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Abstract—In this paper we investigate different n-gram
language models that are defined over an open lexicon. We
introduce a character-level language model and combine it with
a standard word-level language model in a backoff fashion. The
character-level language model is redefined and renormalized
to assign zero probability to words from a fixed vocabulary.
Furthermore we present a way to interpolate language models
created at the word and character levels. The computation
of character-level probabilities incorporates the across-word
context. We compare perplexities on all words from the test
set and on in-lexicon and OOV words separately on corpora
of English and Arabic text.

I. INTRODUCTION

The problem of out-of-vocabulary (OOV) words has been
a focus of an extensive study in the domain of language
modeling and speech recognition. The goal of this study
is to define a language model (LM) that assigns non-zero
probabilities to words that are not included in a fixed
vocabulary. Furthermore, the LM must fulfill normalization
constraints to allow for correct perplexity measurements and
comparisons.

Brakensiek [1] explores the usage of character n-grams in
the domain of postal address recognition. In that domain the
OOV rate tends to be very high because of the large amount
of street and person names for which it is hard to obtain a
sufficient dictionary. The performance in a recognition ex-
periment did not however outperform the closed-vocabulary
baseline.

Creutz [2] decomposes words into sub-word units called
morphemes. The experiments were run for highly-inflecting
languages, i.e. languages that rely strongly on modification
of words based on tense, person, etc. In speech recognition
experiments a morpheme-based LM performed better than a
standard word n-gram model by 20% in relative word error
rate.

Bisani [3] approaches the OOV problem by using a
hybrid lexicon consisting of graphones and full words.
After decoding in a speech recognition experiment, the
fragments are concatenated greedily to form words. This
hybrid approach performed better than the corresponding
baseline. Vertanen [4] uses a hybrid LM similar to the
one described in [3]. Additionally, a confusion network is
introduced after the decoding process to further improve the

recognition results. Shaik [5] uses a hybrid LM that contains
full words, morphemes, and graphones. The intention is to
use full words for the most frequently appearing words,
morphemes for less frequent words, and graphones for OOV
recognition.

Hazen [6] introduces a generic OOV model that allows
for any sequence of characters during recognition. The
dependencies between characters are captured using an ad-
ditional character-level LM. Similarly, Kozielski [7] uses the
character-level LM to explicitly recognize and hypothesize
OOV words. In those LMs, the word-level and character-
level contexts are clearly separated from each other as
opposed to the hybrid approaches.

In this paper we describe and compare different ap-
proaches to define an n-gram LM over an open lexicon.
In Section II we introduce a standard backoff combination
between the word-level and character-level language models
and describe approaches to redefine the character-level LM
to fulfill the normalization constraint. We also show how to
implement the model using a lexical prefix tree. In Section
III we introduce a character-level LM that makes use of the
across-word context and interpolate it with a standard word-
level LM. In Section IV we report perplexity measurements
on text sources in English and Arabic.

II. BACKOFF LANGUAGE MODEL

Let W be the total word space, V ⊆ W the fixed
lexicon (vocabulary), and C the character inventory which
includes the word end symbol #. We denote the function
that maps a word to a corresponding sequence of characters
as ĉ : W → C∗, and the opposite function ŵ : C∗ →W .

We define an LM that assigns a prior probability to a word
sequence wN

1 := w1, . . . , wn:

q(wN
1 ) =

N∏
i=1

q(wi|wi−1
i−n+1) =

N∏
i=1

q(wi|hi) (1)

where wi ∈ W is any word from the word space and hi =
wi−n+1, . . . , wi−1 is the context of n− 1 words.

The typical n-gram p(wi|hi) assigns zero probability to
OOV words wi /∈ V . The smoothing procedure lets us
reserve some of the probability mass for unseen words. Here
however we want to smooth over the set of all possible OOV
words which is of infinite size.



We therefore introduce a generic token woov that repre-
sents all OOV words and that accumulates the whole OOV
probability mass. We then represent an OOV word as a
sequence of characters. We can now capture the a priori
knowledge of dependencies between characters by construct-
ing a second m-gram model of order m on character level.
The probability of a sequence of characters cM1 ∈ C∗ is
computed as:

p(cM1 ) =

M∏
j=1

p(cj |cj−1j−m+1) (2)

The character-level LM is normalized over all sequences
of all lengths M , because we include the word-end symbol
# ∈ C at the end of every character sequence.

The final probability of a word is defined by combining
the word-level and character-level LMs in a backoff fashion:

q(wi|hi) =

{
p(wi|hi) if wi ∈ V
p(woov|hi)p(ĉ(wi)) if wi /∈ V

(3)

Whenever we encounter an OOV word, it is retained
in the context hi as the woov token. In fact both models
can hypothesize any word from the word space, but the
probability for an OOV word assigned by the word-level
LM is zero.

The probability mass of the character-level LM is dis-
tributed over all words from the word space and not only
over OOV words. Instead we want to use a character-
level LM p̄(cM1 ) that assigns zero probability to in-lexicon
words. Based on the model in Eq. (2), different approaches
to redefine the character-level LM can be proposed, as
described in the following.

A. Character-level LM with early subtraction

For a given character prefix cj1 we define a set of suffixes
that together with the prefix constitute in-lexicon words:

S(cj1) = {cMj+1 : ŵ(cM1 ) ∈ V } (4)

We define a function that for a given character context
isolates the probability mass of the character-level LM which
is contributed by the suffixes of in-lexicon words:

β(cj1) =
∑

M,cMj+1∈S(cj1)

p(cMj+1|c
j
1) (5)

Then we exclude this probability mass from every m-gram
of the character-level LM and renormalize:

p̄(cj |cj−11 ) = p(cj |cj−1j−m+1)
1− β(cj1)

1− β(cj−11 )
(6)

The context is not limited to the last m−1 characters but

#
# #

# #
t

a

x i

e

s

in lexicon

   OOV

Figure 1: Illustration of the lexical prefix tree. Solid, black
nodes and arcs demonstrate common prefixes for both in-
lexicon and OOV words. Dashed, red nodes and arcs illus-
trate OOV words, outside of the common part of the tree.
Once we traverse a red arc, it is impossible to arrive at a
black arc again.

depends on the complete within-word history cj−11 .

p̄(cM1 ) =

M∏
j=1

p̄(cj |cj−11 ) (7)

Such a formulation explicitly excludes in-lexicon words.
Note the following for all in-lexicon words ŵ(cM−11 #) ∈ V :

β(cM−11 #) = 1 (8)

Additionally this LM performs an effective look ahead,
because the probability mass coming from in-lexicon words
is isolated and subtracted as early as possible. The values
of β can be efficiently precomputed by using the following
recurrent equation:

β(cj1) =
∑
c̃∈C

p(c̃|cj1)β(cj1c̃) (9)

B. Character-level LM without early subtraction

In the renormalized character-level LM defined in the
previous section the probability mass is shifted away from
in-lexicon words. Alternatively we can define the model
p̄(cM1 ) by just excluding the word-end symbols of in-lexicon
words and without shifting the probability mass:

β(cj1) =

{
1 if cj = # ∧ ŵ(cj1) ∈ V
0 otherwise

(10)

p̄(cj |cj−11 ) =
p(cj |cj−1j−m+1)

[
1− β(cj1)

]
1− p(#|cj−1j−m+1)β(cj−11 #)

(11)

Note that the probabilities do not change for contexts that
do not form an in-lexicon word.

∀cj−11 : ŵ(cj−11 #) /∈ V p̄(cj |cj−11 ) = p(cj |cj−1j−m+1)
(12)



C. Normalization constraints

The word-level and character-level LMs are normalized
over all words from the word space by definition:∑

w∈W
p(w|h) = 1

∑
w∈W

p(ĉ(w)) = 1 (13)

The backoff combination defined in Eq. (3) is not prop-
erly normalized because the probability mass assigned to
in-lexicon words by the character-level LM is lost. The
character-level LMs defined in sections II-A and II-B do
not suffer from this limitation but is normalized over all
out-of-vocabulary words:∑

w∈W
p̄(ĉ(w)) =

∑
w/∈V

p̄(ĉ(w)) = 1 (14)

which leads to the desired:∑
w∈W

q(w|h) = 1 (15)

Because the normalization constraints are fulfilled, it is
possible to compute perplexities over the whole test set (both
in-lexicon and OOV words) using the proposed model.

D. Implementation using lexical prefix tree

The renormalized character-level LM p̄ can be represented
as a big, infinite lexical prefix tree, which is illustrated in
Figure 1. The nodes of this tree represent character contexts;
The arcs are weighted with the renormalized probabilities p̄;
And the leafs denote word ends.

We construct the lexical prefix tree by first adding all
words from the fixed lexicon. We call this part a common
one, because every node in this part of the tree represents
a prefix that can constitute either an in-lexicon or an OOV
word. Furthermore every node in the common part contains
outgoing arcs labelled with characters that further lead to
the completion of an in-lexicon word.

To make this tree complete we add missing arcs such that
from every node we can traverse an arc that is labeled with
any character from the character inventory. Those new arcs
lead to nodes of the tree that represent prefixes of only OOV
words. Once we leave the common part of the tree we reach
a prefix that can constitute solely an OOV word.

The character-level LM does not need to be renormalized
for contexts outside of the common part of the lexical prefix
tree and the computation of probabilities is then restrained
to the context of m− 1 previous characters:

∀cj1 : S(cj1) = ∅ p̄(cj |cj−11 ) = p(cj |cj−1j−m+1) (16)

The common part of the lexical prefix tree is finite and
can be generated statically. All arcs beyond the common
part are expanded dynamically using the original m-gram
character-level LM which can be implemented using a finite
table. That is why the implementation of such an infinite
lexical prefix tree is feasible.

E. Max and sum backoff

In [7] we proposed the following way of combining the
LMs:

q(wi|hi) = max{p(wi|hi), p(woov|hi)p(ĉ(wi))} (17)

This approach uses the original character-level LM as
defined in Eq. (2). Because the character-level LM assigns
some probability also to in-lexicon words, it is possible
that this probability will be actually higher than the cor-
responding word-level probability. The use of the maximum
instead of the condition as in Eq. (3) corresponds to the
implementation details of a decoder based on the weighted
finite state transducers (WFST) [8].

Furthermore we can rewrite Eq. (17) to use the sum
instead of the maximum:

q(wi|hi) = p(wi|hi) + p(woov|hi)p(ĉ(wi)) (18)

By definition the use of the sum yields higher probabilities
than the use of the maximum, which in turn yields higher
probabilities than the use of the condition as defined in Eq.
(3). Because Eq. (18) is normalized, which can be easily
shown, then Eq. (17) loses some probability mass and does
not fulfill the normalization constraint. We include those
methods here for a comparison.

III. INTERPOLATED LANGUAGE MODEL

In the backoff approach the weighting of the word-level
and character-level LMs is imposed by the backoff weights
of the word-level LM (which are different for every n-gram).
However, the usual smoothing procedure treats the woov

token as an ordinary word and does not take into account
that in our scenario it is used to represent a class of words.
Instead we investigate a combination that is based only on
a single, global parameter.

The probability of a word is defined by interpolating the
word-level and character-level LMs:

q(wi|hi) = λ · p(wi|hi) + (1− λ) · p(ĉ(wi)) (19)

where λ ∈ [0, 1] is the interpolation weight. Here the word-
level LM does not include the woov token. If it encounters
an OOV word in the context hi it uses the lower order
distribution directly (because the backoff weight for an
unseen context is 1). The contribution for an OOV word
assigned by the word-level LM is zero.

So far we have excluded the preceding words for the
computation of the character-level probabilities. Now we
want to reformulate the character-level LM introduced in
Eq. (2) to include the across-word context. The probability
of a sequence of characters cMm ∈ C∗ given a preceding
sequence cm−11 ∈ C∗ is computed as:

p(cMm |cm−11 ) =

M∏
j=m

p(cj |cj−1j−m+1) (20)



We denote the function that maps a sequence of words to
a sequence of characters and truncates it to the last m − 1
characters as ĉm : W → C∗. The sequence of characters
includes the word-end symbol # ∈ C after each word. The
final interpolated probability of a word is defined as:

q(wi|hi) = λ ·p(wi|hi)+(1−λ) ·p(ĉ(wi)|ĉm(wi−1
1 )) (21)

The word-level and character-level LMs are normalized
over all words from the word space – recall Eq. (13) – so
is the interpolated LM by definition. This is an advantage
over the backoff approach in which we have to redefine
the character-level LM to fully fulfill the normalization
constraint. The parameter λ should be always optimized on
a development set.

IV. EXPERIMENTS

We evaluate our model by comparing the perplexities
(PPL) on word and character level on all words from the
test set and on in-lexicon and OOV words separately. The
lower the perplexity the better the language model. The
computation of the character-level perplexities includes the
word-end symbol after every word (even the last one). We
revisit the definition of the character-level perplexity:

PPL = − 1

Nc

N∑
i=1

log q(wi|hi) (22)

where Nc is the length of the sentence wN
1 measured as

the number of characters. Please note that the word-level
perplexities can be always recomputed to give the character-
level perplexities and vice-versa.

A. Datasets

We used text sources in English and Arabic separately.
The English corpus consists of around 3M running words
and has been built upon the combined LOB [9], Brown
[10], and Wellington [11] corpora. The test set contains 8k
running words and the OOV rate is 2.6% The Arabic corpus
consists of around 20M running words taken from Arabic
newspapers like: Addustour, Alahram, Albayan, Alittihad,
Alwatan, Alraya; in addition to audio transcriptions for
GALE project’s BN and BC data, along with some web
text. The test set contains 20k running words and the OOV
rate is 1%.

B. Language models

As the word-level LM we use a 3-gram model with
modified Kneser-Ney discounting built upon the training text
source containing one sentence per line. We always use the
largest possible vocabulary for training of the word-level
LM. As the character-level LM we use a 10-gram model
with Witten-Bell discounting. We cannot use the standard
modified Kneser-Ney method because of lack of singletons
in the training data. We take different approaches to creating

Table I: English - Comparison of the perplexities between
different methods.

language model char PPL word PPL

in-lex OOV total total
word-level only 3.403 – – –
char-level only 4.015 20.231 4.320 1084.4

backoff
- condition 3.438 32.020 3.811 595.6
- maximum 3.438 32.020 3.811 595.6
- sum 3.437 32.020 3.811 595.3
- w/o early sub. 3.438 31.524 3.808 593.5
- with early sub. 3.438 32.319 3.813 596.9

interpolated
- w/o context 3.442 21.342 3.742 545.9
- with context 3.406 23.965 3.726 534.5

Table II: Arabic - Comparison of the perplexities between
different methods.

language model char PPL word PPL

in-lex OOV total total
word-level only 3.378 – – –
char-level only 3.680 19.302 3.722 1438.9

backoff
- condition 3.394 18.860 3.438 927.5
- maximum 3.394 18.860 3.437 926.7
- sum 3.387 18.860 3.431 917.6
- w/o early sub. 3.394 18.569 3.437 926.4
- with early sub. 3.394 18.880 3.438 927.6

interpolated
- w/o context 3.393 19.488 3.438 928.1
- with context 3.349 23.846 3.404 878.1

the training text source for the character-level LM. For all
backoff approaches we use a list of words, one word per
line, split into separate characters. The word list includes
only OOV words extracted from the training source with
their frequency counts. We use different vocabulary sizes for
that purpose; a vocabulary of size zero means that all words
were used. For the interpolated approach with across-word
context we use a list of sentences, one sentence per line, split
into separate characters and with the word-end symbol after
each word. Because of the across-word context the character-
level LM has to be trained on whole sentences (similarly to
the word-level LM) and not on separate words.

C. Experimental results

Tables I and II show the comparison of perplexities
between different methods on the corpora for English and
Arabic. The condition and maximum backoffs are not prop-
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Figure 2: English - The total character-level perplexities
obtained by using the backoff approaches with respect to
the size of the vocabulary.

erly normalized and thus cannot be properly compared,
because some probability mass is being lost, as explained
in Section II-C. The presentation was broken down to in-
lexicon words, OOV words, and all words in total. We also
include results that were obtained using solely the word-
level or a character-level LM. The interpolated LM with
across-word context clearly outperforms other approaches
on both corpora. On the text in English even the interpolated
LM without across-word context is better than all backoff
approaches. The perplexities computed over OOV words
(even when using only the character-level LM) where much
higher than those computed over in-lexicon words, because
the OOV words are in general much less regular in structure
than the in-lexicon words.

Figures 2 and 3 show the perplexities obtained by using
the backoff approaches with respect to the size of the
vocabulary for English and Arabic. For the clarity of the
presentation we included only the sum backoff and the
backoff approaches with the redefined character-level LM.
The larger the vocabulary, the smaller the number of OOV
words in the word list used for training of the character-level
LM. The results show that the sum backoff outperforms
other backoff approaches on the text in Arabic, but the
backoff with character-level LM without early subtraction
was slightly better on the text in English. We also found out
that using only the less frequent words from the vocabulary
for training of the character-level LM improves the perfor-
mance, which confirms the findings of [7]. The combination
with the character-level LM with early subtraction was in
general the worst approach, but this approach improves
if more in-lexicon words are used in training. The word-
level LM did not change throughout those experiments as it
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Figure 3: Arabic - The total character-level perplexities
obtained by using the backoff approaches with respect to
the size of the vocabulary.

was created using the largest vocabulary possible. Using a
smaller vocabulary for training of the word-level LM always
had a negative impact on the performance.

Figures 4, 5 and 6 show the perplexities obtained using the
interpolated LM with respect to interpolation weight λ. The
presentation was broken down to in-lexicon words, OOV
words, and all words in total. The inclusion of across-word
context shifts the optimal interpolation weight towards the
character-level LM, from λ = 0.97 to λ = 0.77; as this
model becomes more confident. It is important to note that
the interpolation with the character-level LM with across-
word context improves also the perplexity computed over
exclusively in-lexicon words, which means that also tasks
with zero OOV rate can benefit from the use of this method.
The curve in Figure 5 is strictly increasing as there is no
contribution from the word-level LM for OOV words.

V. CONCLUSIONS

We have shown that the interpolation of word-level
and character-level LMs gives better perplexities than the
combination of them in a backoff fashion. The incorporation
of the across-word context on character-level significantly
improves the results of the interpolated LM. Moreover
we have demonstrated that the original backoff approach
can be improved by redefining the character-level LM to
assign zero probability to in-lexicon words. Finally we
have shown that the inclusion of the character-level LM
improves the performance even on tasks with zero OOV rate.
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M. Saraçlar, and A. Stolcke, “Morph-based speech recog-
nition and modeling of out-of-vocabulary words across lan-
guages,” ACM Trans. Speech Lang. Process., vol. 5, no. 1,
pp. 3:1–3:29, Dec. 2007.

0 0.2 0.4 0.6 0.8 1

3.8

4

4.2

4.4

4.6

λ

to
ta

l
PP

L

w/o across-word context
with across-word context

Figure 6: English - The total character-level perplexities of
the interpolated LM with respect to the interpolation weight.

[3] M. Bisani and H. Ney, “Open vocabulary speech recognition
with flat hybrid models,” in Interspeech, Lisbon, Portugal,
Sep. 2005, pp. 725–728.

[4] K. Vertanen, “Combining open vocabulary recognition and
word confusion networks,” in Acoustics, Speech and Signal
Processing, 2008. ICASSP 2008. IEEE International Confer-
ence on, Apr. 2008, pp. 4325–4328.

[5] M. A. Basha Shaik, A. El-Desoky Mousa, R. Schlüter, and
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