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ABSTRACT 

Tn stochastic language modeling, backing-off is a widely 
used method to cope with the sparse data problem. In 
case of unseen events this method backs off to a less spe­
cific distribution. In this paper we propose to use dis­
tributions which are especially optimized for the task of 
backing-off. Two different theoretical derivations lead 
to distributions which are quite different from the prob­
ability distributions that are usually used for backing­
off. Experiments show an improvement of about 10% 
in terms of perplexity and 5% in terms of word error 
rate. 

1. INTRODUCTION 

The task of a stochastic language model is to pro­
vide the probability of a given word sequence. Typ­
ically this is achieved by supplying conditional proba­
bilities p( w Ih), where h is an equivalence class of the 
history of word w, i.e. of the words preceding w. In 
the case of M -gram models, for example, two histo­
ries are considered to be equivalent, if they agree in 
the last (M - 1) words. Even with this simplification 
of equivalence classes we are faced with the problem of 
sparse data. The number of possible events is huge and 
much larger than the amount of available training data. 
We therefore have to estimate probabilities for events 
which were never observed. Many different smoothing 
techniques such as interpolation and backing-off strate­
gies are in use to overcome this problem [4][5][6]. Com­
mon to most of these approaches is the use of less spe­
cific equivalence classes of the histories. Probabilities 
conditioned on these coarser classes can be more reli­
ably estimated and are then used to back off the model 
in the case of unseen events. In the case of M -gram 
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models, for example, a (M - 1)--gram distribution call 
be used for backing-off. 

Usually the normal probability distribution of the 

coarser model is taken for backing-off. In that case the 

information that the event is not covered by the de­
tailed model is lost. All events are taken into consider­

ation for the estimation of the backing-off distribution, 
also those already covered by the !VI -gram models. 
This results in a bias towards words heavily conditioned 
on the immediate predecessor words. Consider for ex­

ample the word dollars which is a very frequent word in 
the Wall-Street-Journal corpus but occurs aJmost ex­

clusively after numbers and some country names. The 

latter fact makes it very unlikely that dollars will oc­

cur after some word x if the bigram (x, doilars) has not 
been observed. On the other hand, the smoothed prob­
ability estimate will be relatively high, if the unigram 
probability p(dollars) is taken for backing-off'. This 
suggests to use some backing-off distribution different 
from the normal probability distribution. 

2. BACKING-OFF 

For the rest of the paper we assume that histories which 
are equivalent according to the specific equivalence re­
lation are also equivalent according to the more general 
relation. For a detailed class h then there is just one 
less specific class for which we write h. From a unifying 
point of view most smoothing techniques can now be 
formulated as backing-off models which have the fol­
lowing form: 

{ £l'(wlh) p(wlh) = ,(h) fJ(wlh) 
if N(h,w) > 0 
if N(h, w) = 0 

(1) 

For those events which have been observed in the train­
ing data (i.e. the occurrence count N is larger than 0) 
we assume some reliable estimate a of the probability. 
For the remaining unseen events the estimation is done 
according to some less specific distribution fJ. The nor­

malization term, is required in order to guarantee that 
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p( wlh) sums to unity, and is determined completely by 
a and 13: 

1- L a(wlh) 
I( h) = __ W_" :=N=( h....:.' w--,l....:.>_o __ _ 

L f3(wlh) 
w:N(h,w)=O 

(2) 

The various smoothing techniques differ largely in 
the probability estimate a for seen events. Among 
those are the Turing-Good estimates [3][5] and the lin­
ear and absolute discounting methods [6]. On the other 
hand the smoothing distribution is usually kept fixed 
to be f3( w Ih) = p( w Ih). The novel idea of our approach 
is to leave also the parameters of this distribution 13 
free and to optimize them together with the other pa­
rameters. 

In the following we pursue two different approaches 
which lead to similar solutions. Both solutions are inde­
pendent of the special kind of modeling and add virtu­
ally no additional computational overhead to the model 
computation. 

3. MARGINAL DISTRIBUTION AS 

CONSTRAINT 

In the first approach we assume that we know p(wlh) 
for M-grams with N(h, w) > O. In other words a(wlh) 
in Eq. (1) is given and fixed. Further we assume that 
the less specific distributionsp(wlh) andp(hlh) can be 
reliably estimated and thus are also fixed. The basic 
idea now is to determine f3( w Ih) such that the marginal 

distribution of the resulting joint distribution p( h, will) 
is identical to the given distribution p(wlh): 

p(wlh) = LP(g, wlh). (3) 
9 

We may write this as 

L:p(wlg, h)p(glh) 
9 

L p(wlg)p(glh) (4) 
9:9=;' 

since we have p(glh) = 0 for histories 9 with ii i= h. 
Using the special form of our model we obtain 

L a(wlg)p(glh) + 
g:g=h,N(g,w»o 

L j(g),B(wlh)p(glh). (5) 
g:iJ=h,N(g,w)=o 

We move 13 out of the second sum and apply the con­
straint Eq. (3) and get 

p(wlh) - L (y(wlg)p(glh) 
,B( will) = ____ g _:iJ::::==J�_,N _( _g_,w_'__»_o_:_-� 

L ,(g)p(glh) 
g:g=h,N(g,w)=O 

(6) 

In a first approximation, the sum in the denominator 
can be considered constant with respect to w. ,B( w Ih) is 
thus proportional to the numerator. A solution where 
,B( wlh) sums up to unity is hence obtained by normal­
ization: 

p(wlll) -
,B(wlh) = 

,
g:g=i"N(g,w»o " (7) 

2)p(vlh) - L a(vlg)p(glh)] 
v g:ii=h,N(g,v»O 

The solution Bq. (7) becomes particularly simple 
in the case of absolute discounting [6]' i.e. when 

( Ih) N(h,w)-d . h d a 1D = N(h) WIt 0 < < 1 (8) 
We assume the maximum-likelihood estimates for the 
marginal distributions 

(wlh) = N(h�w) 
and (Ih) = N(h:g) (9) P N(h) P 9 N(h) , 

where the combined count N(h,g) is equal to N(g) if 
g = Ii and 0 otherwise. We then obtain 

N(h, w) - L [N(g, w) -dJ 

P(wlh) = ,
g:gdl,N(9,w»o (10) 

2)N(h, v) - L [N(g, v) - d]] 
v 

With the definitions 

and 

Eq. (10) gives 

g:g=h,N(g,w»O 

w 

,B(wlh) = N+(-, �! w). 
N+(-,h,·) 

(11) 

(12) 

(13) 

We thus obtain a distribution which is quite dif­
ferent from the probability distribution p( wlh). Only 
the information that a word has been observed in some 

coarse context is taken into account and the frequency 
of this event is ignored. 
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4. LEAVING-ONE-OUT 

It is well known that maximum-likelihood estimation 
can not be used to estimate the parameters a, P and 
, directly since it leads to zero probabilities for un­
seen events. In order to overcome this shortcoming 
cross-validation techniquE's, such as the leaving-one-out 
technique [2, pp.75] can be successfully applied. 

The basic idea of cross validation is to get a measure 
of the generalization capability of a model by testing it 
on data not seen during training. The leaving-one-out 
technique achieves this very efficiently in the following 
way: One single event is removed from the training 
data and a model is trained on the remaining data. 
This model is then used to estimate a leaving-one-out 
probability of the removed event. The sum of the log­
arithms of all those probabilities gives the leaving-one­
out log-likelihood which serves as optimization crite­
rIon. 

When applying the leaving-one-out technique to the 
standard backing-off model, events that were observed 
just once get removed from the training data and thus 
fall into the 'unseen' branch of Eq. (1). Events that 
have been observed twice or more, on the other hand, 
still stay in the 'seen' branch. Being only interested in 
terms containing p, we get the following leaving-one­
out log-likelihood function: 

F = l )n[,(g)P(vlgl] + const( {P(vlg)}). (14) 
(g,v):N(g,v)=l 

Replacing -( according to Eq. (2) gives 

F= L In ,£VIfJ) + const({p(vlg)}). 
(g,v ):N(g,v )=1 P( ulg) 

u:N(g,u)=O 
(15) 

When taking the partial derivatives of F with re­
spect to P( wi h), we have to take into account that there 
are only contributions from terms containing P( w Ih): 

of 
oP(wlh) 

1 

� L P(wlh) -g:g=h,N(g,w)=l 

L 
(y,v ):§=h,N(y,v )=1 

N(g,w )=O 

1 
(16) L P(ulg) 

u:N(g,u)=o 
In a first approximation, the second sum can be 

considered constant with respect to wand by setting 
the derivative to zero we obtain 

P(wlh) = const(w)N1(-,h,w), (17) 

where we UBe the definition 

(18) 
g:[j=h,N(g,w)=l 
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We may choose the proportional factor in such a way 
that P(wlh) sums up to unity. With the definition of 

(19) 
w 

we thus get the final result 

(20) 

This solution can be interpreted as relative counts 
where only singletons, i.e. events observed just once, 
are taken into consideration. This seems reasonable 
since it is well known that events seen once give a good 
estimate for unseen events. Note also that the solutions 
of the two approaches (Eqs. 13, 20) are very similar. 
This is even more evident, when realizing that most of 
the summands in Eq. (11) are really singletons. 

5. EXPERIMENTAL RESULTS 

The performance of the different backing-off distribu­
tions was evaluated in several experiments on two dif­
ferent tasks. The German Verbmobil corpus comprises 
about 30,000 words and consists of transliterations of 
a few hundred dialogues. Tests were carried out with a 

closed 2,000 word vocabulary. The much larger Wall­
Street-Journal corpus (WSJ) comprises about 40 mil­
lion words of preprocessed newspaper material as used 
in the ARPA evaluation tests [7]. An open 4fik word 
vocabulary was used, which gave a coverage of 99.7%. 
For both tasks separate test sets were defined for eval­
uation. In the case of the Wall-Street-J ournal task this 
test set consists of the official 1992 and 1993 evaluation 
material. 

All experiments were carried out with trigram lan­
guage models. Non-linear interpolation [6], a slight 
variant of absolute discounting (Eq. 8) was used 
for smoothing. Our standard language model, with 
P(wlh) = p(wlh) as backing-off distribution, served as 
baseline. Models using the 'singleton' distribution (Eq. 
20) and the 'marginal constraint' distribution (Eq. 13) 
for backing-off were trained � addition. All backing­
off distributions were themselves smoothed in order to 
avoid zero probabilities. 

Test-set perplexities[4] were calculated for all mod­
els and tasks. In addition, recognition results were pro­
duced for the Wall-Street-Journal task by applying the 
different models in the trigram rescoring step of our 
recognizer [1]. The results are shown in Table 1. 

When a huge amount of training material is avail­
able such as in the Wall-Street-Journal task, the mem­
ory space plays an important role. It is well known 



that the memory space needed for the storage of a lan­
guage model can be drastically reduced without loss of 
performance by ignoring all trigrams which have been 
observed only once. In an additional experiment such 
compact trigram models were built for all three kinds 
of backing-off distributions. The results are also shown 
in Table 1. 

Table 1: Perplexities and error I:;:ttes for different tri­
gram models 

[ Model Perplexity Error Rate 

WSJ 45k, Full: 
Standard 161.0 11.9% 
Singleton 145.7 11.2% 
Marginal Constraint 144.3 1l.l% 

WSJ 45k, Compact: 
Standard 169.4 11.9% 
Singleton 152.6 11.4% 
Marginal Constraint 150.6 11.5% 

Verbmobil: 
Standard 105.4 -

Singleton 97.9 -

Marginal Constraint 96.2 -

The experiments show a consistent improvement of 
the language models by using special backing-off dis­
tributions. For the new models we obtain a perplexity 
which is up to 10% lower than for the baseline model. 
This leads to a 5% lower word error rate in recognition. 
The perplexities for the 'marginal constraint' model 
are always slightly smaller than those of the 'single­
ton' models but the recognition results are more or less 
the same. In the 'compact' case almost all models per­
form a little bit worse, both in terms of perplexity and 
error rate. Only the standard model achieves the same 
recognition result as the full model. 

A final experiment was performed in order to com­
pare our best model with the official trigram language 
model supplied by ARPA for the 1993 evaluation. For 
this purpose we trained an additional model using the 
same training data and the same 20k vocabulary as 
was used for the training of the ARPA modeL The 
perplexities are shown in Table 2. We observe that 
also in comparison with the official model we were able 
to achieve an improvement of about 9% for the trigram 
model. 

6. CONCLUSIONS 

In this paper we have improved the standard backing­
off language model. This was achieved by using 

Table 2: WSJ 20k - Perplexities for different language 
models 

Model 

ARPA 93 
Marginal Constraint 

backing-off distrihutions which were especially opti­
mized for the backing-off model. Two related solutions 
were derived from different theoretical approaches. 
Both solutions do not depend on the specific model 
and do not add extra computational costs. In exper­
iments with trigram language models we obtained an 
improvement of up to 10% in terms of perplexity and 
of 5% in terms of word error rate. 
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