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Abstract
In virtually every state-of-the-art large vocabulary continuous
speech recognition (LVCSR) system, grapheme-to-phoneme
(G2P) conversion is applied to generalize beyond a fixed set of
words given by a background lexicon. The overall performance
of the G2P system has a strong effect on the recognition qual-
ity. Typically, generative models based on joint-n-grams are
used, although some discriminative models have a competitive
performance but the training time may be quite large.
In this work, the effect of using discriminative G2P modeling
based on hidden conditional random fields (HCRFs) is ana-
lyzed. Besides measuring and comparing the G2P qualities on a
textual level, one focus is the performance of LVCSR systems.
Although the HCRF model does not outperform the generative
one on text data, we could improve our English QUAERO ASR
system by 1-3% relative on a couple of test corpora over a strong
baseline by only replacing the G2P strategy.
Index Terms: grapheme-to-phoneme conversion, G2P,
LVCSR, HCRF, hidden conditional random fields

1. Introduction
Grapheme-to-Phoneme conversion (G2P) is an important part
of virtually every state-of-the-art large vocabulary continuous
speech recognition (LVCSR) system. This task is usually
defined as finding the most likely pronunciation, denoted as
phoneme sequence ϕ, given an orthographic form of a word,
denoted as grapheme sequence g. A grapheme g ∈ g is de-
fined as a symbol used for writing language (e.g. a letter) and
a phoneme ϕ ∈ ϕ as the smallest contrastive unit in the sound
system of a language. The resulting optimization problem is
then given as follows:

ϕ(g) = argmax
ϕ′∈Φ∗

p(g,ϕ′)

Here, Φ∗ denotes the set of all possible phoneme sequences.
A number of different methods have been proposed over the
years to tackle this task. On the one side, there are generative
approaches like the ones based on joint-n-grams or graphones
as introduced in [1]. Here, graphones are defined as joint or
aligned units of graphemes and phonemes, on which classical
n-gram models are trained, e.g.:
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The authors of [2, 3, 4, 5] build upon these units, whereas the
details for alignment of graphemes and phonemes, training and
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decoding differ. The last two methods are available as open
source tools [6, 7]. A comparison of generative models for G2P
is presented in [8].

On the other side, there are discriminative approaches,
which have been proposed rather recently, e.g. online discrim-
inative training [9], which is also available as an open source
tool, or methods based on conditional random fields (CRFs)
[10, 11]. While discriminative models usually lead to very good
results, the training might be quite demanding w.r.t. compu-
tational time and memory consumption. Since typical (gener-
ative) G2P systems usually already have a very good perfor-
mance (< 10% phoneme error rate), the effort of using discrim-
inative models is usually not spent; at least not for larger tasks.
Additionally, these G2P models are usually only evaluated on
a textual level and thus without ASR experiments. In this pa-
per, we investigate the effect of using discriminatively trained
G2P models based on HCRFs instead of generative joint-n-
gram models for English LVCSR experiments as well as their
combination. We have chosen this method, since CRFs lead
to good results on NLU and G2P tasks (see e.g. [10, 12, 11]).
Additionally, we analyze the effect of varying the number of
pronunciation variants per word as well as the pronunciation
scores on speech recognition performance. This work directly
builds upon our HCRF publication [12] where the focus was
on evaluating HCRFs on text data only. Now, we want to ana-
lyze the effect on LVCSR performance as well as compare this
method with the often used generative joint-n-gram approach
on state-of-the-art tasks.

The remainder of the paper is structured as follows: The
following section introduces the theoretical background of the
two G2P methods, whereas in Sec. 3 we present the experimen-
tal setup which is used for the experiments presented in Sec. 4.
Our findings are summarized in Sec. 5.

2. G2P Methods

As already presented in Sec. 1, there exist a number of methods
to tackle the G2P task. For our experimental comparison, we
have chosen a generative and a discriminative approach which
are presented in this section. The joint-n-gram approach is
available as an open-source toolkit, whereas the HCRF software
is an in-house realization.

2.1. Generative Approach: Joint-n-Gram Model (Seq)

Models based on joint-n-grams usually rely on graphone se-
quences q, which are defined as aligned units of graphemes
and phonemes, resulting in the following probability decom-
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position:

Pr(g,ϕ) = Pr(q) =

N∏
i=1

Pr(qi|qi−1, . . . , q1)

The resulting n-gram model as proposed in [4] is defined as

p(g,ϕ) =
∑

q∈S(g,ϕ)

p(q)

=
∑

q∈S(g,ϕ)

|q|∏
i=1

p(qi|qi−1, . . . , qi−M+1)

Here, S(g,ϕ) denotes the set of all co-segmentations of g and
ϕ whereas M denotes the LM model order. Note that we use
Pr(·) to indicate true probabilities while p(·) indicates model
assumptions. Training of the model is performed using max-
imum likelihood EM training. For decoding, a maximum ap-
proximation is applied for the possibly non-unique segmenta-
tion into graphones.

The joint-n-gram model has been trained using the open-
source toolkit Sequitur [6]. There are basically two parameters
which control the quality of the model: a length restriction on
the graphones (graphemes and phonemes can be restricted sep-
arately) and the n-gram order. For the graphones, we use the
setting which has been reported to work best for English tasks,
namely to allow the use of graphones of length one, whereas the
grapheme or phoneme may be empty. The performance on the
development set converges at M = 8.

2.2. Discriminative Approach: HCRFs

Compared to Linear Chain Conditional Random Fields as in-
troduced in [13], Hidden Conditional Random Fields (HCRFs)
additionally model an alignment between a source sequence
(graphemes g = g1, . . . , gK ) and a target sequence (phonemes
ϕ = ϕ1, . . . , ϕN ), which is needed for G2P tasks. The align-
ment is integrated via a hidden variable. Hidden Conditional
Random Fields (HCRFs), e.g. [14, 15], and Hidden Dynamic
Conditional Random Fields (HDCRFs) [16] have been pro-
posed in the literature. Our approach is similar to the latter one,
where a sum over all possible alignments aN1 is additionally in-
troduced in training:

p(ϕ|g) = pλL
1

(ϕN1 |gK1 ) =

∑
aN1

expH(ϕN1 , a
N
1 , g

K
1 )∑

ãN1

∑
ϕ̃N
1

expH(ϕ̃N1 , ã
N
1 , g

K
1 )

H(ϕN1 , a
N
1 , g

K
1 ) =

(
N∑
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H(ϕN1 , a

N
1 , g

K
1 ) represents position dependent, binary feature

functions hl(ϕn−1, ϕn, a
N
1 , g

K
1 ). The maximization of the

conditional log-likelihood is used as training criterion for the
feature weights λL1 over a given training dataset. The deci-
sion criterion is given by the maximization of the sentence wise
probability p(ϕN1 |gK1 ), i.e. a maximum approximation is ap-
plied as for the joint-n-gram approach. To cope with the high
computational complexity, certain restrictions are applied. De-
tails about our implementation are given in [12]. It should be
noted that within the HCRF and the Sequitur approach, an align-
ment respectively a segmentation of the data is implicitly and
additionally learned.

For the HCRF model, we have applied lexical and source-
n-gram features in a windows of −5 . . . 5 around the current
grapheme as well as the bigram features on phoneme side. Ad-
ditionally, a prior has been introduced for smoothing. The

Table 1: Statistics of the used QUAERO English corpora.
data set duration[h] # running words

train11 234.3 2.8M

dev10 3.3 40K
eval10 3.8 45K
eval11 3.3 35K
eval12 3.4 40K

Table 2: Statistics of the used background lexicon (Beep) and
thus also the training data for the G2P models.

# symbols � word length � prons # unique
source target source target per word words

28 44 9.03 7.60 1.08 237k

model has been trained until convergence after 50 RProp iter-
ations. Due to the large amount of features, feature selection
methods have been applied (e.g. elastic net [17], feature count
cut-off) resulting in 28M active features, i.e. features with non-
zero weight.

3. Experimental Setup
In this section, the training schedule of the ASR system is pre-
sented as well as the strategy to integrate G2P into the ASR
system. The various data sources used for training and testing
are also introduced, whereas the experimental results will be
presented in the following section.

3.1. Corpora

For the reported experiments, a state-of-the-art English LVCSR
task based on the QUAERO 2011 data has been chosen [18].
The data for training comprises roughly 234h of audio data and
mainly consists of broadcast news and podcasts. There are four
datasets for development and evaluation of ASR systems pro-
vided which have a duration between three and four hours and
are comprised of 35K to 45K words. An overview of the used
ASR data is given in Tab. 1. For the training of the acoustic
model as well as the G2P models, we have chosen the British
English Example Pronunciation (BEEP) dictionary [19] as a
background lexicon. The statistics are presented in Tab. 2. For
the training of G2P models, the data have been split into a train-
ing and a development set, whereas the latter contains roughly
10K words (4% of the total data). The split has been done ran-
domly and all pronunciation variants of a certain word are either
in the training set or in the development set, but never spread
across both. To avoid any encoding issues, all the data has been
converted to UTF-8 in a preprocessing step.

3.2. ASR System

The used two-pass ASR system is based upon the QUAERO
EN system as described in [18]. As features, Mel-Frequency
Cepstral Coefficients (MFCC) were appended by a voicedness
feature and phone-posterior-based features estimated using a
multi-layer perceptron (MLP). More precisely, hmrasta bottle-
neck features have been utilized. The acoustic model itself
is based on across-word triphone states represented by left-to-
right three-state Hidden Markov Models. For speaker normal-
ization, vocal tract length normalization (VTLN) on the fea-
ture vectors has been applied. Constrained Maximum Likeli-
hood Linear Regression has been used as speaker adaptation
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Table 3: Statistics about the overlap between the pronunciations
of the two G2P models and the background lexicon. Both meth-
ods can more or less replicate the Beep pronunciations, but only
69.9% of the HCRF pronunciations are also in Seq; the other
way around it is 70.9%.

vocabulary # pron vars # pron vars[%]
in HCRF in Seq

Beep 69,956 76,318 98.4 96.6
Seq 145,385 179,656 70.9 100.0
HCRF 145,385 177,986 100.0 69.9

technique in training and recognition. For all presented results,
the training criterion has been the Minimum Phone Error Rate
(MPE). A pruned four-gram language model smoothed by mod-
ified Kneser-Ney discounting has been applied. This LM has
been trained on approximately 3B words in various corpora,
which have been linearly interpolated to optimize perplexity on
a holdout data set.

3.3. Integrating G2P and ASR

For the ASR experiments, we did first fix a recognition vocab-
ulary of 150K words, as usual based on count statistics from
text data. Pronunciations for 5K regular abbreviations have
been added via a rule-based approach (spelling of single let-
ters). For the remaining 145K words, both G2P methods have
been applied with the following setting: for each word, up to
four pronunciation variants are generated. A variant is added to
the lexicon, if it has a posterior confidence score ≥ 0.2. In sev-
eral evaluations, we have found that this recipe leads to good
performance on ASR tasks. A comparison of the overlap be-
tween the two resulting lexicons and the background lexicon is
given in Tab. 3. Both G2P methods can more or less replicate
the pronunciation variants from the background lexicon, which
was to be expected since the models have been trained on that
data. Interestingly, the pronunciations generated by the G2P
models for words which are not part of the Beep lexicon do
differ by roughly 30% (cf. Sec. 4.1 for a discussion of theses
differences). Thus, there is an effect on ASR performance to be
expected.

4. Experimental Results
Various experiments have been performed to measure the ef-
fect of G2P modeling on LVCSR performance. First, we will
analyze and compare the two G2P systems which have been
used within the ASR experiments. As error measure for these
systems, we use the phoneme error rate (PER) and word error
rate (WER). The PER is defined as the number of insertions,
deletions and substitutions of a Levenshtein alignment between
a hypothesis and a reference phoneme sequence. If there are
multiple references, the alignment is done w.r.t. all references
and the one with the least errors is chosen. The WER is defined
as the number of wrongly recognized pronunciations w.r.t. the
total number of reference pronunciations. Second, we will an-
alyze the effect of three factors which influence the modeling
of the lexicon: 1.) the G2P strategy itself, 2.) the number of
pronunciation variants and 3.) the kind of pronunciation scores.
For these ASR experiments, we use the well-known word error
rate (WER) as measurement.

4.1. G2P

The results of the two tested G2P systems on the development
set are presented in Tab. 4. With a PER of 1.7%, the Sequitur

Table 4: Phoneme Error Rates (PER) and Word Error Rates
(WER) on the development set for the Sequitur and the HCRF
G2P system.

approach PER[%] WER[%]
sub del ins total

Seq 1.0 0.4 0.4 1.7 9.0
HCRF 1.2 0.5 0.3 2.1 11.6

approach leads to better results than the HCRF approach with
2.1% PER. The overall performance of both methods on the
Beep lexicon is quite good compared to other English G2P
tasks. A comparison of errors of both methods revealed ba-
sically two sources for the performance differences. On the
one hand, the HCRF approach tends to confuse the monoph-
thongs “ae” (like in “at”, “fast”), “ah” (“but”, “sun”) and “ax”
(“discus”, “about”) as well as the monophthongs “iy” (like in
“bee”, “she”) and “ih” (“big”, “win”) more often than the Seq
approach. According to the reference pronunciations, they are
often interchangeable across pronunciation variants, but not al-
ways. On the other hand, there are more deletions within the
HCRF approach caused by e.g. omitting “r” like the final “r”
in “bearer” than in the Seq approach. Here, the references are
not consistent, since e.g. for “bearer” both pronunciation vari-
ants are within the BEEP lexicon (with and without the final “r”
phoneme), while for “talebearer”, only the variant with the fi-
nal “r” phoneme is considered as correct. In general, the HCRF
approach tends to generate shorter pronunciations than the Seq
approach.

4.2. LVCSR - Varying G2P Strategy

Concerning the ASR experiments, the following procedure has
been applied: the vocabulary for training and recognition as
well as the acoustic and language modeling data has been fixed
and is the same for all experiments. Only the way of generating
pronunciations has been interchanged. Since the G2P model
is also needed in training the AM, we did a complete training
from scratch for various ASR systems. Additionally, we always
use pronunciation weights calculated on the training alignment
via a forced alignment as presented in [20] for recognition. We
have also tried to use pronunciation weights for training to bet-
ter guide the alignment process, but they did not help. Thus,
only words which have been observed in training will get pro-
nunciation scores. The results are presented in Tab. 5 for three
pairs of data sets, whereas the left set has been used for pa-
rameter optimization and the right one for testing. As baseline
system, we use the Beep lexicon for pronunciation lookup and
only if the respective word is not within the lexicon, we use
the Sequitur G2P strategy (system 1 in the table). System 2
uses just the Sequitur G2P strategy without lookup in the Beep
lexicon. For system 3, the pronunciation lookup has been per-
formed with the Beep lexicon and the Sequitur G2P system and
both outputs have been merged, denoted by “∪”. All follow-
ing systems include the HCRF system. A combination of all
available knowledge sources is the basis for system 6. All to-
gether, systems relying on HCRFs as G2P method outperform
systems based on Sequitur, although the HCRF G2P model per-
forms worse on text data (cf. Tab. 4). The best systems 5 and 7
(tuned on the respective dev set; denoted in bold) lead to a gain
in performance between 1-3% relative over the baseline system.

4.3. LVCSR - Varying Number of Pronunciation Variants

Within another set of experiments, we wanted to analyze the
effect of varying the number of pronunciation variants and
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Table 5: ASR results on various QUAERO English development and test corpora. The first line represents the baseline system, where
the Sequitur G2P model was only used iff the respective word was not in the Beep lexicon. This “hierarchical” lookup is denoted by
“→”. The “∪”-symbol denotes a merge of the models’ hypotheses.

system pronunciation WER[%] # pronunciation
number lookup dev10 eval10 eval10 eval11 eval11 eval12 variants

1 Beep→ Seq 16.46 16.41 16.40 21.78 21.72 18.66 181.604

2 Seq 16.57 16.38 16.33 21.74 21.61 18.44 184.313
3 Seq ∪ Beep 16.44 16.31 16.19 21.54 21.26 18.28 189.303
4 HCRF 16.39 16.39 16.22 21.34 21.20 18.28 182.644
5 HCRF ∪ Beep 16.42 16.17 16.10 21.20 21.07 18.36 183.882
6 HCRF ∪ Seq ∪ Beep 16.32 16.23 16.16 21.18 21.04 18.08 239.150

7 Beep→ HCRF 16.31 16.28 16.14 21.28 21.02 18.04 178.588

Table 6: Results for the ASR systems based on Seq and HCRF
G2P modeling only. The (fixed) number of pronunciations per
word has been optimized on the dev sets and varies with the
type of pronunciation score and the G2P method.

pron # prons/ WER[%]
scores word dev10 eval10 eval10 eval11

HCRF
none 2 17.57 17.43 17.35 22.70
G2P 4 16.70 16.60 16.53 21.70
train 5 16.32 16.39 16.32 21.41

Seq
none 2 17.99 17.95 17.95 23.10
G2P 3 16.70 16.99 16.92 22.27
train 3 16.68 16.69 16.69 21.80

also the use of G2P confidence scores as pronunciation scores.
Therefor, we have chosen the two ASR systems which rely only
on a G2P model for pronunciation modeling (cf. systems 2 and
4 in Tab. 5). We optimized the number of (fixed) pronuncia-
tions per word on the dev10 set without using the confidences
for thresholding. The results are shown in Tab. 6. Again, the
HCRF model outperforms the Sequitur model, independent of
the type of pronunciation score. Within each method, the pro-
nunciation scores calculated on the alignment of the training
data outperform the system’s confidence scores. Additionally,
if no pronunciation scores are used, more than 2 pronunciations
per word lead to worse systems whereas the optimal number of
pronunciations per word is higher if pronunciation scores are
used. Using pronunciation scores leads to a gain in all cases.
The boldface numbers refer to the best setup per G2P strategy.

4.4. LVCSR - Varying Pronunciation Scores

With a last set of experiments, we wanted to overcome one
drawback when using the training alignment as the only source
for pronunciation scores: this is only possible for words (more
precisely: pronunciations) which occur in the acoustic training
data. We wanted to assign pronunciation scores to all words in
the recognition lexicon. Additionally, we wanted to verify the
gain by using pronunciation scores without varying the number
of pronunciations.

As baseline systems, we again use the systems based on
Sequitur and HCRFs only, i.e. without Beep lookup. The results
are presented in Tab. 7. Whereas lines 2 and 6 (“train align”)
show the baseline results which are taken from Tab. 5, line 1
and 5 (“none”) show results without using pronunciation scores
at all, which means that all variants are weighted equally. To
include pronunciation scores does apparently help. But when

Table 7: Results for the ASR systems based on Seq and HCRF
G2P modeling only. Here, only the pronunciation scores have
been varied. For the “mix” lines, the G2P system’s confidence
score has been used as pronunciation score iff the pronunciation
did not occur in the training alignment.

setup WER[%]
pron scores dev10 eval10 eval10 eval11

HCRF

none 16.58 16.40 16.35 21.65
train align 16.39 16.39 16.22 21.34

G2P scores 16.61 16.48 16.31 21.63
mix 16.38 16.39 16.24 21.33

Seq

none 16.66 16.50 16.50 21.94
train align 16.57 16.38 16.33 21.74

G2P scores 16.87 16.82 16.58 22.07
mix 16.57 16.38 16.30 21.80

raw G2P posterior scores are used as pronunciation scores (lines
3 and 7, “G2P scores”), the quality of the ASR system drops.
Even a combination of the G2P system with the scores from the
training alignment (“mix”) does not help. It should be noted
that the posterior scores are always normalized per word, i.e.
across all pronunciation variants per word. Boldface numbers
represent the best performing system per data set, again after
tuning the systems on the respective dev set.

5. Conclusion
In this paper, we have shown that G2P modeling using
HCRFs can outperform a generative Sequitur G2P model within
LVCSR experiments, even is the PER of the HCRF model on
text data is worse than the Sequitur approach. Improvements
of 1-3% could be achieved across a number of test sets from
the English QUAERO tasks. To include pronunciation variants
is also helpful, especially if pronunciation scores are used. We
could also verify that pronunciation weights calculated on the
training alignment improve performance. To include the pos-
terior scores from G2P systems as pronunciation weights does
not seem to help.
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