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Abstract

This paper tackles the problem of spotting a set of signs
occuring in videos with sequences of signs. To achieve this,
we propose to model the spatio-temporal signatures of a
sign using an extension of sequential patterns that contain
temporal intervals called Sequential Interval Patterns (SIP).
We then propose a novel multi-class classifier that organises
different sequential interval patterns in a hierarchical tree
structure called a Hierarchical SIP Tree (HSP-Tree). This
allows one to exploit any subsequence sharing that exists
between different SIPs of different classes. Multiple trees
are then combined together into a forest of HSP-Trees re-
sulting in a strong classifier that can be used to spot signs.
We then show how the HSP-Forest can be used to spot se-
quences of signs that occur in an input video. We have eval-
uated the method on both concatenated sequences of iso-
lated signs and continuous sign sequences. We also show
that the proposed method is superior in robustness and ac-
curacy to a state of the art sign recogniser when applied to
spotting a sequence of signs.

1. Introduction
Automated Sign Language Recognition (SLR) remains

a challenging problem to this day. Like spoken languages,
sign language feature thousands of signs, sometimes only
differing by subtle changes in hand motion, shape or posi-
tion. This, compounded with differences in signing style
and physiology between individuals, makes SLR an intri-
cate challenge.

A large body of work on automated SLR has focused
on isolated signs, where a sequence contains only a single
sign. Approaches can be divided between tracking-based,
sub-unit classifiers [5], and more data driven approaches.
As examples of the latter, Wang et al. [11], created an
American Sign Language (ASL) dictionary based on simi-
larity between signs using a Dynamic Space-Time Warping
(DSTW) approach and Gavrilov et al. [4] proposed a data
mining approach for detecting reduplications in signs. One

prevalent family of methods for SLR are Hidden Markov
Models (HMMs). Pitsikalis et al. [9] proposed a method
which uses linguistic labelling to split signs into sub-units.
From this they learn signer specific models, which are then
combined via HMMs to create a classifier. Two drawbacks
of HMMs for sign recognition are that they are learnt in a
non-discriminative manner and do not perform feature se-
lection, resulting in sub-optimal classifiers for datasets with
ambiguous classes (as is typical in SLR).

To overcome this, an alternative approach using dis-
criminative spatio-temporal patterns, called Sequential Pat-
terns (SPs) was proposed by Elliott et al. [2]. SPs are or-
dered sequences of feature subsets that allow for explicit
spatio-temporal feature selection and do not require DTW
for temporal alignment. Here SPs were learnt in a discrim-
inatory fashion as 1vs1 classifiers before being combined
into strong classifiers for recognising signs—hence the ap-
proach scaled poorly to large numbers of signs. To ad-
dress this, Ong et al [8], proposed a method for building SP
forests where multiple SPs that share initial subsequences
are combined into a tree structure, producing an inherently
multi-class classifier. This was then applied to isolated sign
recognition and shown to outperform HMMs based tech-
niques, yielding state-of-the-art recognition performance on
a database with a large number of signs.

These articles addressed the recognition of isolated
signs; in contrast, we focus on the more difficult problem
of spotting and recognising a sequence of known signs in a
video, without indications of start and end points. A num-
ber of previous studies approached similar problems using
variants of HMMs. For example, Liang & Ouhyoung [6]
presented a recognition system for Taiwanese sign language
based on HMMs. Using data-gloves for extracting the fea-
tures used for recognition, their system could classify 250
signs with 80% performance in a signer dependent experi-
ment. Also, Elmezain [3] used HMMs for recognising 10
signs in unsegmented sequences, and Morency et al. [7]
proposed a discriminative approach for unsegmented ges-
ture detection based on Latent Dynamic CRF. However, the
above gesture recognition work used only a limited set of
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Figure 1: Illustration of SP and SIP encoding of a toy sign: (a) Toy binary feature vector encoding 4 movements of one
hand; (b) Example trajectory for a toy sign; (c) Example of a SP describing (b): S = 〈S1, S2, S3〉; (d) Example sequence
containing the sign in (b); (e) Example of a SIP describing (b): S∗ = 〈〈S1, S2, S3〉 , ((α1, β1), (α2, β2))〉.

simple, distinctive gestures, whereas sign language recog-
nition involves a large vocabulary of complex, and often
ambiguous, signs. The work of Yang et al. [12] proposed a
CRF-based approach for sign spotting with a lexicon of 48
signs but for a single signer.

This article presents an extension of the SP-Trees ap-
proach [8] that allow for efficent spotting of unsegmented
signs in videos. To this end, we evaluate the spotting per-
formance of the proposed method on concatenated isolated
signs, as well as continuous sign sentences.The main con-
tributions of this paper are: 1) a new extension to SPs
incorporating temporal intervals (sec. 2); 2) a novel hier-
archical tree structure called Hierarchical Sequential Pat-
tern Trees (HSP-Trees) (sec. 3), that can exploit any sub-
sequence shared between different signs for classification
(sec. 4);. and 3) an efficient algorithm for learning HSP-
Trees (sec. 5). We show experimentally that the proposed
method results in significant improvements in accuracy over
the state-of-the-art SP-Trees and HMMs for sign spotting
(sec. 6). Finally, we conclude with future work in sec. 7.

2. Representing Signs using Sequential Pat-
terns with Temporal Intervals

The aim of this article is to spot occurences of a lexi-
con of C signs in an N -frames video. All frames in the
video are assigned a label L = {λ0, λ1, . . . , λC}, where
λ0 denotes the absence of any known sign (as per the lex-
icon). In order to describe signs, we extract a vocabu-
lary of D static and dynamic features at every frame in
the video (Fig. 1a) to form a vocabulary of features E =
{e1, . . . , eD, ē1, . . . , ēD}, where ei and ēi represent the
presence and absence of feature i, respectively. Therefore, a
frame i ∈ [1, N ] in the video is coded by the itemset Si ⊂ E
and anN -frames video sequence by S = 〈S1, . . . , SN 〉. We
first introduce a formalism to represent the dynamic signa-
ture characterising signs as Sequential Patterns.

2.1. Sequential Patterns S

We call any sequence of itemsets a Sequential Pattern
(SP). SPs can serve to encode either: 1) the sequence of
features extracted from a video from the corpus; 2) a spatio-
temporal signature unique to a particular sign label. Intu-
itively, a sequential pattern encodes the occurence of var-
ious feature sets in a specific order—see Fig. 1c. Impor-
tantly, SPs do not constrain what happens between two fol-
lowing feature sets, just that they need to occur in the spec-
ified order. Formally, we have:

Definition 1. Let E = {e1, . . . , e|E|} be a set of binary
features, and S ⊂ E an itemset, then a Sequential Pattern
S ∈ SE of length L is defined as a sequence of itemsets
S = 〈S1, . . . , SL〉.

In order for SPs to be used for recognition, we need to
define a relation assessing whether a SP is a subsequence of
another. For example, in Fig. 1, all itemsets in the left-hand
SP (Fig. 1c) occur in the central sequence, and in the same
order, hence we say that the left SP is a subsequence of the
central one (Fig. 1d). More formally:

Definition 2. Let A = 〈Ai〉|A|i=1 and B = 〈Bi〉|B|i=1 be two
SPs, we define that A v B iff. there exists a sequence
K = (k1, . . . , k|A|) such that ki < kj ,∀i < j for which
∀i ∈ {1, . . . , |A|} we have Ai ⊆ Bki . We shall denote K
as a detection index set.

Assuming we have two SPs such that A v B, it will
be common that A occurs in several different configura-
tions in B (ie, the previous definition holds true for mul-
tiple index sets K). For this reason, we identify the ear-
liest and latest occurences of A in B. Formally, the de-
tection index set K = (ki)

|A|
i=1 is called the earliest de-

tection index set if k1 = argmini∈[1,|B|]A1 ⊂ Bi and
ki = argminj∈[ki−1,|B|Ai ⊂ Bj ,∀i ∈ [2, |A|]. Simi-

larly, the index set K = (ki)
|A|
i=1 is called the latest detec-



tion index set if k|A| = argmaxi∈[1,|B|]A|A| ⊂ Bi and
ki = argmaxj∈[1,ki+1]Ai ⊂ Bj .

Note that SPs do not encode the time (or number of
frames) elapsed between itemsets. This means that the like-
lihood for an SP S to be included by chance in a sequence
D increases with the sequence’s length. This makes SPs
adequate for the recognition of temporally segmented and
isolated signs, but weak for spotting signs in long video
streams.

2.2. Sequential Interval Patterns S∗

In order to overcome the weakness noted above, we pro-
pose an extension of the SP called Sequential Interval Pat-
tern (SIP), which restricts the permitted temporal intervals
between consecutive itemsets (see Fig. 1e).

Definition 3. A Sequential Interval Pattern S∗ ∈
S∗E of length L is defined as the tuple: S∗ =〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
, where Si ⊂ E is an itemset, and

αi, βi ∈ R, αi ≥ βi,∀i ∈ {1, . . . , |S∗|}, denotes the min-
imum and maximum duration allowed between itemsets Si
and Si+1, respectively.

In this definition, each itemset Si is assigned a tuple
(αi, βi) that constrain the minimum and maximum inter-
val (ie, number of frames) allowed between this itemset and
the next. This is illustrated in Fig. 1, where the right SIP
(Fig. 1e) is a subsequence of the central sequence (Fig. 1d).
Although the itemsets in the right SIP are the identical to the
left SP, fewer occurences in the central sequence are valid
due to the restrictions provided by the (αi, βi) on the inter-
val between itemsets. Formally, the subsequence relation in
Def. 2 is rewritten:

Definition 4. We say that a SIP A =〈〈
IAi
〉LA

i=1
, (αAi , β

A
i )LA−1

i=1

〉
of length LA is included

in another SIP B =
〈〈
IBi
〉LB

i=1
, (αBi , β

B
i )LB−1

i=1

〉
of length

LB , denoted by A v B, iff. ∃{k1, . . . , k|A|}, such that
Iai ⊆ IBki
αAi ≤

∑ki+1−1
j=ki

αBj
βAi ≥

∑ki+1−1
j=ki

βBj

Note that SPs are a specific version of SPs, with the min-
imum interval set to 0 and maximum to infinity.

3. Hierarchical Sequential interval Pattern
Trees (HSP-Trees)

This section presents an efficient tree structure for en-
coding, detecting and learning SIPs, called a Hierarchical
Sequential Pattern Tree (HSP-Tree), which allow sharing of
sub-patterns between multiple SIPs (see Fig. 2).

3.1. Definition of HSP-Trees

Formally, an HSP-Tree is a tuple T = (N,L), where
N = {n1, . . . , n|N |} is the set of nodes and L =
{l1, . . . , l|L|} the set of links.

In an HSP-Tree, nodes n ∈ N encode an SIP S∗, and
are assigned a label λ ∈ L corresponding to a sign in the
lexicon (or the ’reject’ label). Formally, a HSP-Tree node
is defined as the tuple n = (S∗n, λn, ᾱn, β̄n). There, ᾱ, β̄
determine the maximal and minimal possible durations of
the SIP S∗ coded by the node. They are aggregated from
the maximal and minimal intervals between all itemsets in
S∗, such that ᾱn :=

∑|S∗n|
i=1 αi , and β̄n :=

∑|S∗n|
i=1 βi. For

convenience, we use a functional notation to denote nodes’
properties: Ŝ∗ [n] := S∗n, λ̂ [n] := λn, α̂ [n] := ᾱn and
β̂ [n] := β̄n.

The links are oriented, and ensure that the nodes are con-
nected in a tree structure as well as providing information
on how to traverse the tree. Formally, a link l ∈ L is the
tuple l = (n, n′, t), such that t ∈ {+,−} is the link type
and n, n′ ∈ N are two nodes, called the parent and child
node, respectively, such that n 6= n′. The link type t is used
to define how the tree is traversed at learning and detection
time—see sections 4 and 5.

For convenience we define the descendance d(n) ⊂ N
of a node n ∈ N as the subtree starting from this node:

Definition 5. We say that n′ ∈ N is a descendant of n ∈ N
iff. ∃{k1, . . . , ki} and {s1, . . . , si−1}, such that nk1 = n,
nki = n′, (nkj , nkj+1

, sj) ∈ L, ∀j ∈ [1, i − 1]. We denote
the set of all descendants of n as d(n).

Additionally, a tree T = (N,L) has a unique root node
r(T ) ∈ N that is the descendant of none, and a set of nodes
called leaf nodes L(T ) ⊆ N that have no descendant.

For a tree to be an HSP-Tree, two constraints need to
be satisfied: First, HSP-Trees are binary, meaning that all
non-leaf nodes have exactly one positive and one negative
descendants:

Property 1. Let T = (N,L) be a HSP-Tree. Then for each
non-leaf node n ∈ N , it will only have two child nodes:
n+ and n−, n+ 6= n− 6= n, where (n, n+,+) ∈ L and
(n, n−,−) ∈ L, called the positive and negative child of
n respectively. For convenience, we define the following
accessor functions: + [n] = n+ and − [n] = n−.

Second, the SIP encoded in a non-leaf node is a subse-
quence of the SIP encoded by its positive child, and all the
descendants thereof (Fig. 2b). This property provides the
crucial mechanism that allows us to merge different SIPs
with shared subsequences:

Property 2. Let T = (N,L) be a HSP-Tree, and n ∈ N a
node, then if (n, n′,+) ∈ L, then we have Ŝ∗ [n] v Ŝ∗ [n′′],
∀n′′ ∈ d(n′) ∪ {n′}.
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Figure 2: Illustration of how the HSP-Tree combines sequential patterns of three toy signs (a) to form a multi-class classifier
(b). Non-leaf nodes are shown in blue with its associated SIP. For clarity, the SIP temporal intervals are not shown. Leaf
nodes are shown in green. The link types are denoted by the +,- signs. Importantly, the HSP-Tree allows two SPs with any
common subsequences (which may be in the middle of both SPs) to be merged. This type of sharing would not be possible
with the SP-Tree method.

Hence, we can say that the positive descendence of a
node n specializes the SIP Ŝ∗ [n]—this is exemplified in
Fig. 2b.

4. Classification using HSP-Forests

In this section we describe how an HSP-Tree can be used
to assign labels to frames in a video for sign spotting. First,
sec. 4.1 describes the classification of segmented videos
containing a single sign; then sec. 4.2 provides an extension
to label an unsegmented video sequence containing multi-
ple signs.

4.1. Individual Sign Classification

The classification of a sequence containing only a single
sign is a function φ : TE × DE → L that takes in an in-
put sequence and an HSP-Tree (T = (N,L)) and outputs a
label.

In practice, the classification will be performed by start-
ing at the root node r(T ), and traversing the tree until a leaf
node n ∈ L(T ) is reached. The tree is traversed by follow-
ing the positive link out of a node if the SIP it encodes is
a subsequence of D, and following the negative link other-
wise. Formally, we define the function ζ : N × DE → N
that traverses the tree for an input sequence D ∈ DE , and
returns a leaf node:

ζ(n,D) =

 n if n ∈ L(T )
ζ(+ [n] ,D) if S∗ [n] vD
ζ(− [n] ,D) otherwise

(1)

When a leaf node is reached, the sequence is assigned
this node’s label. In sum, an input sequence D ∈ DE is
classified by an HSP-Tree T as:

φ(T,D) = λ̂ [ζ(r(T ),D)] (2)

Finally, if we have a population of K weighted HSP-
Trees F = {(T1, α1), . . . , (TK , αK)}, called in the fol-
lowing an HSP-Forest, the sequence D is classifed as the
weighted majority vote:

Φ(F,D) = argmax
λ∈L

∑
(Tj ,αj)∈F

αjI [φ(Tj ,D) = λ] (3)

where I [x] is an indicator function and the weights αj are
determined by the boosting framework—see sec. 5.2.

4.2. Sequence of Signs Classification

The previous approach is suitable for assigning a unique
label to a segmented sequence that contains a single sign.
For the more general problem of sign spotting, we have a
long video sequence containing multiple signs and no in-
formation about when each sign starts and finishes, and we
need to assign a label to each frame in the sequence.

We propose to extend the classification method in the
previous section with a temporal scanning window, starting
at the frame to be classified. Formally, let D ∈ DE be a
(long) data stream, we define a scanning window on D as a
function that generate a sub-stream W : DE × N → DE of
length Q, such that:

WQ(D, i) = 〈Dj〉i+Qj=i (4)

where Dj ⊂ SE are itemsets on E . It follows from this defi-
nition of the scanning window that any frame i ∈ [1..|D| −
Q] in the sequence will be contained in exactly Q windows.

Each frame i in the sequence D is then assigned a label
λ ∈ L as the majority vote of the HSP-Forest over all Q-
windows that contain this frame:

ΦQ(F,D, i) = argmax
λ∈L

i∑
k=i−Q

I [Φ(F,WQ(D, k)) = λ] ,

(5)
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Figure 3: Methods for extending a SP or SIP.

5. Learning the HSP Forest
In this section, we describe the method for learning a

set of HSP-Trees that will be linearly combined together
into a strong classifier within the Boosting framework. Let
us assume a training set X ⊂ DE , with N training ex-
amples: X = {Xi}Ni=1, where Xi ∈ DE is a sequence
of D-dimensional binary feature vectors (|E| = D), fea-
tures which will be detailed in sec. 6. The length of the se-
quence Xi is denoted as |Xi| and we define Xi = (xi)

|Xi|
i=1 ,

xi ∈ {0, 1}D. Associated with the sequences in X, we have
a set of labels Y = (yi)

N
i=1, yi ∈ L and a normalised set

of example weights W = (wi)
N
i=1, where

∑X
i=1 wi = 1.

For convenience, the weight of an example X is denoted as
w(X) and its label as y(X). We also define the function
λ : X → L, that gives the most frequent label in a set of
examples X:

λ(X) = argmax
c∈L

∑
X∈X

I [y(X) = c] (6)

5.1. Building the HSP-Tree

HSP-Trees are built in a manner similar to typical deci-
sion trees, where the input X is recursively split between se-
quences that contain a given SIP X+ = {X ∈ X|S v X},
according to Def.4, and the others X− = {X ∈ X|S 6v
X}. The learning algorithm finds the SIP S that provides
the split of the training set with optimal Gini criteria.

For efficiency, the optimal SIP is learnt in two steps:
the first step finds the optimal SP irrespective of intervals
(sec. 5.1.1), the second optimises SIP intervals from the
training data (sec. 5.1.2).

5.1.1 Optimally Extending SIPs

This algorithm sequentially extends existing a (possibly
empty) SIP in order to maximise the Gini index. We define
two ways of extending a SIP: 1) adding new items to an
existing itemset (static extension); 2) adding a new itemset
before, between or after its itemsets (sequential extension).

Static extension: Let S =
〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
be an SIP of length L, t ∈ [1, L] be the itemset index
of S to extend with the new item d ∈ [1, D]. We can
produce a static extension of S at itemset t called S′ =〈
〈S′i〉

L
i=1 , (αi, βi)

L−1
i=1

〉
where:

S′i =

{
Si if i 6= t

Si ∪ {d} otherwise (7)

This is shown in Fig. 3a. This operation of a static extension
is denoted using the ∪stt operator: S′ = S ∪stt d.

Sequential extension: Let S =〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
be an SIP of length L, and

{d}, d ∈ [1, D] be a new itemset to insert in S at a location
t ∈ [0, L]. We can produce a sequential extension of S,
defined as S′ =

〈
〈S′i〉

L+1
i=1 , (α

′
i, β
′
i)
L
i=1

〉
such that:

〈S′i〉
L+1
i=1 =

 ({d}, S1, ..., SL) if t = 0
(S1, ..., St, {d}, St+1, ..., SL) if 0 < t < L

(S1, ..., SL, {d}) otherwise
(8)

This is shown in Fig. 3b. This operation is denoted by
the ∪set operator, with S′ = S ∪set d.

The proposed learning algorithm makes use of these two
extension operators ∪stt and ∪set to find the optimal exten-
sion S′ = S ∪s′t′ d′ of the existing SIP S, according to the
criterion γ, such that:

d′, t′, s′ = argmin
d∈[1,D],t∈[0,L],s∈{st,se}

γ(S ∪st d,X) (9)

Note that temporal interval values are ignored at this stage,
and will be optimised in the next step.

5.1.2 Configuring Interval Values

The next step requires an optimisation of the interval values
(αi, βi)

L−1
i=1 of the SIP S. First, we determine the minimum

and maximum intervals between an SIP’s itemsets for a sin-
gle sequence:

Theorem 1. Let X = (Xi)
N
i=1 be an example sequence of

length N and S =
〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
be a length L

SIP. Let K ′ = (k′i)
L
i=1 and K ′′ = (k′′i )Li=1 be the earliest

and latest detection index set of (Si)
L
i=1 respectively. Then,

the maximum possible interval value between itemsets Si
and Si+1 is ∆i = k′′i+1 − k′i.

Given an SIP S =
〈
〈Si〉Li=1 , (αi, βi)

L−1
i=1

〉
and a set of

training examples X = (Xi)
N
i=1, Theorem 1 provides the

maximum intervals for each pair of consecutive itemsets in
S for each training exampleXj . If we denote the maximum



interval value between Si and Si+1 in example Xj as ∆j
i ,

then, our search range for the intervals (αi, βi) is given by:

σi = [0, max
j∈[1,N ]

(∆j
i )] (10)

The optimisation of the intervals (αi, βi)
L−1
i=1 of S is de-

scribed in Algo. 1: First, all intervals are initialised to
(1,∞) such that S is equivalent to an SP.Then, the optimal
values for each interval (αi, βi) are determined sequentially
whilst holding all other interval values constant.

Algorithm 1 Sequential Interval Optimisation Algorithm

Input: Training Examples X = (Xi)
N
i=1

Input: a SP: S = 〈Si〉Li=1

Output: a SIP: S∗ =
〈
S, (αi, βi)

L−1
i=1

〉
.

Initialise intervals of S∗: ∀i ∈ [1, L− 1], αi = 1, βi =∞
for i ∈ [1, L− 1] do

Let γ′i be the Gini impurity with αi = α′ and βi = β′.
Let σi (Eq. 10) be the search range for the ith interval.
Set (αi, βi)← argminα′∈σi,β′∈σi γ

′
i

end for
Return S∗

5.1.3 HSP-Tree Building Algorithm

Using the tools provided in sec. 5.1.1 and 5.1.2, we describe
the HSP-Tree learning algorithm in Algo. 2. At each non-
leaf node, the dataset is split according to the node’s SIP S′,
that is extended from its closest positive ancestor’s SIP S
(possibly being the empty SIP if the node is connected to
the root by negative links only), in such a way as to greed-
ily optimise the Gini criterion, as explained in sec. 5.1.1
and 5.1.2. Both subsets X+ and X− resulting from this
split are then sent to the positive and negative children of
the node (respectively). The positive child node will then
further extend S′ on the subset X+ and the negative child
extends S on the subset X−, splitting recursively the input
space with more specific SIPs.

This process continues until one of 3 termination criteria
is met: 1) maximum tree-depthOmax is reached; 2) training
subset is smaller than minimum size Nmin (set here as 1);
or 3) the training subset is “pure” (i.e., contains samples that
all belong to the same class).

5.2. Boosting HSP-Forests

In order to build the HSP-Forest, a modified version of
the multi-class AdaBoost method is used. Here, the weak
learner selection procedure is replaced by Algo. 2 for it-
eratively building appropriate HSP-Trees, given a set of
weighted and labelled examples.

Algorithm 2 HSP-Tree Learn Algorithm

Input: Training Set: (X, Y,W )
Output: HSP-Tree T
Queue element: (Node, Train Subset, Depth)
Initialise empty SIP for root node: SI = 〈〈〉 , ()〉.
Set root node R = (SI , λ(X))
Initial HSP-Tree Nodes: N = {R}
Initial HSP-Tree Edges: E = ∅
Initialise queue: Q = {(R,X, 1)}.
while Q 6= ∅ do

Remove last item of Q: (Ncur,Xcur, Ocur)

Let Scur = Ŝ∗ [Ncur]
if |Xcur| ≤ Nmin or Ocur ≥ Omax or γ(Scur,Xcur) = 0
then

Update node label: Ncur ← (Scur, λ(Xcur))
else

Update Ncur with optimal extension of its SIP:
Extend Scur using Eq. 9, giving new SIP: S′.
Configure the intervals of S′ using Algo. 1
Update node content: Ncur ← (S′, λ(Xcur))
Partitions of Ncur : X+

cur and X−cur .
Update the queue:

New nodes: L = (Scur,−1) and K = (S′,−1)
N = N ∪ {L,K}.
E = E ∪ {(Ncur, L,−), (Ncur,K,+)}.
Q = Q∪{(K,X+

cur, O
cur+1), (L,X−cur, O

cur+1)}.
end if

end while
Return HSP-Tree: T = (N,E)

6. Experiments

The experiments in this section aim to evaluate the per-
formance of the proposed method for spotting individual
signs in sequences. To this end, three publically available
databases are used: a 40-sign dataset with multiple sub-
jects [8], allowing us to evaluate accuracy in subject de-
pendent and independent settings; a large 981-sign dataset
evaluating the scalability of our approach [8] and finally
a database for spotting signs within continuous sign lan-
guage sentences [1], allowing us to evaluate how well co-
articulation effects are handled.

6.1. Databases and Features

The first dataset (Dataset I) is based on 40 German Sign
Language (DGS) signs; a mixture of both similar and dis-
similar signs. Data from 14 subjects were captured using
a Kinect camera, with 5 repetitions per sign. None of the
subjects were native signers, leading to large variations in
signing styles. The resulting dataset is challenging, featur-
ing both inter and intra signer differences. In this dataset,
the 24D binary feature vector in [8] was used (Fig. 4a),
which consists of: 1) 6 features encoding the relative 3D
movement of each hand; 2) Positional proximity to 9 joints;
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Figure 4: Features used for both datasets

3) dual hand features of both hands comming together, mov-
ing apart and synchronised movements.

The second dataset (Dataset II) contains videos of a na-
tive signer performing 981 Greek Sign Language (GSL)
signs (a mixture of similar and dissimilar signs) with 5 rep-
etitions. The 65D binary feature vector (Fig. 4b) from [8]
was used in this dataset, which consists of: 1) 8 features
of 2D relative motion extracted from tracked hand trajec-
tories; 2) 4 dual handed bimanual features encoding both
hands moving together, apart and in synchrony; 3) 40 fea-
tures of the hand location on a grid placed relative to the
head; 4) 12 features for representing different hand-shapes
based on HOG features classified using decision forests.

The third dataset (Dataset III) contains 201 videos, each
containing a native signer performing a continuous sign lan-
guage sentence along with tracked hands and head posi-
tions. This dataset is challenging due to co-articulation that
is present across similar signs. Additionally, unlike HMMs,
we do not make use of any grammar model, as this work
is concerned with sign spotting solely. Although there is a
total of 104 signs, most occur only few times in the dataset,
making training and testing difficult. Thus, a subset of signs
with at least 3 training instances was chosen, resulting in a
total of 48 signs. The features used are similar to the relative
motion features and hand shape features used in Database
II.

6.2. Experimental Setup

For experiments on Dataset I and II, the original dataset
was split into two partitions: the training set and test set. A
multi-sign test sequence is produced by concatenating sin-
gle sign sequences ordered by a random permutation se-
quence of all the sign labels. The label permutation se-
quence will also act as the groundtruth sequence for this
multi-sign sequence.

For Dataset I, we partition the dataset in two ways: 1)
Leave-one-out signer dependent, where an example from
each sign and subject is removed and assigned to the test set;
2) Cross-validated signer independent, where all examples
from a subject are assigned to the test set. For Dataset II, we
partition in the same manner as the signer dependent set in
Dataset I, but evaluate the performance at different number

of signs ranging from 100 to 981. For both Dataset I and
II, the accuracy is evaluated similarly to word accuracy in
HMMs. In Dataset III, we evaluate the results based on the
percentage of true positives and number of false positives of
signs from the output sequence compared with the ground
truth labels. For all the experiments, 200-tree HSP-Forests
were trained with maximum depth of 20 and minimum ex-
amples of 2. For comparisons against state-of-the-art, SP-
Tree-based classifiers were also trained using the same set-
tings.

Additionally, we also compare against the performance
of HMMs, using the open-source speech recognition sys-
tem RASR [10]. The HMMs are trained using single Gaus-
sian densities in Bakis structure with two consecutive states
sharing the same distribution. The number of states reflects
the actual length of the training sequences. The binary fea-
tures are PCA reduced to maintain 99% of their original
variance and a 0-gram language model for equal likelihood
of all classes is used to simulate the lack of a language
model.

6.3. Experimental Results

The subject dependent results on Database I can be seen
in Fig. 5a. It can be seen that the SP-Tree method performs
poorly when the signs boundaries are not known, which
is the case for a sequence of signs. In contrast, the per-
formance of the proposed HSP-Trees are consistently bet-
ter, by a significant amount, giving an average accuracy
of 71.1% vs 26.9%. In comparison, the performance of
HMMs in this experiment was 63.0%. In the subject in-
dependent tests (Fig. 5b), we again see that the proposed
method is consistently better than the SP-Trees, with an ac-
curacy of 54.1% vs 39.9% (HMMs: 49.3%). For the ex-
periments on Dataset II, HSP-Trees again consistently out-
perform SP-Trees, with an average of 35% more accurate
than SP-Trees. This divergence in accuracy is present even
when the number of signs are large (981 signs), with HSP-
Trees having an accuracy of 72% against 23.56% for the
SP-Trees and 73.7% for HMMs. However, the computa-
tional simplicity of the HSP-Trees resulted in a sequence of
981 signs requiring only 2 minutes for processing against
20 minutes for HMMs. Analysis of the output results for
both Dataset I and II showed that the errors of HSP-Trees
occured at frames around the boundaries between two signs.

The results for Database III can be seen in Fig. 5c. Here,
we show results across different top-N signs (x-axis). As
can be seen, the proposed method obtains an average ac-
curacy of 71.4% with an average of 8 false positives when
a winner-takes-all approach is employed. The results were
obtained using only small numbers of training instances, co-
articulation factors and importantly without the use of any
language model.
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(a) Subject Dependent Accuracy Results
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Figure 5: Sign sequence accuracy for the Dataset I test sequences for both (a) subject dependent and (b) subject independent
results. The true positive and false detections for different top-N signs of Dataset III is shown in (c).

7. Conclusions and Future Work
This article presented a new framework for learning the

temporal signatures that characterise signs, applied to the
task of spotting signs from a defined lexicon in an unseg-
mented video. The proposed method is efficient, robust
to unseen users and allows for sharing discrimative sub-
patterns between learnt signs. This framework extends on
the state-of-the-art SP-Trees approach [8] as follows: 1) an
extension of SPs called SIPs, that includes interval infor-
mation, increasing the discriminative power of learnt pat-
terns. 2) a tree structure called HSP-Trees allowing generic
subsequence sharing between patterns (SP-Trees only allow
sharing between patterns with the same initial sequence).
3) an efficient algorithm for learning HSP-Trees using sub-
sequence sharing between classes for learning on large
numbers of examples and categories (981 classes). Eval-
uation of the method on continuous sign sentences, demon-
strates that it can cope with co-articulation. The proposed
approach was shown experimentally to yield significantly
higher performance than SP-Trees for unsegmented SLR,
in both signer dependent (49 % improvement) and indepen-
dent datasets (12% improvement). Additionally, compar-
isons with HMMs have shown that the proposed method
either equal or exceed the accuracy of HMMs, in signer de-
pendent (71% HSP vs 63% HMM) and signer independent
( 54%HSP vs 49%HMMs), with significantly reduced pro-
cessing time: (2minutes HSP vs 20 minutes HMMs for pro-
cessing 981 signs). Future work will concentrate on elimi-
nating the spurious labels at sign boundaries, integration of
language models into the HSP-Trees and extensive evalua-
tions on other continuous sign datasets.
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