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ABSTRACT

This paper investigates the application of hierarchical MRASTA
bottleneck (BN) features for under-resourced languages within the
TARPA Babel project. Through multilingual training of Multi-
layer Perceptron (MLP) BN features on five languages (Cantonese,
Pashto, Tagalog, Turkish, and Vietnamese), we could end up in a
single feature stream which is more beneficial to all languages than
the unilingual features. In the case of balanced corpus sizes, the
multilingual BN features improve the automatic speech recogni-
tion (ASR) performance by 3-5% and the keyword search (KWS)
by 3-10% relative for both limited (LLP) and full language packs
(FLP). Borrowing orders of magnitude more data from non-target
FLPs, the recognition error rate is reduced by 8-10%, and the spoken
term detection is improved by over 40% relative on Vietnamese and
Pashto LLP. Aiming at the fast development of acoustic models,
cross-lingual transfer of multilingually “pretrained” BN features for
a new language is also investigated. Without the need of any MLP
training on the new language, the ported BN features performed
similarly to the unilingual features on FLP and significantly better
on LLP. Results also show that a simple fine-tuning step on the new
language is enough to achieve comparable KWS and ASR perfor-
mance to that system where the target language is also involved in
the time-consuming multilingual training.

Index Terms— Babel, MRASTA, MLP, bottleneck, hierarchi-
cal, neural network, tandem, ASR, KWS

1. INTRODUCTION

Artificial neural networks (NN) have become an essential part of
the state-of-the-art ASR systems. In the Hidden Markov Model
framework, they are applied to extract features for Gaussian mixture
models (tandem approach [1, 2]) and/or to estimate state posterior
probabilities directly (hybrid approach [3]). Nowadays, the appli-
cation of ASR technologies to an increasing number of languages
induces a growing interest for methods which are able to exploit
out-of-domain data or even resources of other languages in order
to improve the recognition performance. Besides their great success
in standard acoustic modeling, NNs turned out to be also capable to
benefit significantly from other available resources — e.g. through
multi-task [4, 5] and multilingual training [6]. As has been shown,
a simple cross-domain/lingual porting of NNs could also be bene-
ficial [7]. Furthermore, this improvement is usually not limited to
low-resourced scenarios [8, 9].

The aim of the IARPA funded Babel project is the development
of robust speech technologies, especially for spoken term detection,
which can be applied to any language with a limited amount of tran-
scription in a limited time [10]. To achieve the main goals of the
project, the participants have to develop systems at the end of each
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program period with more and more limitations on the amount of
transcribed speech provided and on the time allowed to create the
system for a previously unseen surprise language. In the project, two
training database configurations are defined. The full language pack
(FLP) contains about 100 hours of speech, whereas the limited lan-
guage pack (LLP) comprises only about 10 hours of transcribed data.
In the first period, five languages have been released — Cantonese,
Pashto, Turkish, Tagalog, and Vietnamese as surprise language —,
which were completely transcribed.

This paper extends our previous multilingual investigation on
European languages [11] to these more diverse and low-resourced
languages. A first set of experiments for both FLP and LLP aimed at
multilingual training of deep hierarchical MRASTA features using
balanced amount of data from each language, including the target
language. Moreover, in order to mitigate the lack of large amount
of data for the LLP, the use of non-target FLP data for multilingual
training was considered, thereby taking advantage of hundreds of
hours of transcribed speech from the non-target language FLPs in ad-
dition to just ten hours for the target language. The objective of this
work is to find an effective way for rapid development of improved
BN features for a new language. As will be shown, with hardly any
loss in recognition and KWS performance, this latter goal can be
achieved by multilingual initialization and target-language specific
fine-tuning of the hierarchical BN features.

The paper is organized as follows, Section 2 gives an overview
of related work. After the description of the training and testing
corpora in Section 3, we give the details on our experimental setups
in Section 4. The uni- and multilingual ASR and KWS results are
presented in Section 5, followed by a discussions in Section 6. The
paper closes with conclusions in Section 7.

2. RELATION TO PRIOR WORK

This work investigates hierarchical tandem MRASTA bottleneck
features [12, 13] on five languages. The MRASTA BN features
were previously optimized for large vocabulary speech recognition
in [14], and were extended by multilingual training in [11]. The
multilingual parameter sharing in MLPs can be defined on different
levels due to the feed-forward structure of multiple layers. In this
paper, the multilingual training method introduced in [6] is applied.
Based on our previous investigation in [11], the parameters are
shared up to the last hidden layer, and language specific output is
used similar to [15]. Multilingual training using universal phone
set is another widely used approach [16]. In this case, the whole
network is shared between the languages [17, 18]. However, as
was shown in [15], a BN-MLP with language dependent outputs
achieved usually lower error rates than with a single output based
e.g. on IPA [19]. Target language specific fine-tuning of a NN trans-
ferred from other language(s) has also been investigated for both
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Table 1. Statistics of training and testing corpora

Langusge 14| Set | e et o | e
Cantonese 101 II;II}I: ég 20 145 Sli?]l:
Pashio 104 || 1000 | ag | 70K
Turkish 105 5P| g0 20 | 45 | e
Tagalog 106 |v| 9 20 | 49 | 5%
Vietnamese 107 II;I]:;) ;; 20 92 2;]1i

*after segmentation

tandem and hybrid MLPs e.g. in [18, 20, 21] and [8, 22]. Compared
to the work in [18], we study a different multilingual method with
deep and hierarchical BN features using context-dependent targets.
During the fine-tuning step of our hierarchical BN features, the
convolutive approach of [23] is applied similar as in [24].

3. CORPUS DESCRIPTION

The Babel corpora of the first five languages consist of only narrow-
band telephony data recorded in various environments from different
landline and mobile devices, and cover several dialects. Each corpus
contains mainly conversational speech and less than 30% scripted
phonetically rich sentences (e.g. short responses to questions, phone
numbers, dates). Pronunciation lexicons covering only words ap-
pearing in transcribed training data are also provided to the partici-
pants. Although more than 100 hours of data are recorded in each
full language pack (FLP), considerable portion of the data is non-
speech. Furthermore, we used only the conversational part of the
FLP in our experiments. About 20 hours of recordings in the lim-
ited language packs are predefined subsets of the FLPs. The ASR
and KWS performance is measured in all experiments on the devel-
opment sets of the project. Our training corpus is based on the ref-
erence segmentation, whereas the segmentation of the test sets was
provided by our project partner IBM. Table 1 summarizes the cor-
pus statistics, and shows the amount of speech retained for acoustic
model and BN-MLP training after segmentation and silence normal-
ization steps. For Cantonese and Vietnamese the different tones are
also considered. Our lexicons contain only the words that appear in
the training data of the corresponding language packs.

4. EXPERIMENTAL SETUPS
4.1. Feature extraction
4.1.1. Cepstral features

In preliminary experiments we noticed that Gammatone features
(GT) performed slightly better than MFCC for narrow-band speech.
Therefore, all the experiments are based on this type of feature ex-
traction. For more details we refer to [25]. For the MRASTA filter-
ing the 15-dimensional Gammatone critical band energies (CRBE)
were extracted after the spectral smoothing and 10th root compres-
sion steps. After segmentwise mean-and-variance normalization,
the GT features were concatenated to fundamental frequency (FO)
and voicedness features [26, 27]. The final 45-dimensional features
used for Gaussian Mixture Model (GMM) training were extracted
after linear discriminant analysis (LDA) of 9 consecutive frames.

4.1.2. Uni- and multilingual MRASTA BN features

According to [28], the temporal trajectories (101 frames) of the
Gammatone CRBEs were smoothed by two-dimensional bandpass

filters (MRASTA). Following the work of [12, 13], the final BN
features are extracted by hierarchical MLPs. The input of the first
MLP contains the fast modulation part of the MRASTA filtering,
whereas the second MLP is trained on the slow modulation com-
ponents and the windowed and LDA transformed BN output of the
first MLP. The modulation features fed into the MLPs were always
augmented by the CRBE, 9 frames of fundamental frequency (FO)
and voicedness features. Independent of the language, FO features
were always used.

The multilingual BN features were trained on fully randomized
feature vector set extracted from the joint corpora of the languages.
Although different approaches are available to handle the different
targets of the languages [16], in this paper the method proposed in
[6] is applied because it avoids the ambiguous mapping to a common
set. With language dependent softmax outputs, backpropagation is
initiated from the language specific subset of the output depending
on the language-ID of the feature vector. All hidden layers — in-
cluding the BN layer — were shared between the languages. Using
non-target language data from the Babel project, we moved from the
primary “BaseLR” condition, where only the target language data
provided with the project is allowed, to the “BabelLR” condition,
where all Babel data from non-target languages can be used.

The MLPs are initialized by discriminative pretraining [29] and
trained according to the cross-entropy criterion. The targets are 1500
tied-triphone states per language, and are determined by earlier stop-
ping of the clustering algorithm also used for GMM training in Sub-
section 4.2. For adjusting the learning rate parameter, 10% of the
training corpus is held out for cross-validation. In the MLP struc-
tures 6 non-BN hidden layers with 2000 neurons and sigmoid func-
tion are used, the BN layer consists of 60 nodes and was placed
before the last hidden layer. When we performed fine-tuning, i.e.
joint training of the two-level NN on the target language, the BN-
MLP was transformed to time-convolutive NN due to the windowing
function in the middle, similar to [15].

4.2. Acoustic Modeling

The initial GMMs were trained according to the maximum likeli-
hood criterion with the expectation maximization algorithm. The
Gaussian components share a globally pooled diagonal covariance
matrix. Speaker adaptive training was applied using constrained
maximum likelihood linear regression [30, 31]. On each FLP, 4500
generalized triphones tied by a decision-tree-based clustering were
modeled. Due to the limited amount of observations, clustering
ended up with only 2000-3000 tied states on LLP. Furthermore, Min-
imum Phone Error (MPE) criterion based discriminative training
was performed to sharpen the speaker adapted acoustic models [32].

4.3. Language Modeling

One of the biggest challenges in the Babel project is the sparse lan-
guage model training data. According to the "BaseLR” submission
condition, no additional resources were used during the 4-gram lan-
guage model (LM) estimation. To smooth the LMs, the discount
parameters were estimated according to [33].

4.4. Speech Recognition and Keyword Search Systems

The speech recognition experiments were carried out with the pub-
licly available RASR toolkit [34]. To perform the keyword search
on the pruned word lattices, weighted finite state transducer based
tools provided by IBM were used [35]. For in-vocabulary queries
the spoken term detection is performed on word-level, whereas out-
of-vocabulary terms are searched in the phonetic form of the lattice
after grapheme-to-phoneme conversion. In addition, in some lan-
guages the phonetic form of the queries was further expanded with
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a transducer modeling phone confusions [36]. The KWS was car-
ried out on word-graphs containing about 2000 arcs/sec on average
for Cantonese, Pashto, Tagalog, Turkish, and 9000 arcs/sec for Viet-
namese. In Vietnamese KWS, the lattices were obtained by decoding
with a bigram LM. The speech-to-text performance was measured
in token error rate (TER). Depending on the language a token corre-
sponds to a character for Cantonese, a word for Pashto, Turkish, and
Tagalog, and a syllable for Vietnamese. The spoken term detection
efficiency was measured on the development keyword list in terms
of Maximum Term Weighted Value (MTWYV) (for details see [37])
after sum-to-one score normalization per keyword [36].

5. EXPERIMENTAL RESULTS
5.1. Effect of the number of languages

In the first set of experiments, the multilingual BN features were
trained on either FLPs or LLPs corresponding to the training set con-
dition of the target language. Since similar amounts of data are avail-
able in the packs, the joint corpus is well balanced between the lan-
guages. First, we compared uni- to multilingual BN features trained
on the first four development languages of the project, Cantonese
(CA), Pashto (PA), Turkish (TU), Tagalog (TA). Then, experiments
were also carried out including the Vietnamese pack (VI) in the BN
training. As Table 2 shows, like our previous investigation [11],
significant TER improvement can be observed on all languages, al-
though these languages are more diverse. Surprisingly, using three
non-tonal languages in the multilingual training gave comparable
improvement in Canontese as in Tagalog or Turkish. Including a
fifth language led to a consistent but modest gain in TER. Again,
although the fifth language was tonal, the Tagalog system showed
similar improvement as the Canontese. We also experimented with
LLPs and observed similar improvements w.r.t. the number of lan-
guages involved in the BN training (results not reported here).

Training the BN on five languages had the advantage that a sin-
gle set of multilingually trained features could be used on all lan-
guages. Besides the speech-to-text, KWS performance was also
measured after MPE training. Results in Table 3 indicate that 3-
5% relative ASR performance improvement can be achieved through
multilingual BN features. On average the KWS results show larger
gains of 3-10% relative on FLP and over 10% on LLP.

Table 2. TER [%] comparison of uni- and multilingual BN features
based ASR systems after speaker adaptation on FLPs.

Language Id Unilingual CA +Il§/iult111ngléi +PA
TTU+TA  TTU+TA+VI
Cantonese 101 42.3 40.7 40.2
Pashto 104 52.8 51.6 51.3
Turkish 105 50.5 493 49.2
Tagalog 106 50.5 48.5 48.0

5.2. Improving LLP results with non-target FLPs

In the previous experiments only LLP data was used for multilingual
training for the LLP case. Since the amount of provided transcribed
data will be reduced in each period of the project, this limited mul-
tilingual training could probably be a realistic scenario only close to
the end of the project. However, currently orders of magnitude more
transcribed data are at hand in non-target language FLPs. There-
fore, in the next experiments we investigated how the unbalanced
multilingual corpus influences the KWS and ASR performance on
the target language (LLP). In order to verify our results, besides the

Table 3. ASR (in TER [%]) and KWS (in MTWV) performance com-
parison of uni- and multilingual BN features based systems after
speaker adaptation and MPE on FLPs and LLPs.

Unilingual Multilingual
Language  Id  Set ' —pp—yrrwv T TER — MTWV
Cantonese 101 FLP | 406 05528 [ 394 05677
§ LLP | 557 03023 | 525  0.3495
FLP | 522 04194 | 503 04537
Pashto 104 11p | 649 01899 | 624 02186
) FLP | 495 06347 | 481  0.6504
Turkish 105 11p | 654 03503 | 626 04115
Taealo l0g FLP [ 201 04885 | 466 05365
galog LLP | 623 02801 | 599 03116
Vietnamese 106 FLP | 504 04569 | 482 04763
LLP | 644 0.1996 | 620 02436

surprise language of the previous evaluation (Vietnamese) the exper-
iments were repeated on another, non-tonal language of the develop-
ment package (Pashto). In this latter case, data were borrowed from
Cantonese, Turkish, Tagalog, and Vietnamese.

As the results in the 1st, 5th, and 9th rows of Table 4 show, by
including FLPs instead of LLPs of other languages in the multilin-
gual training, the TER can be significantly reduced. The improve-
ment over the unilingual features is 9% relative for both languages.
The spoken term detection shows even larger gain, due to the better
acoustic model we measured 0.1237 absolute MTWYV improvement
on Vietnamese, and 0.0711 on Pashto. However, the training time
for such a hierarchical MLP increased also by orders of magnitude
with more training data, as shown in the last column.

5.3. Effect of fine-tuning of the hierarchical BN on the target
language data

Since the BN features are trained in a hierarchical manner (2 MLPs
after each other), and the multilingual training is carried out jointly
on all data, we investigated whether the joint fine-tuning of the hier-
archy using only the target language could result in additional gain.
The 2nd, 6th and 10th rows of Table 4 show, that the ASR perfor-
mance improved further. The unilingual systems show only modest
improvement in TER from fine-tuning. Fine-tuning the multilingual
BN trained on non-target FLPs and target LLP resulted in slight re-
duction in MTWYV on Vietnamese, whereas further TER reduction
could still be observed (9-10th rows). On Vietnamese, the degrada-
tion in MTWYV after the fine-tuning might be related to suboptimal
pruning parameters to extract the more dense lattices for KWS (sec-

Table 4. Effect of exploiting non-target FLPs for LLPs, porting mul-
tilingual BN, and fine-tuning with target language. Bold red font in-
dicates the amount of "borrowed” data, and blue the data available
in the target language. Results are obtained after SAT and MPE.

Hierarchical Fine Vi Language Pash MLP

BN trained on | tuning 1etnamese ashto Frammg
TER MTWV| TER MTWYV [time [h]*

no | 644 0.1996 | 649 0.1899 3

1LLP yes | 64.0 0.1834 | 643 0.1901 5

no | 65.7 0.1940 | 64.7 0.1845 0

4LLP yes | 62.6 0.2498 | 62.0 0.2241 4

no | 62.0 02436 | 624 0.2186 16

4LLP+1LLP yes | 60.9 0.2541 | 61.9 0.2342 19

no | 59.7 0.2511 | 60.0 0.2507 0

4FLP yes | 57.6 0.2902 | 58.6  0.2700 4

no | 59.0 03233 | 594 0.2610 72

4FLP+1 LLP yes | 57.1 0.3170 | 584 0.2770 75

*for the target language, measured on Vietnamese
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ond and last rows). In contrast, if balanced corpora are used, addi-
tional 4-7% relative MTWYV improvement is observed (5-6th rows).

5.4. Cross-lingual transfer and initialization

As the previous results show, multilingual BN features resulted in a
solid improvement in both TER and MTWV. However, the multilin-
gual training is rather time consuming. Due to the time constraints in
the evaluation phase, our concern was also to find a fast development
way to obtain the improved BN features. First, we tested the cross-
lingual porting of the multilingual BN features trained on non-target
languages. The third row in Table 4 shows that porting BN trained
on non-target LLPs did not improve the Vietnamese results and only
a slight gain in TER is observed in Pashto. Nevertheless, the trans-
fer of multilingual BN trained on FLPs (7th row) shows more than
6% relative TER improvement over the best unilingual features (2nd
row). In addition, the cross-lingual porting does not need any MLP
training time on the new language. It should be mentioned, in gen-
eral, the unilingual BN outperforms the cross-lingually ported mul-
tilingual features if enough data are available in the target language
without acoustic mismatch between the training and testing condi-
tions, see [15, 9] and second and third rows of Table 5. In the case
of LLP only 10 hours of speech are available, and might not cover
the wide range of the acoustical variation of the telephony speech.

In further experiments, the initialization with multilingually
trained NN was investigated. Excluding the target language from
the multilingual training enables training the multilingual BN be-
forehand, saving considerable amount of time during the evaluation
phase of the surprise language. For the sake of completeness, these
experiments were also carried out with multilingual MLPs where
the target language was also included during the BN training. Not
surprisingly, after fine-tuning of the ported NNs large gains were
observed if the multilingual training was performed without the
target language data. Using only LLPs 3.1% and 2.7% absolute
TER improvement was measured in Vietnamese and Pashto over the
ported BN features (3rd, 4th rows). The fine-tuned BN outperformed
the best unilingual BN features by 2-4% relative in TER. Similar
observations can be made if more data is borrowed from FLPs (8th
row). Although this type of ported features already outperformed
the unilingual ones, the performance gap increased further after
the fine-tuning step. The TER of the fine-tuned ported features is
similar but slightly higher than the results achieved by multilin-
gually trained (and fine-tuned) features where the target language
is also involved in the multilingual training (10th row). Regarding
the KWS performance, on Vietnamese 0.0906, on Pashto 0.0799
absolute improvement was measured over the best unilingual system
with only 4 hours of MLP training time. Although there is still a gap
to fill between the performance of the best multilingual features (9th
and 10th rows) and the fast developed BN features, the former ones
can easily become impractical with larger numbers of languages and
stronger time constraints.

6. DISCUSSION

The MLP training time accounting for the fine-tuning step consists
of two steps. First, the last hidden layer is initialized by a pretrain-
ing step since the target language was not present in the multilingual
training. The parameter fine-tuning is then performed on the com-
plete MLP. If the target language was included in the multilingual
training then there was no need for initialization. In our implemen-
tation the windowing in the middle of the hierarchy is pushed to the
input to perform the MLP training with fully randomized training
data. Using only segmentwise randomization could significantly re-
duce the duration of the fine-tuning step. The cross-lingual porting

Table 5. Porting multilingual BN, and its target language specific
fine-tuning on FLPs. Bold red font indicates the amount of "bor-
rowed” data, and blue the available data in the target language.
Results are after SAT and MPE.

Hierarchical Fine - Fanguage MLP

BN trained on | tunin Vietnamese Pashto training
E|TER MTWV| TER MTWYV |time [h]*

1 FLP no | 504 04569 | 522 0.4194 16

yes | 49.4 0.4681 | 51.7 0.4270 29

no |50.9 04620 | 524 04130 0

4FLP yes | 47.4 0.4712 | 50.7 0.4607 25

no |48.2 04763 | 50.3 0.4537 80

4FLP+] FLP yes | 472 0.4765 | 50.0 0.4658 93

*for the target language, measured on Vietnamese

and initialization experiments were also repeated on FLPs. As can
be seen in Table 5, similar observations can be made regarding the
fast-development steps (4th row) for a new language. Experimental
results suggest the following multilingual strategies for the devel-
opment and surprise languages of the project. Since there are no
hard time constraints, the multilingual training can be done for de-
velopment languages on all non-target language FLPs including the
target language (FLP or LLP), followed by a fine-tuning. During
the evaluation of a surprise language (for both FLP and LLP), the
multilingual BN features previously trained on all available devel-
opment FLPs can be an effective initialization scheme, and only a
fine-tuning step would be necessary to achieve improved ASR and
KWS performance.

7. CONCLUSIONS

This study has evaluated recently proposed multilingual BN features
on linguistically diverse set of low-resourced languages. Keyword
spotting and speech recognition results indicate the superiority of the
multilingual features over the unilingual ones, in particular for low
target language training resources. From the results where multilin-
gually trained BN features were cross-lingually transferred we can
conclude: (1) borrowing orders of magnitude more data from other
languages, cross-lingually ported BN can outperform the unilingual
BN features if only a limited amount of data is available in the tar-
get language; (2) a fine-tuning step can significantly improve the
results, clearly outperforming the unilingual system in all cases; (3)
although the best performance is achieved if the target language is
also included in the multilingual training, comparable results can be
obtained after fine-tuning of cross-lingually transferred BN features
trained only on non-target languages.

As future work, we intend to extend our multilingual experi-
ments on several new and more diverse language packs (e.g. Zulu
and Lao) released in the project recently. This might influence the
optimal number of languages involved in the multilingual training.
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