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Abstract. In this paper, we propose a novel algorithm for general 2D
image matching, which is known to be an NP-complete optimization
problem. With our algorithm, the complexity is handled by sequentially
optimizing the image columns from left to right in a two-level dynamic
programming procedure. On a local level, a set of hypotheses is com-
puted for each column, while on a global level the best sequence of these
hypotheses is selected. The optimization on the local level is guided by
a lookahead that gives an estimate about the not yet optimized part of
the image. We evaluate the algorithm on the task of pose-invariant face
recognition in an automatic setup and show that the suggested method
is competitive and achieves very good recognition accuracies on the pop-
ular face recognition databases CMU-PIE and CMU-MultiPIE.
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1 Introduction

The task of face recognition is very challenging for image recognition algorithms.
Many inter- and intra-class variations such as lighting, facial expressions or dif-
ferent poses make this task difficult. Especially the recognition across varying
poses is a complex problem due to the variation in a 3D space. Over the last
couple of years, many different approaches to face recognition in general [1, 2]
and pose-invariant face recognition in particular [3] have been proposed. Here,
we focus on the technique to solve the problem by using 2D image matching (2D
warping) in a nearest-neighbor framework [4]. The minimized cost of matching
training and testing image (in the context of face recognition often referred to
as gallery and probe image, respectively) is used as a similarity measure. By
this procedure, deformations caused by the previously mentioned variations can
be taken into account. It has been shown that structural constraints on the
image matching lead to smoother deformations and an increased recognition
accuracy [5, 6]. In order to incorporate such constraints and to apply relative
penalty functions, the dependencies defined by a 2D grid need to be maintained.
Consequently, the warping of a specific pixel effectively depends on its neigh-
bors in both dimensions. Unfortunately, image matching with 2D dependencies
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is NP-complete [7] and therefore infeasible. Thus, most 2D warping algorithms
approximate the optimal solution or optimize a relaxed criterion.

The Pseudo 2D Warping (P2DW) approach presented in [8] reduces the 2D
problem to two 1D problems. On a global level all pixels within one column
are combined to a super-pixel and the optimal sequence of such super-pixels
is computed. On a local column level the matching of two super-pixels is op-
timized. This is implemented by a two-level dynamic programming algorithm.
Tree-Serial Dynamic Programming (TSDP) [9] solves the problem by optimizing
a set of trees. For each column one tree is constructed, where vertical dependen-
cies represent the stem and the horizontal dependencies represent the branches.
In [6] this approach is extended by using structural constraints [5] (CTSDP). The
before mentioned approaches suffer from the drawback that the final solution can
only maintain vertical dependencies, due to the independent optimization of the
columns. Horizontal dependencies are only included implicitly.

Similar to P2DW, in [10] the problem is also divided into a global and a
local level. However, in this case the local level is approximated by linear inter-
polation, whereas on a global level the optimization is reduced to specific pivot
pixels. While this algorithm is efficient for a small number of pivot pixels, the
interpolation allows only for very simplified warpings.

Other approaches are based on using an iterative inference algorithm on
Markov Random Fields (MRF) such as Sequential Tree-Reweighted Message
Passing (TRW-S) [11]. In [12] displacement vectors are used as labels in the MRF
framework, but to reduce complexity horizontal and vertical displacements are
decoupled. The matching is then computed using TRW-S in a multi-resolution
setup. In contrast to this, the approach presented in [13] (CTRW-S) uses actual
pixels as labels. Feasible complexity is reached by applying structural constraints
as in CTSDP effectively speeding up the message updates in TRW-S. Neverthe-
less, the quality of the warping depends on the number of iterations which are
still computationally expensive.

In this paper, we propose a novel approximative 2D warping algorithm based
on dynamic programming (2LDP-LA). Unlike P2DW and TSDP/CTSDP, our
algorithm is capable of fully maintaining 2D dependencies. The algorithm is not
iterative and achieves high efficiency by optimizing column-wise and considering
only a number of hypotheses for each column (c.f. Section 3). This optimization
is done sequentially in dependence of the hypotheses computed for the previous
columns. Furthermore, a lookahead is integrated that adds an estimate of the
cost of not yet optimized columns (c.f. Section 3.2). Finally, we evaluate our
algorithm on the popular CMU-PIE [14] and CMU-MultiPIE [15] databases
(c.f. Section 4).

2 2D Warping

We start by briefly reviewing the problem formulation of 2D warping in corre-
spondence with [5] and [6]. Given a source image X = {xij} with resolution I×J
and a target image R = {ruv} with resolution U × V , we search for a mapping
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(i, j)→ wij = (u, v) that assigns each pixel of the source image to a pixel of the
target image with minimal energy cost. The energy E(X,R,wij) is defined as:

E(X,R, {wij}) =
∑
i,j

[
dij(wij) + T (wi−1,j , wij) + T (wi,j−1, wij)

]
(1)

The term dij(wij) describes the data cost of mapping (i, j) to wij , defined by
a cost function such as the absolute distance. Local context can be included by
computing the cost-function over a small patch centered around the pixel (i, j)
and the distances are pre-computed and cached [6]. To prevent outliers from
having too much influence, the distance function is truncated by a threshold
τ [6]. The penalty function T (·) encodes the 2D dependencies by adding cost
depending on the mapping of neighboring pixels. Differences in the displacement
of a pixel and its horizontal and vertical neighbors are penalized leading to a
smoother matching. For this we use the Euclidean distance weighted by a factor
α. Additionally, structural constraints [5] are included that enforce monotony
and continuity in the matching.

For classification, the nearest-neighbor rule is applied using the minimized
energies as similarity measure [4]. In the case of face recognition across poses with
frontal face images as gallery images, it is helpful to match the probe image with
the left and right half of the gallery image instead of using the complete gallery
image [12]. This is due to the fact that in profile and near profile images roughly
half of the face is occluded. In [12] the half images are only used for images with
much difference in yaw and the full gallery images are used otherwise. We found
that this distinction is not necessary and simply matching both half-images and
selecting the lower resulting energy is sufficient for all poses. As in [12] and [6]
we use the gallery image as source and the probe image as target.

3 Two-Level Dynamic Programming with Lookahead

The proposed 2D warping algorithm is designed to maintain the full 2D depen-
dencies defined in Eq. (1). Similar to Pseudo 2D Warping we divide the problem
into a global and a column level, but unlike the work in [8] we do not optimize
the mapping of the source columns independently, since the latter only allows
to maintain vertical dependencies. Instead, we sequentially compute a set of hy-
potheses for each column, i.e. a set of possible paths to map the column to the
target image, in dependence of the previous columns. This set is defined by a
representative row j∗ similar to the pivot pixels in [10], where we choose the
middle row (j∗ = J/2). As result, each column has one representative pixel and
for every possible matching of this pixel the best corresponding path is com-
puted and included in the set of hypothesis. Finally, in the global optimization,
the best sequence of the hypotheses is selected as solution. An illustration of this
procedure is given in Fig. 1. We will now define the algorithm in more detail.
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Fig. 1. Two-level DP algorithm: Column i is optimized in dependence of column i− 1.
Out of several options (blue paths in 1(b)), the optimal is selected (darker blue).

3.1 Basic Algorithm

In the following, wJ
1 denotes a mapping path of a fixed column i, where (i, j∗)

is mapped to w. Accordingly, w̃J
1 represents a path of the predecessor column

i− 1, where (i− 1, j∗) is mapped to w̃.

wJ
1 = {wi,1, . . . , wi,j∗ = w, . . . , wi,J} (2)

w̃J
1 = {wi−1,1, . . . , wi−1,j∗ = w̃, . . . , wi−1,J} (3)

To define the algorithm we start with the dynamic programming recursion
on the global level, where for each column a set of hypotheses is computed:

D(i, w) = min
w̃

{
D(i− 1, w̃) + Ĉ(i, w̃, w)

}
. (4)

Each entry of the dynamic programming table D(i, w) describes the optimal
cost of matching column i with the restriction that the representative pixel (i, j∗)
is mapped to w = (u, ·). The v-component of w is left variable, indicating that
the global optimization is done only over the u-component of the representative
mapping. This simplification is done for complexity reasons. As defined in Eq.
(4), the entries of D(i, w) are computed by minimizing over the best predecessor
and the local cost Ĉ(·) of the current column. For the initialization D(0, w) the
best paths of mapping the first column to the target image are computed without
horizontal dependencies. The local cost is defined by

Ĉ(i, w̃, w) = min
wJ

1 :wj∗=w

{
C(i, ŵJ

1 (i− 1, w̃), wJ
1 )
}
, (5)

where we optimize over the possible paths for the current column given the
restriction by the mapping of the representative and the best path for the prede-
cessor. The latter is read from ŵJ

1 (i, w), which can be seen as data structure that
stores the best paths corresponding to the entries D(i, w) in the global dynamic
programming table. The actual cost of mapping column i to wJ

1 in dependence
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Fig. 2. Illustration of the lookahead. Without lookahead, the grey area in (a) has
no impact on the optimization of column i. By including the lookahead in (b), the
optimization of i is influenced by an estimate of the cost for the rest of the image.

of the predecessor path is obtained by

C(i, ŵJ
1 (i− 1, w̃), wJ

1 ) =
∑
j

[
dij(wj) + T (wj−1, wj) + T (ŵj(i− 1, w̃), wj)

]
.(6)

Here we can find the data cost and penalty functions from Eq. (1). The final
energy, which is used for the nearest-neighbor classification, is found by

Ê(X,R, {wij}) = min
w

{
D(I, w)

}
. (7)

The actual deformation of the image can be computed by using back-tracing.

3.2 Lookahead

The algorithm as introduced above is strongly influenced by the matching of the
first columns. When the first columns are optimized, large parts of the image
have no impact (c.f. Fig. 2(a)). The complete image is only considered in the
global level when finally the best hypotheses are selected as solution. However, if
the first columns are matched too greedy, the global result might suffer severely.
For this reason we implement a lookahead that gives an estimate of the cost
for the not yet optimized part of the image, similar to the branches during the
optimization of the stems in TSDP or the lookahead techniques used in beam
search for speech recognition [16]. Consequently the optimization of a column
is guided by the previously computed hypotheses from the one side and the
lookahead from the other side (c.f. Fig. 2(b)).

To integrate the lookahead into the two-level dynamic programming algo-
rithm, we replace the cost function C(·) by

CLA(i, ŵJ
1 (i− 1, w̃), wJ

1 ) =∑
j

[
dij(wj) + T (wj−1, wj) + T (ŵj(i− 1, w̃), wj) +DLA(i, j, wij)

]
, (8)
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Fig. 3. Example of image matching with 2LDP-LA. The left half image (a) is matched
to image (d). Image (c) is the resulting deformed source image, while in (b) the distor-
tion grid is shown. The red line indicates the matching of the representative row.

where DLA(i, j, wij) contains the cost estimated by the lookahead for the remain-
ing part of row j in case (i, j) is mapped to wij . However, this new cost-function
is only used in the local level during the optimization of the paths. In the global
dynamic programming table the cost without lookahead is stored such that the
entries D(i, w) only capture the cost up to column i. To compute the lookahead
table DLA(·) we use the tree optimization approach with structural constraints
(CTSDP) from [6], because the authors show that this algorithm achieves good
results on the task of face recognition. Since we need a row-wise lookahead we
use the rows instead of the columns as stems of the trees and thus the columns
as branches (CTSDP-R).

3.3 Complexity

CTSDP as well as CTSDP-R is implemented by using one forward and one
backward run of dynamic programming for the branches and one bottom-up run
for the stems resulting in a complexity of O(IJUV ) [6]. These calculations have
to be done as well during 2LDP-LA with CTSDP-R as lookahead. Apart from
that, the global level of 2LDP-LA only depends on the number of columns I and
U and thus has a complexity of O(IU). On the local level for each entry in the
global dynamic programming table the respective column has to be optimized
leading to a complexity of O(IJU). An exception is defined by the first column,
where no predecessor is available. Here, for each w = (u, v) one path has to be
optimized which has a complexity of O(JUV ). As a result, the overall complexity
of 2LDP-LA is only slightly higher than the complexity of CTSDP-R. As an
example, for optimizing the mapping of a 34 × 86 image to a 68 × 86 image
we measured a runtime of 16.2 seconds with CTSDP-R on a processor with 3.2
GHz. Optimizing with 2LDP-LA took only additional 0.75 seconds. It should be
noted that both algorithms are well suited for parallel implementation, which
would decrease the runtime significantly. Additionally, pruning techniques can
be used to speed up the nearest-neighbor classification as proposed in [6].
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4 Experimental Evaluation

The proposed algorithm3 is evaluated on the CMU-PIE [14] and the more chal-
lenging CMU-MultiPIE [15] databases. Since we use CTSDP-R as lookahead for
our algorithm, a direct comparison of CTSDP-R and 2LDP-LA is interesting.
For this reason, we evaluate both algorithms with the same experimental setup
extending the implementation provided with [6]. For both databases, we use
a setup where only one image per class is used as gallery image. For this, we
choose the frontal pose images, which are aligned by rotating the images such
that hand-marked eye-centers are aligned horizontally. For the probe images a
publicly available face detector [17] is used as rough alignment. To keep the
process fully automatic, we do not assume knowledge of the poses of the probe
images. Hence, we apply the left, right and frontal face detector and select the
resulting bounding box with the highest confidence score. All images are resized
to 204 × 256 as in [18], and the Tan-Triggs preprocessing [19] is applied using
the authors code. As feature descriptor we use PCA-reduced U-SIFT [20, 21]
descriptors with a PCA dimension of 30.4 They are extracted on a grid with a
step-size of 3 and normalized using the `1-norm [6]. By this procedure we obtain
68× 86 descriptors arranged in a regular 2D grid for each image.

We roughly optimized one parameter set for our algorithm and one for
CTSDP-R that work well on the most difficult poses of both databases. For
2LDP-LA we use 5× 5-patches as local context, the distance threshold τ is set
to 1.3 and the penalty weight α is set to 0.04. For CTSDP-R we use the same
parameters except for a slightly higher distance threshold of 1.4.

4.1 CMU-PIE

The CMU-PIE [14] database contains images of 68 different subjects with varying
pose, illumination and facial expressions. Here, we use a subset containing all
poses with neutral illumination and facial expression (c.f. Fig. 4). The frontal
pose (c27) is used for the gallery images while the remaining 12 near-frontal and
near-profile poses are used for testing. This leads to a setup with 68 gallery and
816 probe images.

We can observe in Table 1 that on the near frontal as well as the near profile
poses 2LDP-LA outperforms CTSDP-R. Overall, the recognition accuracy is
improved from 92.2% to 94.6%. To the best of our knowledge, this is also the
best overall accuracy reported on this full subset of the CMU-PIE for a system
without manual alignment of the test data. Other fully automatic approaches,
such as the pose normalization methods presented in [22] and [23], achieve good
results on the near-frontal poses, but do not report results for the difficult near-
profile poses. The differences between our results for CTSDP-R and the results
in [6] can be explained mainly by the different alignment, since in [6] manual
instead of automatic alignment is used. Additionally, in [6] the authors use no

3 Implementation available at http://www.hltpr.rwth-aachen.de/w2d
4 U-SIFT features are extracted using a modified version of OpenCV 2.2.0.
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Gallery Near-Frontal Near-Profile

Fig. 4. Examples images used for evaluation after face detection and pre-processing.
Upper row: CMU-PIE, lower row: CMU-MultiPIE.

Table 1. Recognition accuracies on the CMU-PIE database. The set of near-frontal
(NF) poses contains the six poses with the lowest variation in yaw, the set of near-profile
(NP) poses contains the six poses with the highest variation in yaw.

Method Autom. align. NF[%] NP[%] Average[%]

CTSDP-R yes 96.6 87.7 92.2

2LDP-LA yes 97.1 92.2 94.6

Multi-Resolution MRF [12] yes 96.0 88.5 92.3

3D Pose-Norm. [22] yes 99.0 - -

Continuous Pose-Norm. [23] yes 100.0 - -

Ridge Regression [18]∗ no 100.0 82.7 91.4

CTSDP [6] no 99.8 92.7 96.2

CTRW-S [6] no 99.5 93.6 96.6

∗ Numbers are estimated from a graph.

preprocessing, column-wise optimization and a different grid for the extraction
of the feature descriptors.

4.2 CMU-MultiPIE

As an extension of the CMU-PIE database, the CMU-MultiPIE [15] covers more
subjects, several recording sessions and more variation in pose and facial expres-
sion. We use the images from the first recording session with neutral expression
and frontal lighting (c.f. Fig. 4). We choose pose 05 1 as gallery image and the
remaining 14 poses for testing leading to 249 gallery and 3486 probe images.

As the results in Table 2 show, also on this database 2LDP-LA outperforms
CTSDP-R, although the margin between the results is smaller than on the CMU-
PIE database. Compared to the latter, the average recognition accuracy of both
algorithm degrades. This is rooted mainly in the increased variation in yaw.
Especially the two most difficult poses with −90◦ and +90◦ yaw decrease the
accuracy. By excluding these two poses from the evaluation, the average accuracy
rises to 96.1% for 2LDP-LA and 94.8% for CTSDP-R, respectively. Compared to
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Table 2. Recognition accuracies on the CMU-MultiPIE database. The near-frontal
(NF) and near-profile (NP) sets are defined analogously to Table 1, except in this case
there are eight near-profile poses.

Method Autom. align. NF[%] NP[%] Average[%]

CTSDP-R yes 99.8 72.2 84.0

2LDP-LA yes 99.9 74.8 85.6

3D-GEM [24] yes 81.8 - -

Ridge Regression [18]∗ no 98.3 61.6 77.3

∗ Numbers are estimated from a graph.

state-of-the-art approaches that use a very similar experimental setup such as 3D
Generic Elastic Models [24] and Ridge Regression [18], our algorithm achieves
the best recognition accuracy. Other results for pose-invariant face recognition
have been reported on this database, e.g. [25, 22, 26], but the differences in the
setup do not allow a quantitative comparison with our results.

5 Conclusion

In this paper we have introduced a novel algorithm for image recognition in
a nearest-neighbor framework. The algorithm is capable to maintain full 2D
dependencies by sequentially computing a number of hypotheses for each col-
umn defined by a representative row. This process is guided by a lookahead
computed in advance as an estimate of the not yet optimized columns. While
there are several options on how to compute the lookahead, we use CTSDP-R
which already achieves good recognition results on its own. We evaluated our
algorithm in a difficult, fully automatic setup with only one gallery image per
subject. We obtained very competitive results on pose subsets of the CMU-PIE
and the CMU-MultiPIE database, even compared to explicit 3D face model-
ing approaches and without dependence on facial landmarks. The comparison
with CTSDP-R shows that in both cases our algorithm improves the recognition
accuracy while increasing the complexity only marginally.

While in this paper the evaluation is done on pose-invariant face recognition,
the method is also easily applicable on other image recognition tasks due to its
generality and the lack of assumptions about the subjects to classify.
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