentally on two standard data sets in Chap-
ter 5. After reviewing the applied evaluation metrics, we will give an account of
the data sets and the experimental setup and discuss the results. In Chapter 6 we
give a summary and an outlook on possible future work.

4



2 Phrase-based SMT

2.1 Phrases

The first approaches to SMT were single-word based (SWB). In SWB machine
translation each word is translated by itself and contextual information is provided
by the language model only.

To better capture local context, recent SMT systems make use of a phrase trans-
lation table and consider whole phrases to be translated as a unit. Here, a phrase
is understood as a contiguous sequence of words. When given a source sentence
the system will first segment it into phrases, look up each of the phrases in the
phrase translation table and produce the target sentence by piecing together the
translation phrases. Figure 2.1 shows an example of a phrase-based translation
[Zens & Och+ 02].

Formally, for a given sentence pair (fJ
1 , eI

1), we define a segmentation into K phrase
pairs as follows:

k → sk := (ik; bk, jk), for k = 1, . . . , K (2.1)

SOURCE: abends würde ich gerne entspannen und vielleicht in die Sauna gehen .

source segmentation translation

abends in the evening
würde ich gerne entspannen I would like to relax
und and
vielleicht in die Sauna gehen maybe go to the sauna
. .

TARGET: in the evening I would like to relax and maybe go to the sauna .

Figure 2.1. Example for phrase-based translation.

5



2 Phrase-based SMT
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Figure 2.2. Illustration of phrase segmentation.

Here ik denotes the last position of the kth target phrase and the pair (bk, jk)
denotes the start and end positions of the source phrase which is aligned to the kth
target phrase. We set i0 := 0 and j0 := 0. In our definition all words in source and
target sentence have to be covered by exactly one phrase.

Given the sentence pair (fJ
1 , eI

1) and the segmentation sK
1 we define the bilingual

phrase pairs as:

ẽk := eik−1+1 . . . eik (2.2)

f̃k := fbk
. . . fjk

(2.3)

Figure 2.2 illustrates this notion of phrase segmentation. Note that our definition of
the segmentation sK

1 explicitly contains the information on phrase-level reordering.
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2.2 The RWTH System

2.2 The RWTH System

2.2.1 Source-channel approach

When given a source sentence fJ
1 we apply the Bayes decision rule and choose

the target sentence eI
1 which maximizes the posterior probability as specified in

Equation (1.1). In the source-channel approach to SMT the posterior probability
is decomposed into two knowledge sources [Brown & Cocke+ 90]:

êÎ
1 = arg max

I,eI
1

{

Pr(eI
1|f

J
1 )

}

(2.4)

= arg max
I,eI

1

{

Pr(eI
1) · Pr(fJ

1 |e
I
1)

}

(2.5)

In this decomposition the target language model Pr(fJ
1 ) and the translation model

Pr(fJ
1 |e

I
1) are considered separately. The target language model caters for the

target language sentence to be well formed, while the translation model describes
the dependencies between source language sentence and target language sentence.

2.2.2 Log-linear modeling

The log-linear model is a generalization of the source-channel approach. We can
incorporate an arbitrary number M of models hm(·, ·, ·), m = 1 . . .M , and use
scaling factors λm to assign them different weights:

Pr(eI
1|f

J
1 ) =

∑

K,sK
1

exp

( M
∑

m=1

λmhm(eI
1, s

K
1 , fJ

1 )

)

∑

I′,e′I
′

1
,K′,s′K

′

1

exp

( M
∑

m=1

λmhm(e′
I′

1 , s′
K′

1 , fJ
1 )

)

(2.6)

≈ max
K,sK

1

exp

( M
∑

m=1

λmhm(eI
1, s

K
1 , fJ

1 )

)

∑

I′,e′I
′

1
,K′,s′K

′

1

exp

( M
∑

m=1

λmhm(e′
I′

1 , s′
K′

1 , fJ
1 )

)

(2.7)

In practice, instead of carrying out the sum over all segmentations sK
1 we apply the

maximum approximation. The denominator can be omitted during search, as it is

7



2 Phrase-based SMT

a normalization factor that depends only on the source language sentence fJ
1 . As

a decision rule we obtain:

êÎ
1 = arg max

I,eI
1
,K,sK

1

{

M
∑

m=1

λmhm(eI
1, s

K
1 , fJ

1 )

}

(2.8)

The model scaling factors λM
1 are trained by minimum error rate training (MERT)

as described in Section 2.2.5.

2.2.3 Models

Phrase translation model

The phrase translation model is the main focus of this work. It assigns an estimated
probability p(f̃ |ẽ) to each pair of target and source phrase (f̃ , ẽ). We will examine
different ways of estimating these probabilities in Sections 2.3 and 4.

The corresponding feature function hPhr(·, ·, ·) is composed of the translation prob-
abilities of the phrases given by the segmentation sK

1 [Mauser & Zens+ 06]:

hPhr(e
I
1, s

K
1 , fJ

1 ) = log
K
∏

k=1

p(f̃k|ẽk) (2.9)

This model is used in both translation directions p(f̃ |ẽ) and p(ẽ|f̃) to achieve sym-
metry. The inverse model is:

hiPhr(e
I
1, s

K
1 , fJ

1 ) = log
K
∏

k=1

p(ẽk|f̃k) (2.10)

Word-based lexicon model

In the word-based model, the score for a phrase pair (f̃ , ẽ) is computed similar
to the IBM model 1 [Brown & Pietra+ 93], but the sum is carried out within the
phrase pair only instead of over the whole target sentence:

8



2.2 The RWTH System

hLex(eI
1, s

K
1 , fJ

1 ) = log
K
∏

k=1

jk
∏

j=bk

ik
∑

i=ik−1+1

p(fj |ei) (2.11)

To estimate the word translation probabilities p(f |e) we use relative frequencies
from the word-aligned training corpus. This model is also used in both translation
directions p(f |e) and p(e|f).

Word and phrase penalty model

In order to be able to adjust average phrase and sentence length, we introduce two
simple heuristics, the word penalty and the phrase penalty:

hWP (eI
1, s

K
1 , fJ

1 ) = I (2.12)

hPP (eI
1, s

K
1 , fJ

1 ) = K (2.13)

Target language model

A standard n-gram language model is used, trained by the SRI language modeling
toolkit [Stolcke 02]. This is the resulting feature function:

hLM (eI
1, s

K
1 , fJ

1 ) = log
I

∏

i=1

p(ei|e
i−1
i−n+1) (2.14)

As a smoothing technique the modified Kneser-Ney discounting with interpolation
is applied [Kneser & Ney 95]. Depending on the size of the data set we use either
a 4-gram or a 6-gram language model for our experiments, which in our experi-
ence provide a good compromise between translation quality and computational
complexity.

Reordering model

The reordering model assigns costs based on the distance from the end position of
a phrase to the start position of the next phrase. There is an upper limit D on the
jump width:

9



2 Phrase-based SMT

hRM (eI
1, s

K
1 , fJ

1 ) =
K

∑

k=1

qDist(bk, jk−1) (2.15)

with

qDist(j, j
′) :=

{

|j − j′ + 1| if |j − j′ + 1| < D

∞ else
(2.16)

We define bK+1 := J + 1, so the sum includes a jump from the last position of the
final phrase to the sentence end.

2.2.4 Search

In search, our goal is to find the maximizing argument of the Bayes decision rule
(cf. Equation (2.8)).

We have to decide on [Zens 08]:

• the number K of phrases

• the segmentation of the source sentence into phrases

• the permutation of the phrases

• the phrase translation ẽ for each source phrase f̃

To find the best hypothesis, we make use of dynamic programming [Bellman 57].
As enumeration of all target language sentences is infeasible, approximations have
to be made which are realized by the beam search technique [Jelinek 97].

We can interpret the search as a sequence of decisions (ẽk, bk, jk), k = 1 . . .K. The
hypotheses are generated step by step by choosing a source phrase f̃k with start
position bk and end position jk and its translation ẽk. To ensure that there are
no gaps or overlaps in the produced target sentence, we keep track of the source
positions we have already visited in the coverage set C ⊆ {1, . . . , J}.

The search space can be represented as a graph, where the states are labeled with
coverage sets C and the arcs are labeled with the decisions (ẽk, bk, jk). The hypothe-
sis translations are paths through the graph, starting in the initial state C = ∅ and
terminating in the goal state C = {1, . . . , K}.

In our log-linear framework, we can compute the score of the decision sequence by
summing the scores of the individual decisions. For the phrase model, the word-
based model and the word and phrase penalties, these scores are solely dependent

10



2.2 The RWTH System
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Figure 2.3. Illustration of the search. German input sentence: ’Wenn ich eine Uhrzeit vorschlagen
darf?’. English translation: ’If I may suggest a time of day?’ In each node, we store the
coverage (as a bitvector), the end position of the current phrase and the language
model history (here: bigram). Dashed edges are recombined. The best path is marked
in red. Scores are omitted. Taken from [Zens 08].

on the chosen phrase pair (f̃k, ẽk). For the language model and reordering model
score we require some information on the decisions taken previously. Therefore we
introduce additional labeling for the states, namely the end position of the previous
source phrase and the language model history. If we use an n-gram language model,
the language model history is defined as the last (n−1) words of the target sentence
generated up to the current state. Thus, each state is identified by a triple (C, ẽ, j),
where C denotes the coverage set, ẽ the language model history and j the end
position of the previous source phrase. We call the computation of the successor
states of a given state (C, ẽ, j) hypothesis expansion. An example for this search
graph is shown in Figure 2.3.

The search problem is equivalent to finding the optimum path within the described
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2 Phrase-based SMT

search graph. As each state is assigned a score which can be computed from its
predecessor states, this allows us to apply dynamic programming to find the solu-
tion. The size of the search graph, however, is exponential in the source sentence
length and it has been shown in [Knight 99] that the search problem is NP-hard.

Beam search is a feasible method to find a good approximation for the solution.
The idea is to expand only the most promising hypotheses at each point during
search. The process of discarding the other hypotheses is called pruning. This
requires us to be able to estimate the rest costs for a given hypothesis, for which
purpose we use the heuristics described in [Zens 08], pp. 57-59.

The search is being carried out synchronous to the cardinality of the coverage set
C. This means we first produce all hypotheses which translate one source position,
then the hypotheses which translate two source positions etc. At each stage we
apply pruning on several levels.

We distinguish two kinds of hypotheses:

• Lexical hypothesis (C, ẽ, j). A lexical hypothesis is identified by a coverage
C, a language model history ẽ and the end position j of the previous source
phrase.

• Coverage hypothesis C. We will refer to the set of all lexical hypotheses
with the same coverage C as the coverage hypothesis.

Figure 2.4 illustrates the source cardinality synchronous search strategy.

Two pruning variants are used: histogram pruning [Steinbiss & Tran+ 94] and
threshold pruning. In histogram pruning, we limit the total number of hypotheses,
keeping only the N best ones. Threshold pruning will keep only those hypotheses
scoring close enough to the one with the highest score, according to some threshold
parameter. Let Qmax be the maximum score of a hypothesis on a given level and
τ the threshold parameter. Then we will keep a hypothesis with score Q iff:

Q + τ ≥ Qmax (2.17)

Both Q and Qmax include a rest cost estimate if applicable. We apply four different
pruning strategies:

1. Observation pruning. Before the actual search starts, we limit the number
of translation options per source phrase. The scores used for pruning include
a within-phrase estimate of the language model score, which restricts the
language model history to the length of the phrase. This is the only pruning
strategy where no rest cost estimate is included in the scores.

12



2.2 The RWTH System

c−1c−2 c c+1
Figure 2.4. Illustration of the search. For each cardinality, we have a list of coverage hypotheses

(boxes). For each coverage hypothesis, we have a list of lexical hypotheses (circles). A
hypothesis with cardinality c can be generated by expanding a hypothesis of cardinality
c − 1 with a one-word phrase, by expanding a hypothesis of cardinality c − 2 with a
two-word phrase etc. Taken from [Zens 08].

2. Lexical pruning per coverage. At this level, we consider all lexical hy-
potheses with the same coverage C. They may differ in their language model
history ẽ or the end position j of the previous phrase.

3. Lexical pruning per cardinality. Here, all lexical hypotheses with the
same cardinality are taken into account, which therefore may differ in their
coverage C.

4. Coverage pruning per cardinality. In this case, all coverage hypotheses
with the same cardinality are considered. The score of a coverage hypothesis
C is the maximum score of any lexical hypothesis with coverage C.

To further reduce the search space, we adapted the word-based IBM reordering

13
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uncovered position for extension

covered position

uncovered position

J1 j

Figure 2.5. Illustration of the IBM reordering constraints. Taken from [Tillmann & Ney 00].

constraints [Berger & Brown+ 96] for our phrase-based framework. We will start
by describing the original IBM constraints.

In the beginning each position in the source sentence is uncovered. The source
positions are processed from left to right and it is allowed to skip a position and
return to it at a later point. The next position always has to be one of the k first
uncovered positions in the sentence so that there are never more than k−1 skipped
positions. Figure 2.5 illustrates this. The x-axis represents the source sentence
positions, uncovered positions are marked with unfilled circles and covered positions
with filled circles. Candidates for the next extension are shown as squares.

For the phrase-based framework we adapt the IBM constraints. It is permitted to
skip k − 1 blocks rather than single positions. This means we allow for up to k − 1
gaps in the coverage. For a coverage C we have to check the following condition
during search:

∣

∣{j > 1|j ∈ C ∧ j − 1 /∈ C}
∣

∣ < k (2.18)
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2.3 Phrase extraction from word alignment

Note that there is no constraint on the number of phrases for filling the gaps.
A detailed description of the complete search procedure, including all dynamic
programming recursion equations, can be found in [Zens 08], pp. 47-80.

2.2.5 Minimum error rate training (MERT)

The goal of MERT is to find scaling factors λM
1 , such that the system will produce

good translations on a bilingual corpus with respect to some evaluation measure.
In our experiments, we chose Bleu score [Papineni & Roukos+ 02] and the devel-
opment set as the bilingual corpus. We will go into more detail on the subject of
evaluation metrics in Section 5.1.

We are given a bilingual data set (F ,R), consisting of a sequence of source sentences
F and a sequence of corresponding reference sentences R, and a function E(·, ·)
serving as an error measure. The error of a hypothesis translation E for the source
sentences F is given by E(R, E).

Thus we want to optimize the following criterion [Och 03]:

λ̂M
1 = arg min

λM
1

{

E(R, Ê(F , λM
1 ))

}

(2.19)

where Ê(F , λM
1 ) is the hypothesis translation for F produced by the system with

the parameters λM
1 .

The algorithm we used for this optimization is the downhill simplex method pro-
posed in [Nelder & Mead 65]. It guarantees local convergence, which is shown in
[Press & Teukolsky+ 02].

In our experiments, we restricted the translation system to monotonic phrasal align-
ment for the optimization. The scaling factor for the reordering model was therefore
not included in MERT, but adjusted by hand afterwards.

2.3 Phrase extraction from word alignment

2.3.1 Word alignment

Current state of the art to estimate the phrase translation probabilities p(f̃ |ẽ)
described in Section 2.2.3 is to extract the phrases from a word alignment.

15
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The word alignment describes, which words within a bilingual sentence pair cor-
respond to each other. Formally, given a sentence pair (eI

1, f
J
1 ), we define a word

alignment A as a relation over the word indices:

A ⊆ I × J (2.20)

We say ei is aligned to fj iff (i, j) ∈ A. Figure 2.6 shows an example for a word
alignment.

As a starting point for the phrase extraction method we are going to describe next,
we need a word alignment on the bilingual training corpus. We produce this word
alignment by training statistical alignment models using GIZA++ [Och & Ney 03]
for both translation directions and computing the Viterbi word alignments. Then
we merge the two alignments by applying the refined symmetrization method pro-
posed in [Och & Ney 03].

2.3.2 Phrase extraction

The set of bilingual phrases BP the system considers to be translations of each
other are learned from the given word alignment A. For this we apply the alignment
template criterion from [Och & Ney 04]. Informally, we consider a phrase pair to
be consistent with the word alignment, if both phrases are contiguous and none of
the words within the phrase pair are aligned to words outside the phrase pair. A
phrase pair is extracted if it is consistent with the word alignment. Formally, we
get the following criterion for a given sentence pair (fJ

1 , eI
1) with alignment A:

BP(fJ
1 , eI

1, A) =
{

(f j2
j1

, ei2
i1

) : ∀(j, i) ∈ A : j1 ≤ j ≤ j2 ↔ i1 ≤ i ≤ i2

∧ ∃(j, i) ∈ A : j1 ≤ j ≤ j2 ∧ i1 ≤ i ≤ i2

}

(2.21)

Figure 2.7 shows the complete list of phrases that can be extracted from the word
alignment given in Figure 2.6.

In practice, the length of the extracted phrases is restricted to constrain the size of
the phrase table. We define the length of a phrase f̃ to be the number of its words
and denote it with |f̃ |. A phrase pair (f̃ , ẽ) is only stored in the phrase table if
|f̃ | ≤ fmax and |ẽ| ≤ emax.

The parameters fmax and emax are hand-adjusted to fit the language pair. Typical
values are fmax = 5 and emax = 10 for German-English and fmax = 6 and emax = 12
for Chinese-English.
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well

,

hello

.

j
a ,

g
u
t
e
n

T
a
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Figure 2.6. Word aligned sentence pair.

source phrase target phrase

ja well
ja, well,
ja, guten Tag well, hello
ja, guten Tag. well, hello.
, ,
, guten Tag , hello
, guten Tag. , hello.
guten Tag hello
guten Tag. hello.
. .

Figure 2.7. List of extracted phrases.

2.3.3 Heuristic phrase count model

The next step is to assign translation probabilities p(f̃ , ẽ) to the extracted phrase
pairs. In our baseline system, relative frequencies are used for the estimation. For
a word-aligned training data set the phrase translation probabilities are given by:

pH(f̃ |ẽ) =
NH(f̃ , ẽ)

N(ẽ)
(2.22)

Here, NH(f̃ , ẽ) denotes the number of co-occurrences of the phrase pair (f̃ , ẽ) in
the bilingual training data that are consistent with the word alignment. If there
are non-aligned words in the sentence, one occurrence of a target phrase ẽ can
have N > 1 possible translations. In this case each of them contributes to N(f̃ , ẽ)
with 1/N . Note that therefore the count N(f̃ , ẽ) may differ from the corresponding
count in the inverse direction N(ẽ, f̃). Figure 2.8 illustrates an example of these
effects. There are three different target phrases ẽ that can be extracted as possible
translations for the source phrase f̃ = ’eine Uhrzeit’. In the inverse translation
direction, each of them contributes to N(ẽ, f̃) with 1/3. In the original translation
direction, however, each of them contributes to N(f̃ , ẽ) with 1, as ’eine Uhrzeit’ is
the only source phrase consistent with the word alignment for the target phrases
in question.

The marginal count N(ẽ) =
∑

eI
1
∈R |{(i1, i2) : ẽ = ei2

i1
}| is the number of occur-

rences of the phrase ẽ on the target side R of the training corpus. Also note that
N(ẽ) ≥

∑

f̃ N(f̃ , ẽ), as there may be occurrences of the target phrase with no con-

sistent source phrase, which contribute to N(ẽ) but not to the joint count N(f̃ , ẽ).
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Figure 2.8. Illustration of the different target phrases ẽ that can be extracted as possible
translations for the source phrase f̃ = ’eine Uhrzeit’.

Due to this fact the heuristic phrase model does not yield an actual probability
distribution over the set of source phrases f̃ , as the summation to unity constraint
is violated.
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3 Training

In Section 2 we have described a statistical machine translation system which re-
flects the current state of the art. However, one of its main components, the phrase
translation model (cf. Section 2.2.3), is based on a heuristic estimation of phrase
counts from word alignment data. Our goal is to introduce a phrase translation
model which is independent of this kind of previous determination. For that pur-
pose we adapt the translation decoder to produce a phrase level alignment on the
training data, from which we can compute real phrase counts rather than having
to estimate them from lower-level information. Figure 3.1 illustrates the training
procedure.

3.1 Forced alignment

To train new phrase models we apply a method we call forced alignment (FA),
which is based on the translation decoder described in Section 2. We are given
a bilingual training corpus. For each sentence pair (fJ

1 , eI
1) our goal is to find a

corresponding phrase segmentation ŝK̂
1 .

Two problems have to be solved: the segmentation problem and the phrase align-
ment problem. The phrase alignment problem corresponds to the word alignment
problem which has been widely studied in the context of training word transla-
tion models [Brown & Pietra+ 93]. The difference is that we have two sequences of

Word Alignment Phrase Segmentation
and Alignment

Heuristic
Phrase Translation
Model

Training
(Forced Alignment)

extract
phrases initialize

Figure 3.1. Illustration of the training procedure.
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3 Training

SOURCE: 明早 去 巴黎 然后 再 转 瑞士 航空 公司 下午 的 飞机 怎么样 ?

REFERENCE:
how about leaving for paris tomorrow morning and transferring to the swissair
afternoon flight ?

Figure 3.2. Example segmentation for a sentence from the IWSLT training data set.

phrases rather than words that need to be aligned to each other. The segmentation
problem is specific to phrase-based translation. Source and target sentence have
to be segmented into phrases. Figure 3.2 shows an example of a phrase segmenta-
tion and alignment for a sentence pair from the IWSLT Chinese-English data (cf.
Chapter 5.2).

The implementation of forced alignment is straightforward. We use the same system
as for translation, but constrain the search to the reference sentence eI

1. Analogous
to Pr(eI

1|f
J
1 ) in Equation 2.6 we model the probability distribution over the seg-

mentations in the following way:

Pr(sK
1 |eI

1, f
J
1 ) =

exp

( M
∑

m=1

λmhm(eI
1, s

K
1 , fJ

1 )

)

∑

K′,s′K
′

1

exp

( M
∑

m=1

λmhm(eI
1, s

′K
′

1 , fJ
1 )

)

(3.1)

The decision rule for the best phrase segmentation is analogous to Equation (2.8):

ŝK̂
1 = arg max

K,sK
1

{

M
∑

m=1

λmhm(eI
1, s

K
1 , fJ

1 )

}

(3.2)

To distinguish it from the true distribution Pr(sK
1 |eI

1, f
J
1 ) we will denote the model

distribution estimated by forced alignment with pFA(sK
1 |eI

1, f
J
1 ).
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3.2 Leaving-one-out

Table 3.1. Average number of candidate phrases that match the given source sentence fJ
1 in

translation compared to the number of phrases that match the given sentence pair
(fJ

1 , eI
1) in FA for the IWSLT training data set (cf. Section 5.2).

# candidate phrases

translation 6473
forced alignment 133

Although search remains a hard problem, if implemented in the right way the re-
striction on only a single target sentence can reduce the search space and thus
computational load and memory usage considerably in comparison with transla-
tion. In the phrase matching phase for unconstrained search the decoder filters all
candidate phrase pairs (f̃ , ẽ) from the phrase table, for which the source phrase f̃
can be found in the source sentence fJ

1 . In FA the phrase matching can be applied
to both source and target side. Table 3.1 compares the average number of candidate
phrases per sentence for unconstrained search and forced alignment for the IWSLT
data set.

In addition to that, we can ignore the target language model hLM (·, ·, ·) as it is
constant if the target sentence remains fixed. The scaling factors λM

1 for FA are
the same as used for translation.

3.2 Leaving-one-out

3.2.1 Motivation

The training data set is used for both the initialization of the translation model
p(f̃ |ẽ) as for the phrase model training. While in this way we can make full use of the
available data and avoid unknown words during training, it has the drawback that
it can lead to overfitting. If the initialization is done with the heuristic described
in Section 2.3, all phrases extracted from a specific sentence pair (fJ

1 , eI
1) can be

used for the segmentation of (fJ
1 , eI

1). This includes longer phrases, which only
match a few sentences in the data. Therefore those long phrases are trained to
fit the few corresponding sentence pairs, strongly overestimating their translation
probabilities and failing to generalize. The length of the used phrases is an indicator
of this kind of overfitting, as the number of matching training sentences decreases
with increasing phrase length. We can see an example in Figure 3.3 where the
sentence is segmented into only two phrases.

21



3 Training

Figure 3.3. Top scoring segmentation in FA without leaving-one-out.

A possible way to reduce the described overfitting effects would be to simply restrict
the phrase length. However, [DeNero & Gillick+ 06] have presented results that
indicate this might not be enough. They experienced the same kind of overfitting
with short phrases due to the fact that the same word sequence can be segmented in
different ways, leading to specific segmentations being learned for specific training
sentence pairs. Therefore we propose a different approach to deal with this problem.
We will first take a closer look at the effects leading to overfitting in training on
the example of initialization with the heuristic described in Section 2.3.

For a sentence pair (fJ
1 , eI

1) with word alignment A the segmentation sK
1 which

segments the whole sentence as a single phrase pair (f̃ , ẽ) = (fJ
1 , eI

1) is always
consistent with A and will therefore be extracted by the heuristic. If the same
target sentence eI

1 does not appear in the data set a second time, the relevant
counts are

NH(f̃ , ẽ) = N(ẽ) = 1, (3.3)

where NH(f̃ , ẽ) and N(ẽ) are the heuristic phrase count and the monolingual phrase
count we defined in Section 2.3. Therefore, the heuristic estimates the translation
probability to be

pH(f̃ |ẽ) =
NH(f̃ , ẽ)

N(ẽ)
= 1, (3.4)

where pH(f̃ |ẽ) is the heuristic estimation of the phrase translation probability as
defined in Equation (2.22). As a result, in training there is a strong bias towards
the segmentation as a single phrase, and more generally towards segmentations
with long phrases, leaving us with a skewed model distribution pFA(sK

1 |eI
1, f

J
1 ). To

overcome this problem, we apply the leaving-one-out method (l1o).
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3.2 Leaving-one-out

Table 3.2. Avg. target phrase lengths in FA with and without standard leaving-one-out on the
IWSLT training data.

avg. phrase length

without l1o 5.2
with l1o 2.0

The idea of leaving-one-out is the following. When we compute the forced align-
ment, the current sentence pair (fJ

1 , eI
1) is removed from the training data from

which the phrase translation probabilities p(f̃ |ẽ) are estimated. This means we
have to compute a different phrase table for each sentence pair in the training data.
We do this by appropriately reducing the overall phrase counts of the phrases that
can be extracted from the current sentence pair (fJ

1 , eI
1). The heuristic phrase count

model pH(f̃ , ẽ) is then re-estimated from those counts. Table 3.2 shows the average
phrase length used in FA on the IWSLT training data with and without leaving-
one-out. We can clearly see the reduction of phrase lengths. Our results in Section
5.3.2 show that leaving-one-out is superior to a simple restriction of phrase length.

3.2.2 Implementation

Before we start the training, the heuristic monolingual and bilingual phrase counts
NH(f̃ , ẽ) and N(ẽ) are initialized from the whole training data. Considering a
single sentence pair (fJ

1 , eI
1) in training, we define N̄H(f̃ , ẽ) and N̄(ẽ) to be the

local counts which (fJ
1 , eI

1) contributed to the overall counts NH(f̃ , ẽ) and N(ẽ).
These local counts can easily be computed from the current sentence pair (fJ

1 , eI
1)

and the corresponding word alignment A. Now we only have to subtract the local
counts N̄H(f̃ , ẽ) and N̄(ẽ) from the initial counts NH(f̃ , ẽ) and N(ẽ) and we can
re-estimate the phrase translation probabilities with:

p̄H(f̃ |ẽ) :=
NH(f̃ , ẽ) − N̄H(f̃ , ẽ)

N(ẽ) − N̄(ẽ)
(3.5)

An additional effect of this re-estimation is the loss of singleton phrases. Whenever
we encounter a phrase or phrase pair which does not appear in the data set a second
time, the re-estimated phrase counts (NH(f̃ , ẽ)− N̄H(f̃ , ẽ)) and (N(ẽ)− N̄(ẽ)) can
both become zero, forcing us to remove those phrase pairs from the phrase table.
This can render it impossible for the decoder to produce a segmentation sK

1 for a
sentence pair (fJ

1 , eI
1) containing singleton phrases and thus deprive us of a part of
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Figure 3.4. Top scoring segmentation in FA with standard leaving-one-out and with standard
reordering model for the sentence from Figure 3.2. Incorrect phrase alignments are
marked with red.

the training data. We found this part to be roughly 10% of the whole set on the
IWSLT data described in Section 5.2. Therefore, instead of removing the phrases
in question from the phrase table, we assigned them a very low probability. We
experimented with two different methods of choosing this probability.

• Standard leaving-one-out. We assign a fixed probability α close to zero
to singleton phrase pairs.

p̄H(f̃ |ẽ) :=







α if NH(f̃ , ẽ) = N̄H(f̃ , ẽ)

NH(f̃ , ẽ) − N̄H(f̃ , ẽ)
N(ẽ) − N̄(ẽ)

else
(3.6)

• Length-based leaving-one-out. The probability we assign to singleton
phrase pairs is computed from a fixed probability β and the summed lengths
of source phrase f̃ and target phrase ẽ.

p̄H(f̃ |ẽ) :=







β(|f̃ |+|ẽ|) if NH(f̃ , ẽ) = N̄H(f̃ , ẽ)

NH(f̃ , ẽ) − N̄H(f̃ , ẽ)
N(ẽ) − N̄(ẽ)

else
(3.7)

For our example, we can see in Figure 3.4 that with standard leaving-one-out the
FA produces much shorter phrases. However, standard leaving-one-out has the
drawback that in all sentences containing singletons the phrase translation model
is again strongly biased towards segmenting the whole sentence as a single phrase
pair. This is due to the fact that in each possible segmentation there is always
at least one phrase pair (f̃ , ẽ) with the low model probability p̄H(f̃ |ẽ) = α which
is also assigned to the phrase pair spanning the whole sentence: p̄H(fJ

1 |e
I
1) = α.

This is remedied by the length-based leaving-one-out method, where longer phrases
are assigned lower model probabilities. Therefore singleton phrases can be learned
from knowledge about phrase pairs from other sentences.
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3.3 Reordering during training

SOURCE: 这 架 相机 怎么样 ?

phrase translation model translation

heuristic model how about this camera ?
trained model does this camera ?

REFERENCE: how about this camera ?

Figure 3.5. Example from IWSLT development set. The weighted count model (cf. Section 4.3.2)
serves as the trained model.

Figure 3.6. Different segmentations of the example shown in Figure 3.5. The left hand
segmentation is produced by the weighted count model, the right hand segmentation by
the heuristic. Incorrect phrase translations are displayed in red.

3.3 Reordering during training

Consider the example from the IWSLT development data set (cf. Section 5.2) shown
in Figure 3.5 which contrasts the translations produced by the heuristic phrase
model described in Section 2.3 with the one produced by the trained model which
will be specified in Section 4.3.2. The corresponding phrase segmentations are
displayed in Figure 3.6. For this example the heuristic model translates the source
sentence correctly, whereas the trained model produces an incorrect translation.
A closer look at the phrase tables reveals the reason for the incorrect translation
by the trained phrase model: The inverse translation probability for the phrase
(’怎么样 ? ’,’? ’) is overestimated (cf. Table 3.3). The better segmentation on the
right hand side in Figure 3.6 translates ’怎么样’ with ’how about ’.

Table 3.3. Phrase translation probabilities for the relevant phrase from the example in Figure 3.5.

phrase model p(’怎么样 ?’|’?’) p(’?’|’怎么样 ?’)
heuristic model 0.0013 0.11
trained model 0.00072 0.70
trained model with λRM = 0 0.00032 0.54
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Figure 3.7. Top scoring segmentation for the sentence from Figure 3.2 produced by FA with
standard leaving-one-out and λRM = 0.

The overestimation can be traced back to several sentence pairs in the training data.
Figure 3.4 shows one of them together with the top scoring phrase segmentation
produced by forced alignment. We observe, that the Chinese phrase ’ 怎么样’ is
located at the end of the sentence, whereas the corresponding English phrase ’how
about ’ is the first phrase in the sentence. As a result, the correct segmentation is
strongly penalized by the reordering model hRM which is therefore not among the
top scoring in forced alignment. To remedy that, we propose to set the scaling
factor for the reordering model to λRM = 0. It can be argued that most of the
reordering information is contained in the words of the sentence pair and can be
found by the translation model alone. Therefore the reordering model may not be
needed to produce a segmentation sK

1 . Figure 3.7 shows the improved segmentation
for the training example resulting from setting the reordering penalty λRM = 0 and
in Table 3.3 we can see a slightly improved model probability.

3.4 Skips and Deletions

Another difficulty we are facing in training is that for some training sentences it
can be impossible for the decoder to find a good segmentation. This may be due to
non-literal translations or words from one language that do not have an equivalent
in the other language. Consider for example the sentence pair in Figure 3.8.

The problem in this example is the repetition of the word ’he’ in the English
sentence, whereas the corresponding ’他’ only appears once in the Chinese sentence.
This makes it difficult for the decoder to produce a good segmentation. As a possible
solution we suggest the introduction of a word omission model which would allow
the decoder to ignore target words which do not correspond to any word in the
source sentence and vice versa. In the following target word omissions will be
referred to as skips and source word omissions as deletions.

We propose a very simple model for skips and deletions. In training, the decoder
is allowed to omit single words. We introduce additional models hSKIP (·, ·, ·) and
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SOURCE: 他 袭击 我 之后 , 就 开 一 辆 白色 的 货车 走 了 .

REFERENCE: after he attacked me , he drove away in a white van .

Figure 3.8. Example from IWSLT training data set with top scoring segmentation from FA.
Incorrect phrase alignments are displayed in red.

Figure 3.9. Top scoring segmentation for the sentence from figure 3.8 produced by FA with skip
model.

hDEL(·, ·, ·) which assign a fixed value as a penalty for each omitted word:

hSKIP (eI
1, s

K
1 , fJ

1 ) = γSKIP · (# of skipped words) (3.8)

hDEL(eI
1, s

K
1 , fJ

1 ) = γDEL · (# of deleted words) (3.9)

Furthermore we introduce an upper limit CSKIP and CDEL respectively for words
that can be skipped or deleted in sequence. When experimenting with this model
we set CSKIP = CDEL = 1.

Figure 3.9 shows the top scoring segmentation of the example from Figure 3.8 with
the proposed skip model. Here, the additional ’he’ is skipped so that the decoder
can produce a more reasonable phrase segmentation.

3.5 Phrase extensions

As an alternative to the skip and deletion model we experimented with phrase
extensions. Instead of omitting the words in question we allow the decoder to
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extend phrases from the phrase table by a limited number of words with a fixed

penalty. We define cat(f j
1 , f ′j

′

1 ) := f1 · · · fjf
′
1 · · · f

′
j′ to be the concatenation of the

phrases f j
1 and f ′j

′

1 . When we extend a phrase f̃ by f ′j
′

1 , the phrase translation
probabilities remain constant:

p(cat(f̃ , f ′j
′

1 )|ẽ) := p(f̃ |ẽ) (3.10)

Extensions are possible on both source and target side, also at the same time, and
both at the front and the back of the phrases. The corresponding probabilities are
analogous to Equation (3.10). However, we introduce a model hEXT (·, ·, ·) which
assigns a constant penalty for each extension word:

hEXT (eI
1, s

K
1 , fJ

1 ) = γEXT · (total # of extension words) (3.11)

The maximum length of the extension phrase f ′j
′

1 is restricted by j′ ≤ CEXT . For
our experiments we set CEXT = 1.

Note that a phrase can only be extended if the resulting phrase pair does not
already exist in the phrase table, whereas there is no such restriction on the skip
and deletion words. Furthermore, the word-based model hLex(·, ·, ·) ignores omitted
words, while extended phrases are regarded in the same way as any other phrase.

3.6 Phrase table initialization

3.6.1 Heuristic

The heuristic phrase extraction described in Section 2.3 represents the state of the
art to estimate phrase translation probabilities in SMT. It is therefore our first
choice for the initialization of the phrase table in training. However, there are some
drawbacks to this.

Firstly, the quality of the phrase table is dependent on the provided word alignment.
Flawed word alignments can disallow extracting the correct phrase pairs from a
sentence pair and thus restrict the forced alignment procedure to choose from a
pool of poor phrase pairs. Secondly, especially for rare phrases the distribution is
already quite peaked and therefore contains a certain degree of determinism, which
can make it hard for incorrectly estimated phrase pairs to be unlearned in training.
An example is given in Table 3.4. It shows all phrase table entries for the Chinese
phrase ’ 公司 工作’ extracted from the IWSLT training data set. We can see that
the choice is limited to very few translations.
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Table 3.4. All phrase table entries for the Chinese phrase f̃ =’公司 工作’ extracted by the heuristic
from the IWSLT training data set.

f̃ ẽ pH(f̃ |ẽ) pH(ẽ|f̃)

公司 工作 company 0.023 0.10
公司 工作 working for 0.33 0.033
公司 工作 the company 0.17 0.033
公司 工作 working 0.018 0.033

3.6.2 PESA

As an alternative model to initialize the phrase table we considered the PESA model
proposed by [Vogel 05]. They argue that phrase alignment should be considered
separately from word alignment. Therefore, instead of a Viterbi word alignment
only a word translation table is needed for this model.

To estimate the translation probability for a phrase pair (f̃ , ẽ) = (f j2
j1

, ei2
i1

) in a given

sentence pair (fJ
1 , eI

1) the standard IBM1 alignment model [Brown & Pietra+ 93]
is modified. Both source and target sentence are split into two components which
are considered separately. One component models the likelihood of the phrase pair
by itself, whereas the other component models context information by considering
the rest of the sentence. This results in two numbers to be computed:

• Inner sum. For each word inside the source phrase we sum over the word
translation probabilities of target words within the candidate target phrase.

• Outer sum. For each word outside the source phrase we sum over the
word translation probabilities of target words outside of the candidate target
phrase.

Additionally, the position alignment probability, which is 1/I for the IBM1 model, is
modified to 1/|f̃ | = 1/(i2−i1+1) for the inner sum and to 1/(I−|f̃ |) = 1/(I−i2+i1−1)
for the outer sum. We receive the following sentence level model:

p̄PESA(f j2
j1
|ei2

i1
) =

j2
∏

j=j1

i2
∑

i=i1

1

i2 − i1 + 1
p(fj |ei)

·
∏

j /∈(j1···j2)

∑

i/∈(i1···i2)

1

I − i2 + i1 − 1
p(fj |ei) (3.12)
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1 Jj1 j2

1

I

i1

i2

Figure 3.10. Illustration of the PESA phrase translation model. The inner sum is marked in a dark
shade, the outer sum in light gray.

The inner and outer sum are illustrated in Figure 3.10.

Initialization with the PESA model rather than with the heuristic model can have
the following advantages. There is no restriction on the phrases that can be ex-
tracted by a possibly flawed word alignment, yielding a larger pool of phrase pairs
that can be chosen from in training. If we restrict the phrase length on the source
side to fmax = 6 and on the target side to emax = 12 we receive a PESA phrase table
with 254M entries for the IWSLT data set, in opposition to 2.2M for the heuristic
phrase table. In addition to that the overall distribution is softer than the one given
by the heuristic. Therefore it is easier for forced alignment to recover from badly
estimated phrase pairs. Table 3.5 shows the candidate phrases corresponding to
the example in Table 3.4 produced by the PESA model.

For efficiency reasons we applied some pruning to the extracted phrases. For each
sentence pair (fJ

1 , eI
1) we extract only phrase pairs (f̃ , ẽ) with p̄PESA(f̃ , ẽ) > 0.001

and restrict the number of target phrases ẽ for each source phrase f̃ to 10. Thus
we reduce the size of the phrase table to 5.5M entries for IWSLT.

Symmetrization of word translation probabilities for both translation directions is
a widely used technique for translation related tasks. [Och & Ney 00] report that
symmetric word translation models are more reliable and lead to improved word
alignments. Therefore, for our experiments we chose to use a symmetrization of
the IBM1 word translation model to compute the PESA probabilities:
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Table 3.5. All phrase table entries for the Chinese phrase f̃ =’公司 工作’ estimated by the PESA
model from the IWSLT training data set.

f̃ ẽ pPESA(f̃ |ẽ) pPESA(ẽ|f̃)

公司 工作 company 0.0094 0.52
公司 工作 working for 0.15 0.057
公司 工作 work for 0.011 0.052
公司 工作 corporation 0.00046 0.016
公司 工作 the company 0.0015 0.013
公司 工作 company , 0.0014 0.013
公司 工作 job with 0.0018 0.0094
公司 工作 working for nanyo 0.023 0.0035
公司 工作 a job 0.00016 0.0026
公司 工作 been working for 0.0040 0.0026
公司 工作 to work 0.00068 0.0025
公司 工作 work 0.0025 0.0017
公司 工作 working 0.0070 0.0011
公司 工作 worked 0.024 0.00070
公司 工作 work at 0.00039 0.00053
公司 工作 worked at 0.032 0.00029

p(f |e) =
pIBM1(f |e) + pIBM1(e|f)

2
(3.13)

The IBM1 probabilities were trained with GIZA++. To obtain a phrase translation
model for the whole training data, we interpret the sentence level probabilities
p̄PESA(f̃ , ẽ) as phrase counts and compute the relative frequencies:

pPESA(f̃ |ẽ) =
NPESA(f̃ , ẽ)

∑

f̃ ′

NPESA(f̃ ′, ẽ)
(3.14)

with

NPESA(f̃ , ẽ) =
∑

(fJ
1

,eI
1
)

p̄PESA(f̃ , ẽ) (3.15)
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Like for the heuristic model we computed the PESA translation probabilities in
both translation directions.
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4.1 Word alignment re-estimation

In Section 2.3 we described how we can utilize the word alignment to build a phrase
table by extracting the phrases that are consistent with the word alignment. We
store the phrase level word alignment along with the translation probabilities for
each extracted phrase pair in the phrase table. Thus we can use the single-best
segmentation produced by forced alignment to generate a new word alignment for
the training data. If we encounter different phrase level word alignments for the
same phrase pair, the one with the highest count is chosen. By applying the phrase
extraction heuristic on the re-estimated word alignment, we receive a new phrase
table which can be used for translation.

To measure the distance between two alignments A ⊆ I × J and A′ ⊆ I × J we
introduce the alignment distance (AD) to be defined as follows:

AD(A, A′) = 1 −
2 · |A ∩ A′|

|A| + |A′|
(4.1)

Note that this definition is identical to the alignment error rate (AER) described
in [Och & Ney 00] if we ignore the distinction between sure and possible alignment
points. However, AER is always computed against a reference to measure the
quality of an alignment A, whereas AD compares two alignments which are both
not necessarily assumed to be correct.

Table 4.1 gives some statistics for the first four iterations on the IWSLT data (cf.
Section 5.2). We compare the number of alignment points, the alignment distance
(AD) to the alignment produced by GIZA++, the AD to the alignment from the
previous iteration, and the number of phrases that are extracted by the heuristic.
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4 Phrase translation modeling

Table 4.1. Statistics for alignment re-estimation on the IWSLT data.

FA iteration #
alignment
points

AD (%)
GIZA++

AD (%)
previous
iteration

#
extracted
phrases

0 (GIZA++) 312 408 - - 2 187 004
1 326 225 7.45 - 1 773 047
2 328 062 7.91 4.30 1 721 900
3 328 616 8.23 2.90 1 708 496
4 328 844 8.23 2.23 1 701 066

Figure 4.1. Word alignment from the IWSLT training data set. The black squares denote alignment
points in both the word alignment produced by GIZA++ and after the first iteration of
FA. The word alignment marked with the red square only appears after the first
iteration of FA.

In Table 4.1 we observe that the difference to the original alignment increases with
the number of iterations, while the difference to the previous iteration decreases,
which indicates convergence. The most noticeable characteristic, however, is that
after the second iteration the number of alignment points has increased by five
percent. An inspection of the alignments reveals that in many cases the original
alignment points are retained and word alignments are added for previously un-
aligned words. Figure 4.1 shows an example for this effect. As a result of the
greater number of aligned words, the size of the resulting phrase table decreases,
as phrase extraction becomes more restricted.
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4.2 Indicator features

In training, the initial phrase table constitutes the phrase pairs that are available to
compute the forced alignment. However, in most cases only a fraction of them are
in fact used to produce the segmentations. For a given sentence pair (fJ

1 , eI
1), the

heuristic model for example can extract overlapping phrases and allows for more
than one possible translation for the same phrase if words are unaligned. A valid
phrase segmentation of (fJ

1 , eI
1), however, requires each word to belong to exactly

one phrase. Assuming that phrase pairs that were used in forced alignment are
more likely to produce good translations at decoding time than phrase pairs that
were not, we want to distinguish between those two subsets of the original phrase
table. Therefore, in addition to the models specified in Section 2.2.3 we propose a
binary phrase level feature h̄Ind(f̃ , ẽ) which fires for each phrase pair (f̃ , ẽ) that was
encountered in training. For a given sentence pair (fJ

1 , eI
1) with phrase segmentation

sK
1 , sk = (ik; bk, jk), we obtain the following sentence level model:

hInd(e
I
1, s

K
1 , fJ

1 ) :=

K
∑

k=1

h̄Ind(f̃k, ẽk) (4.2)

with

h̄Ind(f̃ , ẽ) :=

{

1 if (f̃ , ẽ) was seen in training

0 else
(4.3)

Here f̃k and ẽk are defined as in Equations (2.2) and (2.3). A phrase pair (f̃ , ẽ) is

defined to be seen in training if it occurs in the single-best segmentation ŝK̂
1 for at

least one sentence pair in training. The scaling factor for this feature is trained by
MERT (cf. Section 2.2.5) along with the weights for the other models.

For the IWSLT data, about 3% of the heuristically extracted phrase pairs were seen
in training. We can argue that if only this small number of phrases is assigned a
firing indicator feature, we should not expect a significant difference in translation
performance. Therefore, we also experimented with extending the definition of the
indicator features h̄Ind(f̃ , ẽ) to N -best lists.

35



4 Phrase translation modeling

Table 4.2. Number of phrases seen in training with different sizes N of the N -best list on the
IWSLT data set. The initial phrase table has 2 187 004 entries and was produced by the
heuristic described in Section 2.3.

N # seen phrase pairs

1 70 626
10 204 893
20 272 447
50 375 994

An N -best list is the set of the N highest scoring segmentations for a sentence pair.
Then we define a phrase pair to be seen in training if it occurs in a segmentation
from an N -best list for at least one sentence pair in training. In Table 4.2 you can
see the growing number of phrases seen in training with increasing N .

4.3 Generative phrase models

4.3.1 Count model

The simpler of our generative phrase models estimates phrase translation probabil-
ities by their relative frequencies in the training data, similar to the heuristic model
(cf. Section 2.3) but with counts from training rather than on the basis of a word
alignment:

pC(f̃ |ẽ) =
NC(f̃ , ẽ)

∑

f̃ ′

NC(f̃ ′, ẽ)
(4.4)

with

NC(f̃ , ẽ) =
∑

(fJ
1

,eI
1
,ŝK̂

1
)

∑

k = 1 . . . K̂,
ŝk = (ik, bk, jk)

δ(f̃ , f̃k) · δ(ẽ, ẽk) (4.5)

where (fJ
1 , eI

1) are sentence pairs from the training data, ŝK̂
1 is the corresponding

single-best segmentation produced by FA, f̃k and ẽk are defined as in Equations
(2.2) and (2.3) and δ(·, ·) is the Kronecker function:
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Figure 4.2. Phrase table size plotted against the number N of N -best segmentations on a
logarithmic scale for the Europarl data set (cf. Section 5.2).

δ(f̃ , f̃ ′) :=

{

1 if f̃ = f̃ ′

0 else
(4.6)

With this model we can only assign translation probabilities to phrase pairs seen
in training. As described in Section 4.2 those are only a fraction of the phrase
pairs in the initial phrase table. Therefore the size of the phrase table is reduced
in comparison with initialization, which may be desirable with respect to memory
load at translation time. In the Europarl data, the trained count model has about
5.9M entries in opposition to 86M for the heuristic model. Note that the phrase
pairs in the phrase table of the count model are exactly the phrases which would
be assigned firing indicator features in this setup.

Analogous to the indicator features, the count model can be extended for N -best
lists by taking the counts from the N -best lists rather than only from a single-best
segmentation. The size of the phrase table increases with N . Figure 4.2 shows the
number of phrases in the phrase table plotted against the size of the N -best list.
For N = 1000 we reach a size of 15M entries.
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4.3.2 Weighted count model

The probability distribution Pr(sK
1 |eI

1, f
J
1 ) over the space of possible segmenta-

tions sK
1 is modeled by pFA(sK

1 |eI
1, f

J
1 ) as specified in Equation (3.1). Thus we

can interpret pFA(sK
1 |eI

1, f
J
1 ) as the confidence of the system that sK

1 is a correct
segmentation for the sentence pair (fJ

1 , eI
1). Assuming that this confidence is a

measure for the quality of the different segmentations, we can argue that phrase
pairs occurring in a segmentation with a high confidence should during translation
be preferred to phrase pairs from a segmentation with low confidence. To take this
into account we developed the weighted count model.

To make use of the model distribution we update the count model in the following
way. Phrase translation probabilities are still estimated by their relative frequen-
cies, but the counts are taken from the whole space of possible segmentations sK

1 ,
weighting them with their corresponding model probability:

pW (f̃ |ẽ) =
NW (f̃ , ẽ)

∑

f̃ ′

NW (f̃ ′, ẽ)
(4.7)

with

NW (f̃ , ẽ) =
∑

(fJ
1

,eI
1
)

∑

sK
1

∑

k = 1 . . . K,
sk = (ik, bk, jk)

δ(f̃ , f̃k) · δ(ẽ, ẽk) · pFA(sK
1 |eI

1, f
J
1 ) (4.8)

where (fJ
1 , eI

1) are sentence pairs from the training data, f̃k and ẽk are defined
as in Equations (2.2) and (2.3) and δ(·, ·) is defined as in Equation (4.6). The
definition of the weighted counts NW (f̃ , ẽ) is a generalization of NC(f̃ , ẽ). If the
whole probability mass is concentrated on the single-best segmentation, NC(f̃ , ẽ)
and NW (f̃ , ẽ) are identical:

pFA(ŝK̂
1 |eI

1, f
J
1 ) := 1 ⇒ NC(f̃ , ẽ) = NW (f̃ , ẽ) (4.9)

This model is very similar to the one proposed in [DeNero & Gillick+ 06], but shows
two significant differences. Firstly, [DeNero & Gillick+ 06] only allow the segmenta-
tion probability to be pFA(sK

1 |eI
1, f

J
1 ) > 0 if the phrase pair (f̃ , ẽ) is consistent with

the Viterbi word alignment. We do not have this restriction, allowing us to recover
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from flaws in the word alignment. Secondly we can hope to circumvent the overfit-
ting issues reported in [DeNero & Gillick+ 06] by application of the leaving-one-out
method for estimating the segmentation probability pFA(sK

1 |eI
1, f

J
1 ).

As enumerating the whole search space of possible segmentations sK
1 for summation

is infeasible, in our implementation the weighted counts NW (f̃ , ẽ) are approximated.
Instead of doing an exhaustive search, for each sentence pair (fJ

1 , eI
1) the counts are

computed from an N -best list. For all our experiments we set N = 1000. The
probability mass is generally concentrated on the top scoring few segmentations.
On the IWSLT training data, on average the ten top scoring segmentations en-
compass 88% and the 100 top scoring segmentations 98% of the whole probability
mass occupied by the 1000 best segmentations. Therefore we can assume that this
approximation does not have a significant impact on the resulting phrase table.

4.3.3 Phrase prior probabilities

One of the advantages of the heuristic model in Section 2.3 is that in addition to
modeling the phrase translation probabilities it implicitly contains a segmentation
model. Taking a close look at Equation (2.22) we note that the normalizing factor
N(ẽ) is not the marginalization of the phrase count over the target phrases ẽ. This
is different from the generative phrase models in Equations (4.4) and (4.7). We have
mentioned in Section 2.3.3 that using the monolingual count N(ẽ) as normalizing
factor rather than the proper marginalization results in a deficient phrase model,
as summation to unity does not hold. However, it has the advantage of contribut-
ing information about the phrase segmentation. When the word alignment for a
given sentence pair (fJ

1 , eI
1) prohibits the extraction of all phrase pairs containing

a specific target phrase ẽ, it contributes to the monolingual count N(ẽ) but not to
the phrase count NH(f̃ , ẽ) for any source phrase f̃ . The reason is that no phrase
segmentation consistent with the word alignment contains the phrase ẽ. This is re-
flected by the heuristic model assigning low translation probabilities pH(f̃ |ẽ) to the
corresponding phrase pairs. Therefore, monolingual phrases, which are consistent
with the word alignment more often, are preferred in translation. This is useful for
two reasons. Firstly, it penalizes rare phrase pairs, whose probability can not be
estimated reliably due to lack of examples to be learned from, and as a result are
often overestimated. Secondly, it downweights monolingual phrases that are part
of a longer idiom and should therefore not be considered separately. Consider the
example in Figure 4.3. The right hand translation produced by the weighted count
model fails to translate the Chinese character ’买’, which means ’buy ’. The reason
is the overestimation of the probability of the phrase pair (’买 一 个’,’a’). The
Chinese phrase ’买 一 个’ appears ten times in the training data. However, in FA
it occurs in only two sentences, both of which do not contain the word ’buy ’ on
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SOURCE: 我 只 想 买 一 个 杯子 .

REFERENCE: i would like to buy just one glass .

Figure 4.3. Example from IWSLT development set. The left hand translation was produced with
the heuristic model, the right hand translation by the weighted count model. Incorrect
phrase translations are displayed in red.

the English side. Therefore it is impossible to learn the correct translation. How-
ever, we can hope to improve translation quality for this example by exploiting the
segmentation information.

The generative phrase models we have introduced so far fail to take the monolingual
segmentations into account. We will discuss two ways of tackling this shortcoming
here.

Combined segmentation and translation model

A straightforward approach to this problem is to mimic the method employed for the
heuristic model. We can hope to obtain the same level of additional segmentation in-
formation by simply replacing the marginal counts

∑

f̃ ′ NC(f̃ ′, ẽ) and
∑

f̃ ′ NW (f̃ ′, ẽ)
with the monolingual phrase count N(ẽ) as a normalization factor. We obtain the
following models:

pCSEG
(f̃ |ẽ) =

NC(f̃ , ẽ)

N(ẽ)
(4.10)

pWSEG
(f̃ |ẽ) =

NW (f̃ , ẽ)

N(ẽ)
(4.11)

Figure 4.4 shows the improved translation of the combined segmentation and weighted
count model.
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4.3 Generative phrase models

Figure 4.4. Translation produced by the combined segmentation and weighted count model for the
example from Figure 4.3.

Separate segmentation model

[Shen & Delaney+ 08] suggest a separate phrase segmentation model which is trained
using forced alignment. They assume that the segmentation of each phrase is in-
dependent and augment the phrase translation model with a prior probability on
source and target phrase. Thus the probability of a segmentation sK

1 of a sentence
pair (fJ

1 , eI
1) into K phrases is modeled as:

pSEG(sK
1 |eI

1, f
J
1 ) :=

K
∏

k=1

(

p(f̃k) · p(ẽk)
)

(4.12)

f̃k and ẽk are defined as in Equations (2.2) and (2.3). Adopting this idea we propose
to incorporate two new models heSEG and hfSEG into our log-linear framework. To
fit our phrase models we adapt the modeling used in [Shen & Delaney+ 08] and
obtain:

heSEG(eI
1, s

K
1 , fJ

1 ) = log
K
∏

k=1

p(ẽk) (4.13)

with

p(ẽ) =

∑

f̃ ′

N∗(f̃
′, ẽ)

N(ẽ)
(4.14)

Again, f̃k and ẽk are defined as in Equations (2.2) and (2.3). The definition of hfSEG

is analogous heSEG. To ensure consistency with the phrase translation model, for
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Figure 4.5. Illustration of the prior probabilities for the relevant part of the example in Figure 4.3.
On the left hand side p(f̃) is shown for different source segmentations. On the right
hand side p(ẽ) is shown for different target segmentations. The phrase priors are
computed from the weighted counts NW (·, ·).

the bilingual phrase counts N∗ we insert either NC or NW , depending on which
phrase model is being used.

Note that the combined model described above is a special case of this separate
model. If we link the the scaling factors of the phrase priors to the corresponding
phrase translation model, setting λeSEG = λPhr and λfSEG = λiPhr, the two
approaches are identical.

In Figure 4.5 we can see the resulting phrase priors for our example sentence. It
shows that the phrase priors favor the better segmentation given in Figure 4.4 over
the flawed one produced without the priors.

4.4 Interpolation of phrase tables

It was mentioned, that [DeNero & Gillick+ 06] found their generative phrase model
to clearly underperform the heuristic model. Their analysis identifies one of the ma-
jor problems to be the high level of determinism in the generative model, which can
be quantified by a low entropy. They discuss several smoothing methods in order
to retain the original entropy. Out of these they found phrase table interpolation
with the heuristic model to work best. Improvements over the pure heuristic model
by interpolating the phrase tables produced by the two approaches are reported.

We experimented with two types of phrase table interpolation, linear and log-linear.

Linear interpolation:

pLIN (f̃ |ẽ) = ω · pH(f̃ |ẽ) + (1 − ω) · p∗(f̃ |ẽ) (4.15)

where ω is the interpolation weight and for p∗ we insert one of our generative
models, either pC or pW .

At decoding time, a phrase pair (f̃ , ẽ) is only usable, if it is assigned a sufficiently
high probability p(f̃ , ẽ). Therefore, we can interpret linear interpolation as taking
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4.4 Interpolation of phrase tables

the union of the two phrase tables: to be usable after the interpolation, in most
cases it will be sufficient for a phrase pair if its probability is high enough in one of
the phrase tables.

Log-linear interpolation:

pLL(f̃ |ẽ) =
(

pH(f̃ |ẽ)
)ω

·
(

p∗(f̃ |ẽ)
)(1−ω)

(4.16)

Again, ω is the interpolation weight. Log-linear interpolation can be interpreted
as taking the intersection of the two phrase tables: to be usable after the interpo-
lation, a phrase pair needs to have a high probability in both phrase tables. For
the Europarl data, Figures 4.6 and 4.7 show the performance in Bleu and TER
(cf. Section 5.1) respectively of the two interpolation methods plotted against the
interpolation weight ω. Here, the count model (cf. Section 4.3.1) and the heuristic
model (cf. Section 2.3.3) are interpolated. The scaling factors λM

1 are trained for
the heuristic model and are kept fixed. We can see that for both methods the curves
are approximately convex. The maximum for the linear interpolation is reached for
a weight ω close to zero, meaning the trained model has a higher weight. For the
log-linear interpolation the best performance is reached for a weight ω close to one,
which means the heuristic model is given a higher weight.
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Figure 4.6. Performance of linear and log-linear interpolation of phrase tables on DEV and TEST
the Europarl data set (cf. Section 5.2) measured in Bleu score. The scaling factors λM

1
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5 Experiments

In this chapter we will first review the evaluation measures we used and give a
description of the data sets on which experiments were conducted. After that
we specify the experimental setup and give the results, which are discussed in
detail. One of our proposed methods, namely the interpolation of the phrase tables
produced by the weighted count model (cf. Section 4.3.2) and the heuristic (cf.
Section 2.3), consistently outperforms the baseline system on both data sets.

5.1 Evaluation measures

Automatic evaluation of different MT systems is a difficult task and there is no
established standard metric. Given different hypothesis translations, it can be hard
even for human experts to decide which one is the best. Some statistics for meta-
evaluation of a translation task are given in [Callison-Burch & Fordyce+ 08], show-
ing that human annotators disagreed on the ranking of two translation hypotheses
in 42% of the cases. Further, human evaluation is expensive and not feasible for
any meaningful amount of experimental data. However, there are a number of eval-
uation metrics available, all of which have different shortcomings and advantages.
Those metrics assign a score or error rate to a hypothesis translation by comparison
with one or more reference translations. The two error metrics we chose for evalu-
ation of our results are the Bleu score and the translation edit rate (TER), which
are commonly used for current research. Additionally, in some of our experiments
we need to evaluate word alignment quality. The standard evaluation metric for
this purpose is the alignment error rate (AER).

5.1.1 Bleu score

Currently the most popular evaluation metric for machine translation systems is
the Bleu score, which was introduced by [Papineni & Roukos+ 02]. The results
reported in [Callison-Burch & Osborne+ 06] show that it has shortcomings when
comparing conceptually different systems but can be considered reliable if used to
compare variants of the same system. The Bleu score is an accuracy measure. It
is a combination of the geometric mean of n-gram precisions and a brevity penalty,
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which penalizes too short hypotheses. Given a reference translation êÎ
1, the Bleu

score for a hypothesis eI
1 is computed as follows:

Bleu(eI
1, ê

Î
1) := BP (I, Î) ·

4
∏

n=1

Precn(eI
1, ê

Î
1)

1/4 (5.1)

with

BP (I, Î) :=

{

1 if I ≥ Î

exp(1 − I/Î) if I < Î
(5.2)

Precn(eI
1, ê

Î
1) :=

∑

wn
1

min
{

C(wn
1 |e

I
1), C(wn

1 |ê
Î
1)

}

∑

wn
1

C(wn
1 |e

I
1)

(5.3)

Here, C(wn
1 |e

I
1) denotes the count, i.e. the number of occurrences, of an n-gram wn

1

in a sentence eI
1. The denominator of the n-gram precision evaluates to the number

of n-grams in the hypothesis, i.e. I − n + 1. The Bleu score can be extended to
take more than one reference translation into account. We apply document level
Bleu, meaning that the n-gram counts are collected over the whole data set rather
than on the basis of single sentences.

5.1.2 TER

The translation edit rate [Snover & Dorr+ 06] is an error metric. It counts the
number of edits required to change a hypothesis into one of the reference transla-
tions. In contrast to the well-known word error rate (WER) it allows shifts, i.e.
movements of contiguous word sequences within the hypothesis. The other edit
operations available are insertions, deletions and substitutions of single words. All
edits, including shifts of any number of words by any distance, have equal cost.
The number of edit operations is divided by the average number of reference words
per sentence.

TER =
# of edits

avg. # of reference words
(5.4)
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5.2 Data sets

When we have more than one reference translation, the TER is defined by the
minimum number of edits needed to produce one of the references. TER is also
computed on document level, meaning the edit counts are collected over the whole
data set.

5.1.3 AER

In Section 4.1 we already defined alignment distance (AD) as a measure of how
much two word alignments differ. AER [Och & Ney 00] works in a similar way by
measuring the distance to a reference word alignment produced by human experts.
However, in contrast to AD, in the reference alignment we distinguish between two
kinds of alignment points: an S (sure) alignment which is used for unambiguous
alignments and a P (possible) alignment which is used for alignments that might
or might not exist (S ⊆ P ).

The alignment error rate of an alignment A ⊆ I×J with a reference word alignment
composed of the sure alignment points S ⊆ I ×J and the possible alignment points
P ⊆ I × J is based on precision and recall:

recall =
|A ∩ S|

|S|
, precision =

|A ∩ P |

|A|
(5.5)

and the following error rate:

AER(S, P ; A) = 1 −
|A ∩ S| + |A ∩ P |

|A| + |S|
(5.6)

Note that AER(S, S; A) = AD(S, A). A detailed description of the alignment error
rate can be found in [Och & Ney 00].

5.2 Data sets

The International Workshop on Spoken Language Translation (IWSLT) [Fordyce 07]
is an MT evaluation campaign organized by the Consortium for Speech Translation
Advanced Research (C-Star). Its focus is the translation of spoken language in the
travel domain. The principal source for training, development and evaluation data
is the Basic Travel Expression Corpus (BTEC) [Takezawa & Sumita+ 02]. Our
training data set (TRAIN) consists of the Chinese-English part of the training
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Table 5.1. Statistics for the IWSLT Chinese-English data

Chinese English

TRAIN Sentences 42 942

Running Words 380 259 420 431

Vocabulary 11 760 9 933

Singletons 4 637 3 937

DEV Sentences 500

Running Words 3 578 62 520

Vocabulary 950 3 878

OOVs (running words) 75 28 177

TEST Sentences 506

Running Words 3 837 63 525

Vocabulary 938 4 099

OOVs (running words) 73 28 913

data released for the 2007 IWSLT evaluation and the evaluation data released for
the 2003, 2006 and 2007 IWSLT evaluations. The evaluation data sets for the 2004
and 2005 IWSLT evaluation campaigns serve as our development (DEV ) and test
(TEST ) set. Both DEV and TEST contain 16 English reference translations for
each Chinese sentence. Table 5.1 shows some statistics on the data sets. It includes
the number of words occurring only once (singletons) for TRAIN and the number
of words not occurring in the training data (out-of-vocabulary, OOV) for DEV and
TEST . The IWSLT data set is a small corpus with roughly 43K training sentences,
which allows rapid experimenting.

The Europarl corpus [Koehn 05] is collected from the proceedings of the European
Parliament. From the 11 available languages we chose the language pair German-
English. For DEV and TEST we take the development and test set published for
the ACL 2008 Workshop on Statistical Machine Translation (WMT08). Here, we
have only one reference translation for each German sentence in DEV and TEST .
With roughly 1.3M training sentences the Europarl data set is considerably larger
than the IWSLT corpus. Therefore experiments require much more computation
time and we use it only to run a few choice experiments which showed promise on
the IWSLT data. Statistics for the Europarl data are given in Table 5.2.
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Table 5.2. Statistics for the Europarl German-English data

German English

TRAIN Sentences 1 311 815

Running Words 34 398 651 36 090 085

Vocabulary 336 347 118 112

Singletons 168 686 47 507

DEV Sentences 2 000

Running Words 55 118 58 761

Vocabulary 9 211 6 549

OOVs (running words) 284 77

TEST Sentences 2 000

Running Words 56 635 60 188

Vocabulary 9 254 6 497

OOVs (running words) 266 89

5.3 Results

5.3.1 Experimental setup

The experiments we ran to evaluate the different training methods and phrase
models we propose have the following setup. We are given the three data sets
TRAIN , DEV and TEST . For our baseline, we first use GIZA++ to compute
the Viterbi word alignment on TRAIN . Next we apply the heuristic described
in Section 2.3 to obtain a phrase table by extraction of phrases from the word
alignment. The scaling factors λM

1 are computed with MERT (cf. Chapter 2.2.5)
on the DEV data set.

The phrase table used for the baseline is also used to initialize FA. Alternatively, we
can compute a phrase table with the PESA model (cf. Section 3.6.2) from TRAIN
for initialization. Then, FA is run on the training data TRAIN from which we
obtain the phrase segmentations sK

1 . Those are used in the following ways:

• Word alignment. If we have stored the within-phrase word alignment in
the initial phrase table, we can use the segmentations sK

1 to produce a new
word alignment from which we can extract a phrase table using the heuristic,
as was described in Section 4.1.

• Indicator features. We can augment the initial phrase table by adding
features indicating whether a phrase was used in FA (cf. Section 4.2).
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(Forced Alignment)
Training

Phrase Table
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translate
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extract
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Figure 5.1. Illustration of the experimental setup.

• Generative phrase models. We can use the counts from the segmentations
sK
1 to build a phrase table according to the proposed phrase models which

were introduced in Chapters 4.3.1 and 4.3.2.

• Phrase segmentation model. In Section 4.3.3 we proposed two different
phrase segmentation models which assign prior probabilities to the monolin-
gual phrases. These are estimated from phrase counts in FA.

Afterwards, the scaling factors are trained on DEV for the new phrase table. By
feeding back the new phrase table into FA we can reiterate the training procedure.
When training is finished the performance is evaluated on DEV and TEST . Alter-
natively, we can apply interpolation of the new phrase table with the original one
estimated heuristically (cf. Chapter 2.3), retrain the scaling factors and evaluate
afterwards. An illustration of the experimental setup is given in Figure 5.1.
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5.3.2 Training setup experiments

In Chapter 3 we discussed several different setups for the forced alignment proce-
dure, whose performance we evaluated on the IWSLT data. Two different imple-
mentations of leaving-one-out and a simple phrase length restriction were considered
to counteract the tendency of FA to overfitting and overestimating long phrases.
Furthermore, we proposed two different ways of dealing with words in the source
or target sentence that have no correspondence to a word in the other, a word
omission model and a phrase extension model. In addition to that, we considered
to overcome problems arising from different word order by dropping the reordering
penalty. Here, we will compare the effectiveness of these setups. We chose to evalu-
ate them by their performance with the count model (cf. Section 4.3.1) estimated on
an N -best list with N = 1000. For initialization we used the heuristic (cf. Section
2.3) and MERT was done for Bleu score. We compare the following setups:

• Standard FA. Here the setup is identical to the one used in free translation,
except for the restriction on the target sentence.

• Restricted phrase length. The maximum phrase length is restricted to
fmax = 4 and emax = 8.

• Standard l1o. The standard leaving-one-out method is applied in training.
As a penalty we set −log(α) = 200.

• Length-based l1o. Here we apply the length-based leaving-one-out method.
As a penalty we set −log(β) = 2

• λRM = 0. In these experiments there is no penalty on reordering.

• Skip/del. Skips and deletions are allowed as described in Section 3.4. The
penalties are set to γSKIP = γDEL = 10.

• Phrase ext. We allow phrase extensions (cf. Section 3.5). To facilitate direct
comparison we set the penalty to be identical to the skip and deletion model:
γDEL = 10.

The values for the different penalties are hand adjusted based on experience and
performance on a few choice training sentences.

Table 5.3 shows the results. We can clearly see that systems trained with leaving-
one-out are superior to the one trained with standard FA. On average the phrase
length restriction also works better than standard FA, but is outperformed by
leaving-one-out. It is not clear, which of the leaving-one-out methods is superior.
Solely using either skip and deletion models or phrase extensions does not show
much promise. Dropping the reordering penalty by setting λRM = 0 does not
prove to have any effect on the translation performance. However, when combining
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Table 5.3. Performance of the different training setups discussed in Section 3 on the IWSLT data.

setup Bleu TER

DEV baseline 57.4 34.9

standard FA 56.0 36.7
restricted phrase length 55.7 36.3
standard l1o 56.7 35.8
length-based l1o 57.1 35.6

standard l1o + skip/del 56.7 35.2
standard l1o + phrase ext. 56.2 36.3

standard l1o + λRM = 0 56.9 34.9

standard l1o + restr. phr. len. 57.0 35.3

length-based l1o + skip/del + λRM = 0 56.7 35.4

TEST baseline 61.8 29.9

standard FA 60.7 31.3
restricted phrase length 61.4 30.8
standard l1o 61.7 31.4
length-based l1o 61.2 30.8

standard l1o + skip/del 61.0 31.4
standard l1o + phrase ext. 61.3 31.4

standard l1o + λRM = 0 61.1 30.9

standard l1o + restr. phr. len. 62.1 30.9

length-based l1o + skip/del + λRM = 0 61.7 30.5

length-based leaving-one-out with skip and deletion models and setting λRM = 0,
we observe the most consistent improvements over standard FA. Therefore, this
was the setup we chose for most of the further experiments. Later we found the
combination of standard leaving-one out with a restriction of the phrase lengths to
produce comparable or slightly better results.

On the whole we can say that the application of leaving-one-out proves to be crucial
for our models to produce competitive results. The other specific training setups we
proposed do not seem to have a significant positive or negative impact on translation
performance.
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Table 5.4. Comparison of alignment quality measured in AER for GIZA++ and FA word alignments.

# alignment points AER(%)

GIZA++ 8844 21.0
FA 8865 24.8

5.3.3 Word alignment experiments

We described how we can re-estimate the word alignment by using the forced align-
ment procedure and how to use the re-estimated alignment to create a new phrase
table in Section 4.1. For 505 sentences in the Europarl data set, we had human
annotated word alignments available on which we could measure the quality of our
re-estimated alignment by means of the AER metric (cf. Section 5.1.3). Table 5.4
summarizes the result. We can see that in this setup the word alignment produced
by FA is significantly less accurate than the GIZA++ alignment, by 3.8% AER.
Here, the alignment distance between the two is 18.2% AD and therefore consider-
ably higher than for the IWSLT data (cf. Table 4.1). A human inspection of the
generated alignments for the Europarl data does not reveal any noticeable patterns
on how the re-estimated word alignments differ from the GIZA++ alignments, but
confirms the higher quality of the latter.

To complement the experiments above we ran tests on how re-estimation of the
word alignments affect translation quality when used for the heuristic from Section
2.3. These were done on the IWSLT data and the performance along the first
three iterations is plotted in Figure 5.2. On both DEV and TEST set translation
performance is declining with growing number of iterations, although the Bleu

scores seem to be subject to some fluctuations.

5.3.4 Indicator feature experiments

Indicator features are binary features which indicate whether a phrase pair was
seen in training (cf. Chapter 4.2). The corresponding experiments were conducted
on the IWSLT data. Here, the training setup utilized standard leaving-one-out,
standard reordering penalty and no skip and deletion or phrase extension models.
We incorporated three indicator features into the system, one for the single best
segmentation and one each for the 10-best and the 50-best list. The phrase trans-
lation probability estimates were kept identical to the baseline system. After the
introduction of the indicator features, the scaling factors λM

1 , including one factor
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Figure 5.2. Translation performance with re-estimated word alignment plotted against number of
iterations.

Table 5.5. Performance of the indicator features discussed in Section 4.2. Three indicator features
were incorporated into the baseline system, one for the single best segmentation and one
each for the 10-best and 50-best segmentations.

Bleu TER

DEV baseline 57.4 34.9
+ indicator features 57.3 35.2

TEST baseline 61.8 29.9
+ indicator features 61.4 30.1

for each indicator feature, were retrained for Bleu score on DEV using MERT (cf.
Section 2.2.5).

The results are shown in Table 5.5. We observe a slight degradation of performance
compared to the baseline. In theory, this should not be possible. The system was
left unchanged, except for adding new information with the indicator features. If
this additional information can not contribute to producing good translations, this
should be mirrored by the corresponding scaling factors produced by MERT. If the
scaling factors for all three indicator features were set to λInd = 0, the translations
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would be identical to the ones produced by the baseline system, resulting in the
same Bleu score. However, as we have already mentioned in Chapter 2.2.5, MERT
is not guaranteed to find a global optimum. If the dimensionality of the search
space is increased, the number of local maxima is likely to increase as well, thus
making MERT more prone to output suboptimal solutions. Furthermore, as we
mentioned in Section 2.2.5, MERT is carried out with monotone phrasal alignment,
thus training the parameters for a setup different from the one producing the final
translations. The three additional features increase the potential for overfitting,
so that the parameters given by MERT are fit for the development data with the
particular restriction to monotone phrasal alignment, but will fail to produce good
results in a different setup. These circumstances may be responsible for the observed
degradation in Bleu score.

5.3.5 Generative phrase model experiments

IWSLT experiments

For evaluation of the proposed generative phrase models we ran two sets of exper-
iments, one on IWSLT and one on the Europarl data. The main results for the
Chinese-English IWSLT data set after the first training iteration are given in Table
5.6. Here, we experimented with both initialization methods we described in Sec-
tion 3.6. For the heuristic initialization the training was setup with length-based
leaving-one-out, deletion and skip model and no reordering penalty (λRM = 0).
For the initialization with the PESA model, standard FA was used for training. In-
terpolation of phrase tables was done linearly. The results confirm the conclusions
drawn by [DeNero & Gillick+ 06]. On both DEV and TEST the generative phrase
models are not competitive with the baseline. Interpolation of phrase tables yields
improvements of up to 0.6 Bleu. While it is not clear which of the generative
models performs better for interpolation, we find the interpolation of the weighted
count model with the baseline to outperform the baseline system on both DEV
and TEST . When initializing with the PESA model we see some improvements
over the translation performance of the initial phrase table, however the results are
also below the heuristic baseline.

In Section 4.3 we observed that the phrase tables produced by the generative phrase
models only contain a subset of the phrases in the initial phrase table. The results
in the row labeled baseline filtered give us an idea at what effect the reduction in
phrase table size has on the translation performance. Here, the phrase translation
scores are identical to the baseline phrase table, but we only keep those phrase
pairs that were seen in training. These are exactly the phrases which are available
for translation by our generative phrase models. We can see that this leads to a
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Table 5.6. Results for the generative phrase models on the IWSLT data. MERT was applied for
Bleu score. The count model uses a 1000-best list. For the results given in row baseline

filtered we filtered the baseline phrase table so that it only contained phrases seen in
training.

initialization: heuristic PESA

BLEU TER BLEU TER

DEV baseline 57.4 34.9 54.7 36.4

baseline filtered 56.9 35.5

count model 56.7 35.4 55.7 36.5
weighted counts 55.6 36.6 55.7 35.7

interpolation baseline + count model 58.0 34.9 57.3 35.1
baseline + weighted counts 57.5 34.9 57.3 35.3

TEST baseline 61.8 29.9 59.7 32.1

baseline filtered 61.1 30.5

count model 61.7 30.5 61.8 30.5
weighted counts 59.4 32.5 60.6 30.6

interpolation baseline + count model 61.7 30.8 61.2 30.5
baseline + weighted counts 62.4 29.7 61.4 30.1

TRAIN baseline 71.8 19.6
baseline with l1o 44.3 39.2

count model 61.7 26.4
weighted counts 61.0 27.0

reduction in Bleu score compared to the full phrase table. From this we conclude
that in this setup the smaller set of phrases available to the generative phrase
models has disadvantages at decoding time. Averaged over development and test
set the count model shows roughly the same performance as the filtered baseline
phrase table. This indicates that the slightly inferior translation quality of the
count model mainly results from the reduced number of phrases.

To get further insight into what phrases are being used for the different translations,
we ran forced alignment on DEV as well. We can assume that the phrases appearing
there are useful to produce good translations. The phrase pairs used for FA on
DEV were compared with the ones used for the baseline translation and for the
count model translation. We can see in Table 5.7 that 57% of the distinct phrase
pairs used in the count model translation also appeared in the baseline translation.
Furthermore, 74% of these phrase pairs are seen in forced alignment on DEV ,
compared to 72% of the distinct phrases used in the baseline translation. We
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Table 5.7. Statistics on the number of distinct phrase pairs used for translation for the baseline, the
count model and FA on DEV (for all of the 16 reference translations) of the IWSLT
data. The fields contain the number of distinct phrase pairs that are being used for both
row and column label. The diagonal contains the respective total number of distinct
phrase pairs.

baseline count model FA on DEV

baseline 1330 801 959
count model 1400 1039
FA on DEV 28132
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Figure 5.3. Performance of the weighted count model through several iterations on the IWSLT
data. The performance on DEV and TEST is given in Bleu. The green line plots the
corresponding model costs of FA on the training data. The model costs for iteration 0
are based on a different model and are therefore not comparable. Initialization was done
with the PESA model (cf. Chapter 3.6.2).

conclude that the choice of phrases used for translation is not responsible for the
underperformance of our generative phrase models.

Iteration of FA

To get an idea of the performance of our generative phrase models over the course
of several iterations we take a look at Figure 5.3. The performance of the weighted
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Figure 5.4. Translation performance of the count model plotted against maximum phrase length on
the IWSLT data.

count model on DEV and TEST is plotted for the first five iterations. The PESA
model served for initialization of the first iteration. The subsequent iterations were
then initialized with the phrase table estimated by the weighted count model in
the preceding iteration. Additionally, Figure 5.3 contains one curve which shows
the total cost for the segmentations on TRAIN in FA. As initialization was done
with a different model, the cost for the first training iteration does not bear a
correspondence to the following iterations and is therefore left out. The scaling
factors λM

1 were trained with MERT on DEV for the PESA model and then kept
fixed for the training iterations. For the translations, however, λM

1 was re-estimated
for the new phrase table after each iteration.

We can see in Figure 5.3 that the weighted count model leads to an improvement
over the initialization after the first iteration. For the subsequent iterations we see
a decline followed by a second increase of Bleu score reaching the maximum in
iteration four with 56.0 Bleu on DEV and 60.6 Bleu on TEST . This maximum
coincides with the minimum model costs in FA. Other than that there does not seem
to be any connection between the model costs in training and the corresponding
translation scores. On DEV we observe another drop in translation quality after
the fifth iteration. On the whole there is no indication that continuing the iterative
training procedure will lead to more significant improvements.
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Table 5.8. Results for the generative phrase models on the Europarl data. MERT was applied for
Bleu score, initialization was done with the heuristic from Section 2.3. The count
model uses a 1000-best list. For the results given in row baseline filtered we filtered the
baseline phrase table so that it only contained phrases seen in training.

iteration: 1 2

BLEU TER BLEU TER

DEV baseline 26.2 59.4

baseline filtered 26.9 60.2

count model 27.0 59.7 26.9 59.8
weighted counts 26.9 60.0

interpolation baseline + count model 27.2 59.6
baseline + weighted counts 27.0 59.7

TEST baseline 27.1 58.9

baseline filtered 27.7 59.8

count model 27.7 59.6 27.6 59.7
weighted counts 27.6 59.2

interpolation baseline + count model 28.0 59.4
baseline + weighted counts 27.8 59.4

Phrase length restriction

In further experiments we examined the impact of phrase length on the results. For
this we ran FA with different restrictions on phrase length. We tested the setups
fmax = 1, . . . , 6 with emax = 2fmax. The performance of the count model is plotted
in Figure 5.4. We can see a significant increase in translation quality from fmax = 1
to fmax = 2. Further increasing the maximum phrase length yields moderate
improvements until the maximum is reached at fmax = 5 for DEV and fmax = 4
for TEST . Also, we tried to interpolate the phrase tables produced with different
phrase length restrictions, but did not find this to lead to any improvements.

Europarl experiments

The results for the German-English Europarl data are shown in Table 5.8. For this
set of experiments the training was setup with standard leaving-one-out and no re-
ordering penalty (λRM = 0). Here, phrase table interpolation of the weighted count
model with the baseline phrase table was done linearly. For the combination of the
count model with the baseline we tested both linear and log-linear interpolation.
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Table 5.9. Comparison of the performance of the linear and log-linear phrase table interpolation on
Europarl. The phrase tables used for interpolation were produced by the heuristic (cf.
Section 2.3) and the count model (cf. 4.3.1).

Bleu TER

DEV count model 27.0 59.7
interpolation + baseline (linear) 27.0 59.7

+ baseline (log-linear) 27.2 59.6

TEST count model 27.7 59.6
+ baseline (linear) 27.8 59.4
+ baseline (log-linear) 28.0 59.4

In contrast to the results on IWSLT, we can see that the generative phrase mod-
els consistently outperform the heuristic baseline by 0.5 to 0.8 Bleu. The count
model has minor advantages over the weighted count model. When interpolating
the count model in a log-linear way with the heuristic phrase table, we reach a
performance gain of 1.0 Bleu on DEV and 0.9 Bleu on TEST . The interpolation
of the weighted count model with the heuristic phrase table also shows consistent
improvements over the baseline, confirming the results on IWSLT. A second itera-
tion with the count model shows no significant change in translation performance.
A possible reason is that leaving-one-out was not implemented for application on
the generative phrase models due to time constraints, which may be done in future
work.

Table 5.9 shows a comparison of linear and log-linear interpolation of the count
model with the baseline phrase table. Here, the linear interpolation leads to a
slight improvement over the pure count model. The log-linear interpolation works
slightly better, yielding a moderate gain of 0.2 Bleu on DEV and 0.3 Bleu on
TEST over the pure count model. The progression of translation performance over
different interpolation weights was already shown in Figures 4.6 and 4.7.

Unlike on the IWSLT data, the reduction of the phrase table size from the heuris-
tic model to our generative models seems to be preferable for translation on the
Europarl data. The results produced by the heuristic phrase table filtered to con-
tain only the phrases seen in training are nearly as good as the ones given by the
count model. The critical point for producing good translations, therefore, seems
to be the choice of phrases made available at decoding time. However, while on the
IWSLT data the smaller phrase table provided by the generative phrase models has
disadvantages, for the Europarl data it yields better results than the one produced
by the heuristic.
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5.3 Results

Comparison of count model and weighted count model

When comparing the two different generative phrase models, we find that in nearly
all setups the simple count model produces better translations than the more so-
phisticated weighted count model. We hypothesize three possible reasons for this
observation:

• In Section 4.3.2 we stated that most of the probability mass is concentrated
on the few best scoring segmentations. This supports the assumption that the
estimated distribution pFA(sK

1 |eI
1, f

J
1 ) over the segmentations sK

1 may assign
too high probabilities to the top scoring segmentations. In this case we might
hope to improve translation quality by applying smoothing techniques.

• The estimated probability distribution pFA(sK
1 |eI

1, f
J
1 ) is of poor quality. If

this is the case, a refinement of the FA procedure with the goal of producing
a better estimate of the real distribution might lead to better results.

• The weighted count model is more deterministic than the count model due
to the fact that the top scoring few segmentations are assigned most of the
weight. The greater ambiguity provided by the count model may be preferable
to this peaked distribution at decoding time. In this case, the count model is
better suited to meet the ambiguities of natural languages. We might hope
to achieve further improvements by introducing some means to encourage FA
to produce a greater variety of segmentations.

In future work, some additional research needs to be done to determine whether
one of the above hypotheses is true so that we can take the appropriate measures
for further improvement.
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Figure 5.5. Performance in Bleu of the count model plotted against the number N of N -best
segmentations on a logarithmic scale for the Europarl data set.

Size of N-best list

We ran further experiments which examine the impact of the size N of the N -
best list for the count model. We have observed in Figure 4.2 that the size of
the phrase table is subject to significant increase with growing N . For N = 10
it has 7.7M entries and reaches a size of 14.8M for N = 1000. However, Figure
5.5 shows that this increase in ambiguity has very little influence on translation
performance on the Europarl data. We can see that using an N -best list of at least
size 10 is slightly superior to only using the single-best segmentation. It leads to an
improvement of roughly 0.2 Bleu. However, we can not deduce a clear connection
between a further increase and translation performance from the graph, although
setting N = 100 seems to yield the best results here.

Size of training corpus

It is clear that the generative phrase models perform considerably better on the
Europarl data than on the IWSLT data. A prominent difference between the two
data sets is the size of the training corpus. To determine whether this is the reason

62

figures/nbestsize.eps


5.3 Results

 23

 23.5

 24

 24.5

 25

 25.5

 26

 26.5

 27

 27.5

 28

  20000   50000  200000  500000  10000  100000 1000000

B
LE

U

# training sentences

DEV
TEST

Figure 5.6. Performance in Bleu of the count model for N = 1000 plotted against the number of
training sentences on a logarithmic scale for the Europarl data set.

for the difference in performance we investigate the connection between the size
of the training corpus and translation performance measured in Bleu in Figure
5.6. To get a realistic view of these correlations all steps would have to be taken
on the constrained training data, including the word alignments and the heuris-
tic estimation of the phrase translation probabilities. Unfortunately, due to time
constraints we had to resort to the following simpler method. We initialized with
the heuristic and kept the initial phrase table fixed, meaning that the initialization
was estimated on the full training data in all cases. This of course can only give
us a very rough estimate of the interdependencies between training corpus size and
performance. We can see clearly in Figure 5.6 that a greater amount of data in
training leads to better results. The absolute difference in Bleu score between
using 10 000 sentences and the full data set of 1.3M sentences to train the count
model is roughly 3.8 points. This is surprisingly little with regard to the fact that
the number of phrases available differs by a factor of 32 (cf. Figure 5.7). These
results indicate that the training corpus size is not the reason for the difference in
performance of our models on the two data sets, although further experiments will
have to be conducted for confirmation.
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Figure 5.7. Phrase table size of the count model for an N-best list size of N = 1000 plotted against
the number of training sentences on a logarithmic scale for the Europarl data set.

Example sentences

To conclude this chapter we will have a look at two example sentences from the
Europarl data, for which the count model improved the translation over the base-
line system. Figure 5.8 shows a sentence from the development data set DEV .
The baseline translation produced with the heuristic phrase translation model
described in Chapter 2.3 fails to carry over the two content words ’macht ’ and
’angepasst ’ into the English translation. This is remedied by the count model trans-
lation. The improvements can be traced back to the phrase translation model.
The heuristic estimates the translation probability of the incorrect phrase pairs
(’gute Fortschritte macht ’,’good progress’) and (’angepasst hat , um’,’in order ’) to

pH(′in order′|′gute Fortschritte macht′) = 1 and
pH(′good progress′|′angepasst hat , um′) = 0.5.

The count model phrase table contains neither of those phrase pairs and can there-
fore not use them for translation. This also illustrates why filtering the original
phrase table to contain only phrase pairs seen in training has nearly the same effect
as using the count model.
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SOURCE:
Wenn die Tschechische Republik auch weiterhin gute Fortschritte macht
und die Europäische Union ihre institutionellen Strukturen und Politiken
angepasst hat , um die Erweiterung bewältigen zu können [...]

REFERENCE:
If the Czech Republic continues to make progress and the European Union ad-
justs its institutional structure and policies in order to cope with enlargement [...]

Baseline translation:

Count model translation:

Figure 5.8. Example from the Europarl development data set and the corresponding translations
produced with the heuristic from Section 2.3 and with the count model. Incorrect
phrase translations are marked red.
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SOURCE: Dies ist ein zentraler und wichtiger Punkt bei der vorbeugenden Arbeit .

REFERENCE: This is a crucial and important point in preventive work .

Baseline translation:

Count model translation:

Figure 5.9. Example from the Europarl test data set and the corresponding translations produced
with the heuristic from Section 2.3 and with the count model. Incorrect phrase
translations are marked red.

The example in Figure 5.9 is taken from TEST . Here, the baseline system fails to
translate ’vorbeugenden’ correctly. Similar to the example given in Figure 5.8 the
heuristic strongly overestimates the corresponding phrase translation probability,
while the phrase table produced by the count model does not contain the phrase
pair in question.
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Table 5.10. Performance of the combined segmentation and weighted counts model discussed in
Section 4.3.3.

IWSLT Europarl

Bleu TER Bleu TER

DEV weighted counts 56.4 36.0 26.9 60.0
+ seg. model 55.5 36.0 26.7 59.8

TEST weighted counts 60.2 31.7 27.7 59.6
+ seg. model 60.0 31.2 27.6 59.2

5.3.6 Phrase prior experiments

In Section 4.3.3 we proposed two different ways of incorporating a segmentation
model into our system. For the following experiments, the training setup will be
identical to Section 5.3.5 for the Europarl data. On the IWSLT data we chose to
use standard leaving-one-out and no reordering penalty. Skip and deletion models
and phrase extensions were not applied.

We will first look at the combined segmentation and translation model pWSEG
(f̃ |ẽ)

based on the weighted count model. The results are shown in Table 5.10 for both
the IWSLT and Europarl data. On both data sets and both DEV and TEST we
can see a decrease in Bleu score compared to the plain weighted count model.

We have mentioned in Section 4.3.3 that the combined segmentation and translation
model is a special case of incorporating the segmentation model separately. We can
examine the performance of the separate segmentation model in Table 5.11. Again,
we observe a degradation of translation performance for both the count and the
weighted count model on the IWSLT data. For the reasons we have described
in Section 5.3.4 for the indicator features, this should in theory be impossible,
as the only change to the system is the addition of new information. However,
the instability of MERT and the overfitting effects discussed in Section 5.3.4 can
explain this phenomenon. On the Europarl data, we observe that the addition of
the segmentation model yields a small increase in Bleu score on both data sets
and for both generative phrase models.

In additional experiments we tested adding the two different separate segmentation
models to the baseline system on the IWSLT data. The results in Table 5.12 reveal
similar effects to the ones we have described above. Like with the generative phrase
models, we observe that the addition of the segmentation model leads to a slight
degradation of translation quality. Only on DEV the segmentation model based on
the count model described in Section 4.3.1 shows an increase of 0.3 Bleu. However,
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Table 5.11. Performance of the separate segmentation model discussed in Section 4.3.3. The count
model uses a 1000-best list.

IWSLT Europarl

Bleu TER Bleu TER

DEV count model 56.9 34.9 27.0 59.7
+ seg. model 56.8 35.1 27.2 59.9

weighted counts 56.4 36.0 26.9 60.0
+ seg. model 55.4 37.0 27.0 59.9

TEST count model 61.1 30.9 27.7 59.6
+ seg. model 61.0 30.7 27.8 59.5

weighted counts 60.2 31.7 27.7 59.6
+ seg. model 59.7 32.7 27.8 59.5

Table 5.12. Performance of the separate segmentation model discussed in Section 4.3.3 as addition
to the baseline system on the IWSLT data set. The count model uses a 1000-best list.

Bleu TER

DEV baseline 57.4 34.9
+ count seg. model 57.7 35.2
+ weighted count seg. model 57.3 35.4

TEST baseline 61.8 29.9
+ count seg. model 60.2 31.3
+ weighted count seg. model 61.4 30.6

this is put into perspective by the same system clearly underperforming the baseline
on TEST by 1.6 Bleu.
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6 Conclusion

In this chapter, we will give a summary of the work presented in this thesis and
discuss possible directions for further research on the topic.

6.1 Summary

In this work we have introduced novel ways of modeling phrase translation proba-
bilities for SMT and an appropriate framework to train them. We have developed
a machine translation method which consistently performs better or equal to the
baseline system by combining the current state of the art with a novel model.

The model training implements forced alignment (FA), for which we constrain the
translation decoder to a given target sentence. We have shown that in order to
prevent overfitting and get good training results, application of the leaving-one-out
method is a crucial point.

The information gained in training can be used to train generative phrase models,
re-estimate word-alignment or be incorporated into the state-of-the-art system. To
evaluate the different approaches, experiments were conducted on two different
data corpora, the German-English part of the medium-sized Europarl corpus and
the Chinese-English part of the IWSLT data set, which is a small limited domain
task. We found that employment of FA to re-estimate word alignments as well
as the indicator features we proposed do not lead to improvements in translation
quality.

Our two proposed generative phrase models outperform the baseline system on the
Europarl corpus by up to 0.8 Bleu, however do not yield competitive results on the
smaller IWSLT data set. We have determined that the key point for a competitive
performance is the choice of phrase pairs which are available at decoding time,
rather than the translation probability estimates assigned to them.

Also, we described two different ways of incorporating a segmentation model into
the system, either by combining it directly with the phrase translation scores, or
by adding it as a separate model. Our results for both methods show no significant
effect on translation quality.
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All results mentioned above were produced after a single iteration of training. Re-
iterating the training process several times so far has not lead to any improvements.
However, leaving-one-out was not applied after the first iteration. As we have found
leaving-one-out to be important for good training results, this is planned to be
tested in future experiments.

The best results on both data sets resulted from interpolating the phrase tables of
our generative phrase models with the baseline phrase table. These results show
improvements of up to 1.0 Bleu on the Europarl data set and 0.6 Bleu on IWSLT.
With the interpolation of the weighted count model with the baseline phrase table
we have developed a method which consistently outperforms the state-of-the-art
baseline system.

The software we implemented in the course of this work includes the leaving-one-
out method for forced alignment, the word omission model and the estimation of
phrase translation probabilities based on the novel models.

6.2 Future Work

There are a number of open questions that our work has not been able to answer
conclusively. Further research could be conducted on the following topics.

We have found that our generative models work well on the Europarl data, but are
not competitive on the IWSLT data. The experiments that were run in the course
of this thesis do not provide sufficient evidence to determine the reason. The two
data sets differ in several characteristics - among others corpus size, language pair,
number of reference translations and domain - whose influence on the methods
should be investigated separately.

Further, it has been established that the choice of phrases available at translation
time has a greater influence on translation quality than the method of estimating
translation probabilities. The training procedure presented in this work provides a
qualitative selection process for these phrases. However, it may be possible to do
this selection by simpler methods.

Incorporating the estimated probability distribution pFA(sK
1 |eI

1, f
J
1 ) over the phrase

segmentations into the model did not perform as well as using a simple count model.
This may indicate, that the definition of pFA(sK

1 |eI
1, f

J
1 ) is suboptimal and should

be reassessed.

A possible refinement for the training procedure would be the introduction of lexi-
calized skips and deletions. Rather than assigning a constant penalty for omitting
a word, we would allow the penalty to be dependent on the specific word or phrase.
Thus a more fine-grained control of word omissions could be possible.
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6.2 Future Work

Finally, reiterating the training procedure is a promising direction for future re-
search. Implementation of leaving-one-out for further iterations should be tested,
as we have shown its effectiveness on the first iteration. Furthermore, if we always
choose the best performing system, here the interpolated phrase table, to initialize
the next iteration, we may be able to further improve translation quality.
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