
Discriminative Training of Gaussian Mixturesfor Image Object RecognitionJ. Dahmen, R. Schl�uter, H. NeyLehrstuhl f�ur Informatik VIRWTH Aachen - University of TechnologyAhornstra�e 55, D-52056 Aachen,fdahmen, schlueter, neyg@informatik.rwth-aachen.deAbstract. In this paper we present a discriminative training procedurefor Gaussian mixture densities. Conventional maximum likelihood (ML)training of such mixtures proved to be very e�cient for object recogni-tion, even though each class is treated separately in training. Discrimi-native criteria o�er the advantage that they also use out-of-class data,that is they aim at optimizing class separability. We present results onthe US Postal Service (USPS) handwritten digits database and comparethe discriminative results to those obtained by ML training. We alsocompare our best results with those reported by other groups, provingthem to be state-of-the-art.1 IntroductionIn the last few years, the use of Gaussian mixture densities for image objectrecognition proved to be very e�cient [1]. On well known object recognitiontasks such as the USPS handwritten digits database, we obtained results thatare very well comparable or even superior to results reported using support vectormachines, arti�cial neural nets or decision trees. A drawback of the conventionalML training of mixture densities is the fact, that each class is handled separatelyin training. In opposite to this, the dicriminative maximum mutual informationcriterion (MMI) optimizes the a posteriori probabilities of the training samplesand hence the class separability. In the following, we will deal with the MMIcriterion for Gaussian mixture densities. We will present results obtained on theUSPS database and compare these with results obtained by using ML training.Although we could not yet improve our best ML result (3.6% error on USPS), weshow that using discriminative criteria the number of model parameters neededto achieve good results can be drastically reduced. Thus, discriminative criteriaare very e�cient for realizing fast classi�ers that can be used in real-time envi-ronments. In the next chapters we will shortly describe the USPS database usedin our experiments as well as the feature reduction approach we make use of.In Chapter 4 we will present Gaussian mixtures densities in the context of theBayesian decision rule as well as the ML training approach. The discriminativetraining procedure will be dealt with in Chapter 5. Before drawing conclusionsin Chapter 7, we will present results in Chapter 6.



2 The US Postal Service DatabaseThe USPS database (ftp://ftp.mpik-tueb.mpg.de/pub/bs/data/) is a wellknown handwritten digit recognition database. It contains 7291 training objectsand 2007 test objects. The characters are isolated and represented by a 16� 16pixels sized grayscale image (see Figure 1). In our experiments, in order to lose noinformation, we use each pixel as a feature, yielding a 256-dimensional featurevector. The USPS recognition task is known to be very hard, with a humanerror rate of about 2.5% on the testing data [2]. For our experiments we created
Fig. 1. Example images taken from the USPS databaseadditional virtual training data by shifting each image by one pixel into eightdirections. Doing so, we on the one hand get a more precise estimation for themodel parameters and on the other hand we obviously incorporate an invarianceto slight translations. This procedure leads to 65:619 training samples which arethen used to train our system. Note that the translated images are of size 18�18pixel, as we want to guarantee that no pixel belonging to a digit gets shifted outof the image.3 Feature ReductionTo reduce the number of model parameters to be estimated in the following,transforming the data into some low dimensional feature space is advisable. Todo this, we propose the following modi�ed subspace method: In a �rst step,we use the training data to estimate a whitening transformation matrix W [3,pp.26-29]. The data is then transformed using W and is afterwards called white,that is the class conditional covariance matrix�̂ = 1N NXn=1(xn � �kn)(xn � �kn)t (1)is the matrix of identity, where N is the number of training samples, xn isthe observation of training sample n and �kn is the mean vector of class kn,to which xn belongs. In a second step, we generate K prototype vectors of theform �k � �, where K is the number of classes, �k is the mean vector of classk and � is the overall mean vector. We now transform those vectors into anorthonormal basis. To avoid the numerical instabilities of the classical Gram-Schmidt approach (caused by rounding errors), this is done by using a singular



value decomposition [4, pp. 59-67]. This yields a maximum of (K � 1) basevectors, as the dimensionality of the subspace spanned by the prototypes can beshown to be less or equal (K � 1) [3, pp.451]. By projecting the original featurevectors into that subspace we obtain the reduced feature vectors, which will beused in the following.The proposed method proved to be more robust than a conventional lineardiscriminant analysis (LDA) [5, pp.114-123], but still gives the same results ascompared to using (K�1) LDA features. In case fewer than (K�1) features arewanted, a LDA can be used in a second step, on the previously reduced features.If more features are needed, it is advisable to create so-called pseudoclasses byclustering the training data. In the case of the USPS database we obtained ourbest results by creating four pseudoclasses per class (the resulting feature vectorsbeing 39-dimensional). Note that the pseudoclasses are created by clustering thedata, which is done using the algorithms described below.4 Gaussian Mixture DensitiesTo classify an observation x 2 IRd we use the Bayesian decision rule [5, pp.10-39]x 7�! r(x) = argmaxk fp(k)p�(xjk)g (2)where p(k) is the a priori probability of class k, p�(xjk) is the class conditionalprobability for the observation x given class k and r(x) is the classi�er's deci-sion. The parameter � represents the set of all parameters of the class conditionalprobabilities p�(xnjk). As neither p(k) nor p�(xjk) are known, we have to choosemodels for them and estimate their parameters by using the training data. In ourexperiments we set p(k) = 1K for each class k and modell p�(xjk) by using Gaus-sian mixture densities. A Gaussian mixture is de�ned as a linear combination ofGaussian component densities N (xj�ki; �ki) with � = fcki; �ki; �kig:p�(xjk) = IkXi=1 cki � N (xj�ki; �ki) (3)where Ik is the number of component densities used to model class k, ckiare weight coe�cients (with cki > 0 and P cki = 1), �ki is the mean vectorand �ki is the covariance matrix of component density i of class k. To avoid theproblems of estimating a covariance matrix in a high-dimensional feature space,i.e. to keep the number of parameters to be estimated as small as possible, wemake use of pooled covariance matrices in our experiments:{ class speci�c variance pooling :estimate only a single �k for each class k, i.e. �ki = �k 8 i = 1; :::; Ik{ global variance pooling :estimate only a single �, i.e. �ki = � 8 k = 1; :::;K and 8 i = 1; :::; Ik



Furthermore, we will only use a diagonal covariance matrix, i.e. a variancevector. This does not mean a loss of information, as on the one hand a mixturedensity of that form can still (arbitrarily precise) approximate any density func-tion and on the other hand the covariance matrix of our previously whitened datais known to be diagonal. ML parameter estimation is now done using the Ex-pectation Maximization (EM) algorithm [6] combined with a Linde-Buzo-Graybased clustering procedure [7]. Note that we used global variance pooling anda maximum approximation of the EM-algorithm in our experiments. For moreinformation on ML parameter estimation the reader is referred to [1].5 Discriminative TrainingAssume that the training data is given by 2-tupels of the form (xn; kn) with xnbeing the observation of training sample n 2 f1; :::; Ng and kn the correspond-ing class label, kn = 1; :::;K. The a posteriori probability for the class k giventhe observation xn shall be denoted by p�(kjxn). Similarly, p�(xnjk) and p(k)represent the according class conditional and a priori probabilities. In the fol-lowing, the a priori probabilities are supposed to be given (see Chapter 4). Themaximum mutual information criterion [8] can then be de�ned by the expressionFMMI (�) = NXn=1 log p(kn)p�(xnjkn)PKk=1 p(k)p�(xnjk) : (4)That is, the MMI criterion aims to maximize the sum of logarithms of thea posteriori probabilities p�(knjxn). A maximization of the MMI criterion de-�ned above therefore tries to simultaneously maximize the class conditional prob-abilities of the given training samples and to minimize a weighted sum over theclass conditional probabilities of all competing classes. Thus, the MMI criterionoptimizes the class separability. In the following, we will present MMI reestima-tion formulae for the mixture density parameters, using global variance pooling.5.1 MMI Parameter OptimizationIn the following, mixture density parameters will be calculated in maximumapproximation, that is we approximate sums of probabilities by the maximumaddend. Performing extended Baum-Welch parameter optimization on the MMIcriterion yields the following reestimation formulae for the means �ki, globaldiagonal variances �2 and mixture weights cki of Gaussian mixture densities(for more details on that topic, the reader is referred to [9]). Note that for easeof representation we skip the dimension index d in the following formulae.�̂ki = �ki(x) +Dcki�ki�ki(1) +Dcki (5)



�̂2 = PkD(�2 +Picki�2ki)KD �Xki �ki(1) +DckiKD �̂2ki (6)ĉki = �ki(1) +Dcki�k(1) +D (7)with iteration constantD. �ki(g(x)) and �k(g(x)) are discriminative averagesof functions g(x) of the training observations, de�ned by�ki(g(x)) =Xn �i;ik;n [�k;kn � p�(kjxn)] g(xn) (8)�k(g(x)) =Xi �ki(g(x)) (9)�i;j is the Kronecker delta, i.e. given a training observation xn of class kn,�i;ik;n = 1 only if i is the 'best-�tting' component density ik;n given class kand �k;kn = 1 only if k = kn. For fast but reliable convergence of the MMI cri-terion, the choice of the iteration constant D is crucial. Although there exists aproof of convergence [10], the size of the iteration constant guaranteeing conver-gence yields impractical small stepsizes, i.e. very slow convergence. In practice,fastest convergence is obtained if the iteration constants are chosen such that thedenominators in the reestimation equations (5)-(7) and the according variancesare kept positive:D = h �maxk;i �Dmin; 1cki ( 1�k � �ki(1))	 (10)Dmin = maxd �� (x2) + �� (1) +Pk;i [2�ki(x) � �ki(1)�ki]�kiK(�2 � �)+Pki �k(�ki(x)� �ki(1)�ki)2K(�2 � �) (11)Here, Dmin denotes an estimation for the minimal iteration constant guar-anteeing the positivity of variances and the iteration factor h > 1 controls theconvergence of the iteration process, high values leading to low step sizes. Theconstants �k > 0 are chosen to prevent over
ow caused by low-valued denom-inators. In our experiments, parameter initialization is done using ML trainingand we chose 1�k = maxi (j�ki(1)j) + 1: (12)6 ResultsIn this chapter we will present results for the proposed classi�er on the USPSdatabase and compare these to the results obtained by the ML approach. Fur-thermore, we will compare our best results with those obtained by other stateof the art classi�ers such as support vector machines, arti�cial neural nets or



decision trees. For our experiments, the dimensionality of the feature space wasreduced as described in Chapter 3, yielding a feature space of dimension 39. Acomparison of the results obtained by ML and MMI respectively is shown inTable 1.Table 1. Comparison of ML/ MMI (h=5, 50 iterations) results for globalvariance pooling with respect to total number of component densities used#component ML Error Rate [%] MMI Error Rate [%]densities Train Test Train Test10 17.0 13.9 11.4 10.220 13.1 12.0 6.4 8.140 10.3 9.9 3.9 6.880 8.2 9.2 2.2 5.8160 6.4 8.5 1.2 6.3320 4.6 6.8 0.34 5.9640 3.3 6.2 0.02 5.71280 2.2 5.6 0.02 5.44965 0.66 5.2 0.01 4.78266 0.38 4.5 0.01 4.510360 0.38 4.6 0.01 4.6We can draw the conclusion that discrimative training procedures work wellfor models with few parameters. Although the improvements get smaller withthe number of model parameters increasing, it becomes clear that using MMItraining drastically reduces the number of parameters needed to obtain goodresults. For instance, the error rate using a total of 80 component densities goesdown from 9.2% (ML) to 5.8% (MMI), i.e. a relative improvement of nearly 40%.To obtain a similar error rate using ML, more than 1000 component densities areneeded. Therefore, discriminative training criteria are very e�cient for realizingfast recognizers, which can be used in real-time environments.Our best results so far are obtained by ML training combined with the cre-ation of virtual test samples. That is, each test sample is multiplied by shiftingit into eight directions. This yields nine instances of the same test sample, whichare classi�ed separately. We then use classi�er combination schemes, in this casethe product rule [11], to come to a �nal decision for the original test sample. Thebasic idea behind this method is that we are able to use classi�er combinationrules (and their bene�ts) without having to create multiple classi�ers. Instead,we simply create virtual test samples. Using that approach, the ML error rategoes down from 4.5% to 3.6%.A comparison of our results with that reported by other state-of-the-art meth-ods can be found in Table 2. Note that we only considered research groups thatused exactly the same training and test sets. Without that constraint, a com-parison of the training and classi�cation methods used is not possible. Othergroups for instance improved the recognition performance by adding 2.500 ma-chine printed digits to the training set [2, 12].
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Fig. 2. MMI convergence behaviour for di�erent h (single densities)Table 2. Results reported on the USPS databaseMethod Error Rate [%]Human Performance [2] 2.5Decision Tree C4.5 [13] 16.2Two-Layer Neural Net [13] 5.95-Layer Neural Net (LeNet1) [13] 5.1Support Vectors [14] 4.0Invariant Support Vectors [15] 3.0This work: MMI-Mixtures 4.5ML-Mixtures 4.5MMI-Mixtures, Product Rule 3.8ML-Mixtures, Product Rule 3.6Since discriminative training methods cannot guarantee convergence underrealistic conditions, it is interesting to investigate the convergence behaviour.Figure 2 shows MMI convergence behaviour for single densities and di�erentchoices of the iteration factor h. As can be seen, the choice of h = 4 yieldsvery fast, but unstable convergence. h = 5 as well as h = 20 lead to smoothconvergence, yet the former (used in our experiments) leads to signi�cantly fasterconvergence.7 ConclusionsIn this paper, we presented a discriminative training criterion for Gaussian mix-ture densities in image object recognition. Although we could not improve ourbest ML result of 3.6% on the USPS database yet, the MMI criterion is ableto produce good results using only very few parameters. Furthermore it should
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