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Abstract—We present a method for training an off-line
handwriting recognition system in an unsupervised manner.
For an isolated word recognition task, we are able to bootstrap
the system without any annotated data. We then retrain the
system using the best hypothesis from a previous recognition
pass in an iterative fashion. Our approach relies only on a
prior language model and does not depend on an explicit
segmentation of words into characters. The resulting system
shows a promising performance on a standard dataset in
comparison to a system trained in a supervised fashion for
the same amount of training data.

I. INTRODUCTION

The training process of a state-of-the-art handwriting
recognition system requires a considerate amount of anno-
tated images of text sentences. The annotation process is
expensive and further may prove difficult if the images are
degraded or the structure of text is not clear. Additionally
the high variety of writing styles increases the effort needed
to collect a representative dataset.

The problem of lack of a sufficient amount of training
data has been already addressed with approaches based on
the semi-supervised learning. The underlying idea of those
approaches is to transcribe the unannotated data with a
recognition system, and then use part of the data for retrain-
ing. Dreuw [1] selects the additional training data using state
confidences. Frinken [2] proposes another approach that is
based on keyword spotting. In another publication Frinken
[3] utilizes the concept of co-training, where two systems try
to improve each other. Still all those methods rely on some
small amount of annotated data [4] or a bootstrap system
[5].

The early work on completely unsupervised training has
been done in the field of the machine-printed text recognition
(OCR) and utilized cipher breaking algorithms [6]. It is clear
that assuming perfect segmentation and clustering of charac-
ters the problem transforms to breaking a simple substitution
cypher [7]. Some methods have been also developed that do
not rely on an explicit segmentation [8][9].

The decipherment problem has been studied extensively
in a number of symbol substitution problems like 1:1
substitution ciphers [10][11], homophonic ciphers [12][13],
and machine translation [14][15]. In case of 1:1 substitution
ciphers, each symbol of the cipher text is substituted by a

unique substitute. The general idea is to choose the model
parameters — i.e. the substitution φ : Vf → Ve of ciphertext
tokens into plaintext characters — in such a way, that the
resulting decipherment yields the highest possible language
model probability:

φ̃ = argmax
φ
{p(φ(f1)φ(f2) . . . φ(fN )}

Although this case seems very simple, it has been shown that
finding the optimal φ is NP hard [16]. In contrast to this
simple problem, decipherment for handwriting recognition
is even more complicated: Instead of discrete symbols fN1 ,
we have continuous valued observations xT1 . Furthermore
we are facing the alignment problem of assigning the input
observations xT1 to the output words wN1 . Instead of learning
the substitution φ, we want to learn the parameters ϑ of the
visual (acoustic) model pϑ(xT1 |wN1 ).

In this paper we demonstrate a method that applies the
idea of decipherment directly to the recognition of isolated
handwritten words. We propose a method to iteratively
uncover the transcriptions of the images and improve the
parameters of a system. Our method neither makes use of
any amount of annotated data nor of a bootstrap system.
The segmentation is implicitly discovered during the training
process. We obtain promising results even with a large
vocabulary and in the presence of a high out-of-vocabulary
(OOV) rate. The language model was trained on a text that
comes from a different source than the hidden transcriptions
of the images.

Our approach fits well into the standard Hidden Markov
Model (HMM) framework based on the sliding window
[17][18][19]. The same concept can be extended to problems
such as speech recognition or sign language recognition.

II. PROPOSED METHOD

We train the recognition system in an iterative fashion.
The transcriptions of the images and the parameters of the
system are updated in every iteration. Our method (depicted
in Figure 1) consists of training and recognition passes on
one dataset. We use the best hypothesis from a recognition
pass as the transcriptions for the training pass in the next
iteration. Section II-C gives an insight into this procedure.
One iteration of the training procedure of the unsupervised



system is equivalent to the whole training procedure of the
supervised system, with the exception that the transcriptions
are predicted by the system itself and are not given. The
system trained in the last iteration is the final system.
Special considerations (described Section II-B) have to be
made during the initialization procedure, because we neither
have initial transcriptions nor initial models. Our system is
based on a standard HMM recognizer with features extracted
directly from preprocessed images using the sliding window
approach. The structure of the system is described in Section
II-A.

A. System overview

One character is represented by a left-to-right HMM with
loop transitions. Every HMM consist of six states. The
transitions between states (treated as penalties in negative
log scale) are constant and fixed across all models. The
loop penalty is equal to 3, and the forward transition is
not penalized. There is an additional penalty for exiting the
HMM model, which controls the number of insertions during
recognition. The HMM representing whitespace is special in
the sense that it has only one state and no loop penalty. As
emission distributions we use Gaussian mixtures with 128
densities per state and a globally-pooled diagonal covariance
matrix. We train the system with the Viterbi algorithm using
maximum likelihood (ML) as training criterion.

For preprocessing, we correct the slant of gray-scale
images with a median of angle values estimated by three
different deslanting algorithms [19]. Then we segment the
images with a sliding window of a constant shift and width,
and a height equal to the size of the original image. A
horizontal cosine window is applied to each frame to smooth
the image on its borders. Each frame is then normalized to
a size of 8 × 32 pixels using 1st- and 2nd-order moments
[20]. We then take gray-scale values of all pixels and reduce
their number to 20 components using PCA transformation.
The final feature vector of size 24 is augmented by original
moment values. The details of the preprocessing scheme are
described in [19].

B. Initialization

The initialization procedure is a critical part of the system
because there is always a risk of running into a poor local
optimum right from the beginning. The major problem we
face here is that the images contain an unknown amount of
whitespace that is not represented in our language model and
thus impossible to predict a priori. Therefore in the first place
we use a heuristic [21] to reliably distinguish the whitespace
from the text.

The algorithm assumes that the sequence of frames con-
sists of three fragments: whitespace, text, whitespace. It
then tries to learn the parameters of two Gaussian densities
representing whitespace and text by minimizing the log
likelihood criterion and implicitly finding the boundaries
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Figure 1: Illustration of the unsupervised training procedure.

between those three fragments. We then use those two
Gaussian densities as emission distributions of our two initial
HMMs. The first one represents whitespace and the second
one represents an arbitrary character. We call the second
HMM a gap model later on. All six states of this model
share the same emission distribution resulting from the linear
segmentation procedure. Throughout the training process
we use the gap model to represent any character that is
not explicitly modeled with a separate HMM. In the first
iteration every character from the character inventory is
represented with the gap model.

C. Iterative training

In the first recognition pass different words of the same
length are undistinguishable for the decoder because they are
just sequences of gap HMMs. It means that the difference
in probabilities between those words comes only from the
language model. Consequently in the first iteration we are
able to hypothesize only a very limited set of words - those
with the highest prior probability among the words of the
same length. However we expect that those words are also
the most frequently occurring in the images.

In the second iteration we use the best hypothesis from
the previous iteration as transcriptions of the training set to
retrain the models from scratch (including the whitespace
model). The odds are high that some of the less frequent
characters do not appear in this transcription and therefore
we are not be able to train HMM models for them. To solve
this problem we apply the same trick that we applied in the
initialization procedure, namely we represent every unseen
character in the lexicon with the gap model.

In the following iterations the system should be gaining
more confidence about the most frequent characters and thus
be able to guess the less frequent characters, because we en-
force the structure of a word using the fixed vocabulary. Thus
we will be training precise models for an increasing number
of characters and therefore be predicting a larger number of
words from the vocabulary with a higher confidence.

D. Convergence

We measure the Levenshtein alignment between the un-
covered transcriptions in two succeeding training iterations
to detect convergence. If the dissimilarity falls below a
certain threshold we stop. It could be tempting to use



Table I: Comparison of perplexities on character- and word-
level on the IAM validation set. The language was created
either using the reduced or the complete vocabulary.

Vocabulary train dev

char word char word
Reduced (10k) 3.57 808 3.49 673
Complete (44k) 3.71 1332 3.66 1190

Table II: Comparison between error rates in the supervised
and unsupervised scenario on the IAM dataset. The language
model was created using the complete vocabulary.

train [%] dev [%]

CER WER CER WER
Supervised 7.5 14.9 9.7 20.5
Unsupervised 15.8 30.7 13.7 28.6

the error rate on a validation set instead, but this is not
possible in a fully unsupervised scenario because we have
no annotations. The choice of the correct stopping criterion
and avoiding overfiting is however not critical, because by
definition we are trying to fit the training set as good as
possible. We discuss the convergence in more details in
Section III-C.

E. Search space

We use the word conditioned tree search strategy in
our decoder [22]. For the unsupervised learning method
described in this paper it is critical to choose a task that is
small enough so that we can explore the whole search space
without pruning at the state level. The state-level pruning is
applied long before we consider the language model score
at word end hypotheses, and because our initial acoustic
models are weak, the best hypotheses are likely to be pruned
before the word end is eventually reached.

Beside that, there are also other means to reduce the size
of the search space. The search space is exponential in the
order of the language model [22] which is why we rely on
unigrams only. Another way is to use a smaller vocabulary
at the cost of increasing the OOV rate.

III. EXPERIMENTS

We evaluate our approach by comparing a system trained
in an unsupervised fashion to the supervised-trained system.
Error rates and statistics are calculated using the Levenshtein
alignment between reference and hypothesis. As evaluation
metrics for our experiments we use the word error rate
(WER) and character error rate (CER). Both systems have
been trained on the training dataset, with the exception that
in the unsupervised scenario we forget about the transcrip-
tions of the images. The validation set was unseen to both
systems.
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Figure 2: Character and word error rates after every iteration
on the IAM training set. The language model was created
using the complete vocabulary.
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Figure 3: Levenshtein distance as a percentage of the total
number of words between transcriptions in every iteration
on the IAM training set.

The system structure and preprocessing scheme was the
same for both training strategies: supervised and unsuper-
vised one. System parameters such as: language model
scale, number of HMM states, transition probabilities; were
optimized during the supervised training. Those parameters
were not optimized during the unsupervised training, so
that the effect of unsupervised training can be isolated and
measured.

A. Datasets

The IAM dataset [23] consist of images of isolated hand-
written English words. From this dataset we have selected
only regular words (we discarded numbers and punctuation
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Figure 4: Number of unique words recognized by the system
in every iteration on the IAM training set.

marks), which results in 46k running words for training and
7k running words for validation. We trained the language
model on a corpus of English text [24] containing 1 million
running words. The transcriptions of the IAM dataset are not
included in this corpus. The size of the vocabulary is 44k
words and the associated OOV rate on the IAM training set
is 5%.

The RIMES dataset [25] consist of images of isolated
handwritten French words. There are 52k running words for
training and 7k running words for validation. We trained the
language on the annotations of the training set, which results
in a zero OOV rate.

We perceive that the IAM dataset is a harder task –
because of the larger vocabulary and a high OOV rate – and
use it for the purpose of evaluating our method. The RIMES
dataset was used only for a comparison with the state-of-the-
art, because up to our knowledge no results were published
in the literature on the IAM word dataset so far.

B. Language model

We use an unigram language model with Good-Turing
discounting. For the unsupervised training procedure we
have reduced the vocabulary to 10k most frequent words
to reduce the search overhead. The associated increase of
the OOV rate to 12% on the IAM training set should not
in fact pose a problem. Although we cannot discover the
accurate identity of an OOV word, we can still get most
of the characters right by finding a similar word in the
vocabulary.

The computation of final results on the training and
validation datasets is done using the largest possible vocab-
ulary (44k). Table I shows the perplexities computed on the
training and validation set using both language models. The
computation of the character-level perplexities includes the
word boundary after every word (even the last one) as a
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Figure 5: Number of characters (upper and lower case)
models learned by the system in every iteration on the IAM
training set.

special symbol. Please note that the word-level perplexities
can be always recomputed to give the character-level per-
plexities and vice-versa. The perplexities computed with the
reduced vocabulary are lower because the computation does
not include OOV words.

C. Experimental results

Table II shows the results on the training and the valida-
tion set. The performance of the unsupervised-trained system
in comparison to the supervised-trained one is promising.
It must be noted that the unsupervised training procedure
cannot outperform the supervised one for the same amount
of training data, because the presence of annotations is
always an unbeatable advantage. In fact we did not try to
beat the supervised system but wanted to demonstrate that it
is possible to train a good system in an unsupervised manner.
An interesting result is that the difference in error rates is
much bigger on the training set than on the validation. This
is because the supervised-trained system has the tendency
to overfit the training data. The system trained using our
method has the capability to generalize well.

Figure 2 shows the character error rate (CER) and word
error rate (WER) on the training set in every iteration.
In the first iteration the models are very weak, thus the
improvement is not so significant. As the system improves,
it can make stronger predictions, but still has a lot of space
for improvement - hence the learning pace is very fast. In the
end the curve converges, where the system has no capability
to learn anymore. We have been however unable to reach a
strict optimum because the error rate was fluctuating, even
after 35 iterations. This fluctuation was however marginal
(below 1% WER) and did not affect the performance of the
final system. The results in Figure 2 are worse than those



presented in Table II because the recognition here includes
a considerable OOV rate caused by the reduced vocabulary.

Figure 3 shows the difference between the uncovered
transcriptions of the training set in succeeding iterations
measured as the Levenshtein distance to the total number of
words. There are two interesting extrema on this plot: in the
first iterations when the system has just started learning and
the predictions are inaccurate; and between the 7th and 9th
iteration which corresponds to the rapid drop of the error
rates. On this figure it is even more visible that we are
unable to arrive at a strict optimum, as there is always some
difference between succeeding transcriptions, even after 25
iterations. We used the value of 6% as a stopping criterion.

The system was able to learn 80% of the vocabulary of the
training set. Figure 4 shows the number of unique words rec-
ognized in every iteration. The pace at which the system is
learning new words corresponds roughly to the pace of error
rate improvement. Figure 5 shows that the system was also
able to learn models for almost all characters. The fluctuation
in this figure is an effect of a varying transcriptions and some
of the less frequent characters appearing and disappearing.

D. Discussion

Successfully predicting the length of the word is a crucial
aspect of training a system in an unsupervised manner. This
is a clear advantage of HMMs which have the property that
the length of one character (in number of frames) is enforced
in a probabilistic sense by the length of the HMM model
(in number of states). Predicting a priori a most probable
word of a correct length can be seen as a best joint a
priori prediction of all separate characters. Successively it
means that on each character position we will predict the
most frequent character. During the estimation of system
parameters the means will tend towards correct characters.
That is why the system is able to converge into the right
direction.

Another reason behind the use of HMMs is their relative
speed. In our experiments we needed at least 20 iterations
to obtain reasonable results, which means that this training
procedure takes 20 times longer than the standard procedure
of supervised training. Such a long execution time may prove
prohibitive with other methods.

E. Comparison with the state-of-the-art

Table III shows the comparison of the results on the
RIMES dataset. We achieve a word error rate of 10.9%
in the supervised scenario and 16.9% in the unsupervised
scenario, which shows that our method is a viable alternative
for training a recognition system. However it is unfair to
compare those two training methods directly as the presence
of annotations is always an unbeatable advantage and the
merits of using unsupervised learning methods go beyond
obtaining good error rates. Nevertheless up to our knowledge
no papers tackling the problem of training a handwriting

Table III: Comparison with results reported by other groups
on the RIMES validation set.

Systems WER [%]
Supervised 10.9
Unsupervised 16.9
A2iA [18] 4.8
TUM [26] 9.0
UPV [26] 16.8
ParisTech [26] 23.7
IRISA [26] 25.3
SIEMENS [26] 26.8

recognition system in an unsupervised manner have been
published so far in the literature.

Our system is a pure HMM system, yet it has been
shown that an HMM system can be improved by using
neural networks [19] or system combination [18]. The
systems proposed by A2iA [18], UPV and ParisTech [26]
were combinations of different classifiers including recurrent
neural networks and HMMs. TUM [26] used a system based
solely on a multi-dimensional neural network. The systems
from IRISA and SIEMENS [26] were based on a single
HMM with the sliding window approach.

IV. CONCLUSIONS

We have presented a proof of concept of how to train a
handwriting recognition system in an unsupervised manner
using only a prior language model and no annotations of the
images. Surprisingly we can train the system successfully
even by using a large vocabulary and in a presence of a high
OOV rate. We achieve a character error rate of 13.7% on the
dataset of handwritten English words which is 4% absolute
worse than the baseline trained in a supervised fashion for
the same amount of training data.

The use of the unsupervised learning method described in
this paper is not limited to the situation where there are no
annotations of the training data. It can be also used in a semi-
supervised scenario when the bootstrap system is weak or
unreliable. Moreover this technique allows us to use datasets
orders of magnitude larger than the ones we have been using
so far, which for various reasons are impossible to annotate.
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WFST: A comparison of two dynamic search concepts for
LVCSR,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 6, pp. 1295 –1307, Jun. 2013.

[23] U.-V. Marti and H. Bunke, “The IAM-database: an English
sentence database for offline handwriting recognition,” In-
ternational Journal on Document Analysis and Recognition,
vol. 5, pp. 39–46, Nov. 2002.

[24] W. Francis and H. Kucera, “Brown corpus manual, manual of
information to accompany a standard corpus of present-day
edited American English,” Tech. Rep., 1979.
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