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Abstract

In this paper we investigate how much feature extraction is re-
quired by a deep neural network (DNN) based acoustic model
for automatic speech recognition (ASR). We decompose the
feature extraction pipeline of a state-of-the-art ASR system step
by step and evaluate acoustic models trained on standard MFCC
features, critical band energies (CRBE), FFT magnitude spec-
trum and even on the raw time signal. The focus is put on raw
time signal as input features, i.e. as much as zero feature ex-
traction prior to DNN training. Noteworthy, the gap in recog-
nition accuracy between MFCC and raw time signal decreases
strongly once we switch from sigmoid activation function to
rectified linear units, offering a real alternative to standard sig-
nal processing. The analysis of the first layer weights reveals
that the DNN can discover multiple band pass filters in time do-
main. Therefore we try to improve the raw time signal based
system by initializing the first hidden layer weights with im-
pulse responses of an audiologically motivated filter bank. In-
spired by the multi-resolutional analysis layer learned automati-
cally from raw time signal input, we train the DNN on a combi-
nation of multiple short-term features. This illustrates how the
DNN can learn from the little differences between MFCC, PLP
and Gammatone features, suggesting that it is useful to present
the DNN with different views on the underlying audio.

Index Terms: acoustic modeling, raw signal, neural networks

1. Introduction

Since DNN based acoustic models have become a popular alter-
native to the Gaussian mixture models (GMMs), a lot of effort
was put into feature engineering that aimed at finding a repre-
sentation of input audio data that is most suitable for training
of neural networks [1][2]. GMMs are quite sensitive to input
features: the features need to be decorrelated so that a diag-
onal covariance matrix can be used for faster scoring and the
dimension needs to be relatively low. These requirements have
led to a large variety of feature extraction pipelines that build
upon expert knowledge of speech production and perception.
In contrast, hybrid DNN/HMM models [3] have none of these
constraints and a DNN acoustic model can easily be trained on
high dimensional features (several thousands) even with a large
amount of correlation between components. Further, the uni-
versal approximator property of a neural network [4][5] with
(multiple) hidden layers should allow the DNN to learn the nec-
essary (non-linear) feature extraction steps from data. For this
reason we investigated the question: how much feature extrac-
tion can be left for the DNN to discover?

Many groups have found logarithm of critical band ener-
gies (CRBE) extracted e.g. from a Mel filter bank to be most
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suitable for training DNNs. One of the reasons why CRBE of-
ten outperform MFCC or PLP might be the fact that they con-
tain somewhat more high resolution information: while con-
ventional MFCC and PLP range from 13 to 16 dimensions, the
CRBE:s used for DNN training are often 20- to 40-dimensional.
Further, many steps of typical feature extraction pipelines boil
down to linear projections, which should be easy to learn from
data. Ultimately, to avoid a loss of information the acoustic
model needs to be trained on full magnitude spectrum, e.g. [6],
or even the raw audio samples of the waveform. While the cross
entropy training is still performed on frame level, the latter case
allows to present the DNN a sequence of audio samples without
any notion of frame boundaries, thus allowing the neural net-
work to discover all kind of non-stationary patterns. Such pat-
terns correspond to various phonetic events that are described
poorly with frame-based stationary processing such as FFT.

The cost for processing raw time signal is twofold. First, the
high dimensionality of such feature spaces increases the number
of free parameters. This issue can be counteracted by adjusting
the network topology, e.g. introducing narrow matrix factoriza-
tion layers [7]. Second, the raw time signal features discard the
common assumption of most feature extraction pipelines that
human perception resolution is non-linear along the frequency
axis leaving it up to the DNN to discover. Our approach to
tackle this is to initialize the weights of the first layer by im-
pulse responses of Gammatone filters that follow the audiolog-
ical spacing in the frequency domain.

Further, we investigate how the DNN can be presented
with an increased time-frequency resolution without leaving the
framework of conventional feature extraction. This is related to
the concept of feature combination, where different short-term
features describe more or less the same spectral properties of the
signal [8]. However, the differences between the different fea-
ture streams are themselves an additional source of information
about the underlying audio signal.

Previously, a dramatic degradation of recognition accuracy
by training a DNN directly on raw speech signal was reported
in [9]. Instead, the authors used convolutional neural networks
[10] to obtain competitive results on the TIMIT task. Some
works on processing of raw speech signal make use of other
models such as linear predictive models [11][12] or SVMs [13].
They mostly evaluate on small classification tasks, leaving the
question open, how much would the amount of training data
compensate for the described difficulties.

This paper is organized as follows. The different feature ex-
traction pipelines, including the FFT and time signal features,
are summarized in Section 2. The experimental setup is intro-
duced in Section 3 and the results of our investigation are pre-
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sented in Section 4. The conclusions are drawn in Section 6.

2. Feature extraction

This section gives a brief overview of the three cepstral features,
the FFT based features and the raw signal features.

2.1. Waveform — “raw” time signal

Processing the audio sampled at 16 kHz with the same 10 ms
steps as in case of typical cepstral features boils down to taking
160 samples from the PCM waveform. The windows are non-
overlapping so that stacking neighboring vectors does not result
in discontinuities. The samples quantized with 16 bit need to
be normalized to a numerically robust range by performing the
mean and variance normalization either globally over the com-
plete training data or on the per-utterance level. This can be
interpreted as DC bias removal and loudness equalization and
at the same time it serves numerical purposes to stabilize the
DNN training with gradient descent.

2.2. Amplitude spectrum — FFT

In contrast to raw time signal, the short-time Fourier transform
(STFT) is performed on overlapping windows of 25 ms. The
samples are zero-padded to a window of size 2° and weighted
with a Hanning function, which exhibits smaller side lobes in
the amplitude spectrum than a rectangular window. The 512-
FFT results in a 257-dimensional vector due to the symmetry of
the amplitude spectrum. The phase spectrum is discarded.

2.3. Mel-Frequency cepstral coefficients — MFCC

The feature extraction is based on the STFT of the pre-
emphasized speech signal [14]. The amplitude spectrum is inte-
grated by a filterbank with the triangular filters being equidis-
tantly spaced on Mel-scale. The MFCC features are extracted
from the logarithm filter outputs (also referred to as CRBE) by
applying discrete cosine transform (DCT).

2.4. Gammatone features — GT

Instead of the STFT based analysis, the features are extracted
from an audiologically motivated filterbank realized by time-
domain Gammatone filters [15]. The auditory filters are placed
equidistantly on Greenwood-scale. After spectral and temporal
integration the 10th root is taken instead of the logarithm and
the DCT is applied for decorrelation.

2.5. Perceptual linear predictive coefficients — PLP

These features are again based on the STFT of speech [16].
Simulating the critical band masking, the amplitude spectrum is
integrated with frapezoid filters equally spaced on Bark-scale.
The filterbank output is pre-emphasized according to equal-
loudness curve. To simulate the relation between the intensity
and perceived loudness of sound, cubic root amplitude com-
pression is performed followed by all-pole model parameter es-
timation (linear predictive (LP) analysis). The autoregressive
coefficients are directly transformed to cepstral coefficients.

3. Experimental setup

The acoustic model training is performed w.r.t. frame-wise
cross entropy criterion on 50 hours of speech from the
Quaero [17] English database frainll, which amounts to ca.
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16 million input vectors. The development and evaluation sets
consist of ca. 3.5 hours of speech each, corresponding to about
1.2 million vectors. Some experiments are presented on a large
250 hours set from the same corpus trainll. A 4-gram language
model (LM) is used during the recognition.

Throughout all experiments we use 6 hidden layers with
2000 hidden units in each layer. The output layer with 4500
nodes corresponds to the generalized triphones tied by a pho-
netic classification and regression tree (CART). The number of
trainable weights amounts to approx. 30M-35M depending on
the features used. The input features always correspond to 17
stacked frames so that the overall amount of temporal context
presented to the DNN at once is the same. The mini-batches of
size 512 are drawn from the shuffled training set. The weights
are initialized via discriminative pre-training (DPT) [1].

The ASR baseline system is a conventional GMM/HMM
based model trained on the same database w.r.t. the maximum
likelihood criterion. We applied linear discriminant analysis
(LDA) to 9 consecutive MFCC frames to obtain the final 45-
dimensional features. The GMM with a globally pooled diago-
nal covariance matrix consists of approx. 660k densities, which
corresponds to about 30M trainable parameters. For acoustic
training and recognition we used the RASR toolkit [18].

4. Results

In the first experiment we compared the baseline results ob-
tained with the GMM and DNN acoustic models on MFCC fea-
tures normalized for mean/variance and the vocal tract length
(VTLN). The results are shown in Table 1. Unless stated oth-
erwise, the training is performed on 50 hours of speech. The
same DNN configuration was trained on the raw time signal
as described in Section 2.1. As expected, the MFCC-based
DNN model outperforms the GMM, but the WER of the sys-
tem trained on raw time signal is still significantly higher.

Table 1: Baseline results. WER in %.

Features model | dev eval
MECC GMM | 244 31.6
MFCC DNN 194 253
time signal | DNN | 29.4 36.8

In the next experiment we wanted to figure out, how the
recognition accuracy depends on the various preprocessing
steps. For this purpose we decomposed the MFCCs step by
step and measured the performance. Table 2 shows the word
error rate (WER) after each step. The results indicate that with-
out mean/variance normalization and VTLN, the gap between
MFCCs and FFT features decreases significantly.

4.1. Feature combination

From the results in Table 2 it is clear, that the presented fea-
tures differ in the dimensionality by an order of magnitude.
Still MFCC outperform the high-dimensional FFT and time
signal features. How can we increase the amount of informa-
tion within the framework of low-dimensional features? As de-
scribed in Section 2, the different short-term feature extraction
pipelines cover slightly different representations of the underly-
ing audio. Hoping that the DNN can extract useful information
from these differences we performed feature combination fol-
lowing the approach of [8]. The results in Table 3 confirm that
a DNN being a powerful classifier can learn more from multiple
feature streams than from every single feature set.



Table 2: Feature preprocessing and normalization for DNN AM.
Dimension of a single feature vector. WER in %.

Features dim. | dev eval
MECC 16
+ global norm. 19.8  26.1
+ utterance norm. 19.7 255
+ VTLN 194 253
MFCC 20
+ VTLN + utterance norm. 19.1 252
CRBE
+ VTLN + utterance norm. 20 | 19.5 25.7
40 | 19.7 262
|FFT| 257
+ global norm. 213 27.8
+ 10th root 21.0 275
+ utterance norm.
+ 10th root 20.6  26.8
time signal 160
+ global norm. 294  36.8
+ utterance norm. 289 35.0

Table 3: Feature combination. WER in %.

Features dev  eval
MFCC 19.1 252
PLP 19.2 248
GT 19.2 255
MFCC +PLP+GT | 184 242

4.2. Analysis of the input layer trained on time signal

Having obtained surprisingly reasonable results on the normal-
ized raw time signal, we were curious what kind of patterns
could have been learned by the neural network. Although the
analysis of all parameters remains infeasible, we could detect
clearly interpretable patterns within the first layer of the fully
trained DNN. Figure 1 shows the weights learned by four of
the hidden nodes of the first layer. Apparently, the DNN man-
aged to learn some kind of impulse responses that correspond
to band pass filters and other patterns (e.g. short bursts) purely
from data. In order to illustrate the spectral properties of the dis-
covered filters, we zero-padded every row in the weight matrix
to 8000 entries, calculated the magnitude spectrum

Wi = [FFT{w;,.}| € R™® 1 <i<2000 (1)
and sorted the rows by the location of the most prominent
“blob”. The position of the blob was calculated after smoothing
the spectrum with a Gaussian kernel g as

Wi = Wixg 2)
fé = argmax {W”} 3)
1< <8000

Assuming that every row can be interpreted as a band pass im-
pulse response, the location of the blob corresponds to the cen-
ter frequency of the learned transfer function. Figure 2 shows
the obtained spectra as 20 log,, W;. It can be seen that, without
any prior knowledge, the DNN has discovered a large number
of band pass like filters that exhibit roughly the audiological
distribution. It means, the number of narrow band pass filters in
the lower frequency region is quite high, while with increasing
center frequency, the bandwidth of the filters becomes larger.
Also the distribution of the center frequencies is non-linear. The
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Figure 1: Four rows from the first layer weight matrix trained
on raw time signal. The time range corresponds to 17 frames of
10 ms (17 - 10ms - 16kHz = 2720)
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Figure 2: Amplitude spectra of the reordered rows from the first
layer weight matrix trained on time signal.

bandwidth of the transfer function can be calculated as equiva-
lent noise bandwidth by

Zj W7,2,]
(man Wi,j)2

fi= )

Figure 3 shows the scatter plot of the approximated parameters
fc and fp of the learned filters.

Remarkably, the position of the filters in time is not re-
stricted to the center of the stacked audio samples, but is scat-
tered across left and right context approximately uniformly.
These shifts (or time offsets) are expressed in the phase spec-
trum and are therefore not visible in Figure 2. This distribution
indicates that the DNN was able to learn different filters for dif-
ferent parts of the presented audio context. Also, none of the
learned narrow filters exhibits multiple passbands.

4.3. Rectified linear units and large scale experiments

In the following set of experiments we investigated how strong
can we further reduce the gap in recognition accuracy between
the various feature configurations by (a) switching the activa-
tion function and (b) increasing the amount of training data.
First we compared sigmoid activation function with the recti-
fied linear units (ReLU) [19]. From the previous experience

Table 4: Feature and activation function comparison, training
on 50h. WER in %.

Features dev eval
sigmoid ReLU | sigmoid ReLU
MEFCC 19.1 18.0 252 23.8
MFCC + PLP + GT 18.4 16.6 242 21.7
|FFT)| 20.6 18.4 26.8 24.7
time signal 28.9 22.6 35.0 28.5
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Figure 3: Scatter plot of approximated parameters of the
learned filter bank.

Table 5: Feature and activation function comparison, training
on 250h. WER in %.

Features dev eval
sigmoid ReLU | sigmoid ReLU
MFCC 152 15.9 20.4 21.1
MFCC + PLP + GT 14.8 14.0 19.8 18.9
|FFT)| 16.1 15.8 21.6 21.5
time signal 19.2 17.6 25.6 23.5

we know that ReLUs are sensitive to regularization so we used
Lo-regularization with a value of 0.0001. In contrast, sigmoid
non-linearities perform best with no regularization at all. The
results shown in Table 4 suggest that the ReLUs have a stronger
effect on the systems with high error rates, which is presumably
due to a more difficult optimization problem. In addition, we
repeated these experiments with DNNs trained on 250 hours of
speech. Table 5 shows the obtained results. Further large scale
experiments revealed that increasing the number of hidden lay-
ers up to 12 narrowed the performance gap between MFCC and
raw time signal achieving 20.9% WER on the evaluation cor-
pus.

4.4. Manual weight initialization with audiological filters

After we observed the filter shapes that have been learned from
raw time signal, we investigated, whether we can initialize the
weights of the first hidden layer in a way that makes it easier for
the DNN to discover further meaningful filters during training
with gradient descent. For this purpose we calculated the real
part of impulse responses of a stationary Gammatone filter bank
that follows the audiological filter distribution [20]. The param-
eters of the 32 filters were defined as follows (with [ = 24.7
and ¢ = 9.265):

fio= lg-(e1-1)
fi = 1+fi/q

In order to account for different positions in time we created
multiple shifted copies of each filter’s impulse response to ob-
tain a weight matrix of the same size as the randomly initial-
ized first layer weights in the previous experiments. Table 6
shows the comparison of three different approaches: random

(&)
©)

Table 6: Weight initialization for learning from raw time signal.
WER in %.

Weight initialization | update allowed | dev  eval
random yes 22.6 285
GT yes 224 287

no 249 311
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initialization (as in Table 4), initialization by a Gammatone filter
bank with regular weight update through backpropagation, and
a fixed Gammatone filter bank layer with no update through-
out the training. The latter case corresponds to a fixed “fea-
ture extraction layer” where only layers above the first one are
trained, so that we can compare whether the DNN can improve
the weights by backpropagation upon the initialization.

It can be seen that the manually designed filter bank does
not help the DNN much to discover better features compared
with fully random initialization. Also, keeping the first layer
weights fixed throughout the training rather hurts the recogni-
tion performance. This indicates that the initial filter bank con-
figuration is suboptimal, presumably because of a too low fre-
quency resolution and the lack of non-band-pass patterns.

5. Conclusions

In this paper we have shown that using hybrid DNN/HMM
acoustic models allows to obtain reasonable recognition results
even without any processing of the raw time signal. The per-
formance gap between raw time signal and conventional MFCC
features could be reduced strongly by switching from sigmoid
activation function to rectified linear units. The amount of train-
ing data further reduced the gap.

Our analysis of the learned weights suggests that without
any prior knowledge, the DNN is able to learn a set of band
pass filters in time domain purely from the raw time signal. We
presented a way to interpret the learned parameters: by reorder-
ing the rows within the input layer weight matrix, it is possible
to see the approximately audiological distribution of the filters.
This again nicely confirms the result of many years of research
on feature extraction. Further, this result shows a real alternative
to the otherwise (mostly) stationary feature extraction pipelines:
presenting the DNN with data on sampling frequency level al-
lows the acoustic model to learn non-stationary patterns, local-
ized in time across frame boundaries. Also, the loss of informa-
tion can be reduced by processing time domain data.

Finally we presented a trade-off between feature dimen-
sionality and level of detail of the underlying audio. By training
the DNN on a combination of MFCC, PLP and Gammatone fea-
tures, the resulting acoustic model outperformed all other sys-
tems, even with a large amount of training data. This suggests
that the differences in these feature extraction pipelines allow
the DNN to gain additional knowledge about the input data.
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