
Automatic Classi�cation of Red Blood Cellsusing Gaussian Mixture DensitiesJ. Dahmen1, J. Hektor2, R. Perrey1, H. Ney11 Lehrstuhl f�ur Informatik VI, RWTH Aachen - University of Technology, Germany2 Department of Physiology, RWTH Aachen - University of Technology, GermanyEmail: dahmen@informatik.rwth-aachen.deAbstract In this paper we present an invariant statistical approach toclassifying red blood cells (RBC). Given a database of 5062 grayscaleimages, we model the distribution of the observations by using Gaus-sian mixture densities within a Bayesian framework. As invariance is ofgreat importance when classifying RBC, we use a Fourier-Mellin basedapproach to extract features which are invariant with respect to 2D ro-tation, shift and scale. To prove the e�ciency of our approach, we alsoapply it to the widely used US Postal Service handwritten digits recog-nition task, obtaining state-of-the-art results.Keywords: statistical pattern recognition, invariant object recognition1 IntroductionIn standard tests, drugs that induce shape changes to RBC are often used to ex-amine whether the cell membrane still acts in a well known way. This is done bycomparing induced shape changes with the known behaviour on drugs [1]. Thiscomparison is usually performed by a human expert and therefore time and costconsuming, stressing the need for automatic classi�cation. In this paper, we pro-pose an invariant statistical approach to automatic RBC classi�cation. Given aset of 5062 images (which were labelled as stomatocyte, echinocyte or discocyteby an expert), we model the distribution of the observed training data usingGaussian mixture densities (GMD), where classi�cation is achieved by embed-ding the model into a Bayesian framework. As invariance plays an importantrole in successfully classifying RBC (because position and orientation may varyduring observation), we extract Fourier-Mellin based features from the images,thus being invariant with respect to 2D rotation, scale and translation (RST).Using the proposed classi�er, we obtain an error rate of 13.6% on the RBC data.This seemingly high error rate is still considerably lower than the human errorrate of >20% [2]. To prove the e�ciency of our approach, we also apply it to thewidely used US Postal Service handwritten digits recognition task (USPS). Theobtained error rate of 3.4% is one of the best USPS results published so far (cp.Chapter 5).2 Databases used in our ExperimentsFor our experiments, we use a database of 5062 RBC that were expert labelled asstomatocyte, echinocyte or discocyte, where each cell is represented by a 128�128pixels sized grayscale image (see Fig. 1). The images were taken in a capillary



Table1. Some Properties of the Fourier TransformationSignal Fourier Transformf [x� x0; y � y0] F(u; v) � exp(�2�i(x0u+ y0v))f [�x; �y] 1�2F(u� ; v� )f [xcos(�) + ysin(�);�xsin(�) + ycos(�)] F(ucos(�) + vsin(�);�usin(�) + vcos(�))where the RBC showed their native shapes without applied forces during sedi-mentation [3]. With only 5062 images available, we do not subdivide the datasetinto a single training and test set. Instead, we make use of a cross-validation ap-proach in our experiments, that is we subdivide the data into 10 subsets. We thenuse each set for testing while the remaining nine sets are used for training, withthe overall error rate being the mean over all subset error rates. Note that al-though we use all images as test and training images, the according training andtest sets are strictly disjoint in all cases. A drawback of the RBC database is thelack of results obtained by competing classi�cation methods. Therefore, to provethe e�ciency of our classi�er, we also apply it to the widely used USPS database(ftp://ftp.mpik-tueb.mpg.de/pub/bs/data/), containing 7291 training and2007 test samples of isolated, handwritten digits, which are represented by a16� 16 pixels sized grayscale image. The USPS recognition task is known to behard, with a human error rate of about 2.5% on the testing data [4].3 Feature AnalysisIn our RBC experiments, we make use of a Fourier-Mellin based featureanalysis [5], of which we give a short overview here. The discrete Fourier trans-formation (FT) F(u; v) of a 2D discrete image f [x; y] 2 IRN�N is de�nedas F(u; v) = 1N2 N�1Xj=0 N�1Xk=0 f [j; k] � exp(�2�i(uj + vk)N ) (1)with i = p�1 and u; v = 0; 1; :::; N � 1. Using the FT properties shown inTable 1, the following characteristics of the amplitude spectrum A of F(u; v)can be derived: it is invariant with respect to translation, inverse-variant withrespect to scaling and variant with respect to rotation. Thus, features based onthe amplitude spectrum of an image are translation invariant. By transforming
Figure1. RBC example images, top to bottom: stomatocytes, discocytes, echinocytes.
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FT FTFigure2. RST-invariant feature extraction: A rotation example. Note that the imagerotation becomes a vertical shift in the log-polar plane.the rectangular coordinates (u; v) of A(u; v) to polar coordinates (r; �) and byusing a logarithmic scale for the radial axis, image scales and rotations becomeshifts in the log-polar representation Â of A. Now, by computing the amplitudespectrum B of the FT of Â, we can extract features which are RST-invariant(see Figure 2). As Â is real valued, B is symmetric. Therefore, we extract 24� 12features from B employing a low-pass �ltering under consideration of symmetry,which yields 288-dimensional feature vectors. Thus, by computing these Fourier-Mellin features, classi�cation is not only RST invariant, but we also reducethe dimensionality of the feature space from 128 � 128 = 16384 to 288. Tofurther decrease the number of model parameters (increasing the reliability ofparameter estimation), we use a linear discriminant analysis (LDA) [6, pp.114-123] for feature reduction. As we can only extract a maximum of (K�1) featuresusing an LDA (with K being the number of classes), we create pseudoclasses byapplying a cluster analysis to the training data, where each cluster is considereda pseudoclass. Creating 16 pseudoclasses per class, we extract (3� 16)� 1 = 47LDA features. These features are then used to train the model parameters. Inthe case of USPS, we skip the RST feature analysis (a full rotation invarianceis not desired in digit recognition, as we would confuse '6' and '9' for instance)and compute 39 LDA features from the original images using 4 pseudoclasses.4 Gaussian Mixture Densities in Bayes ContextTo classify an observation x 2 IRd we use the Bayesian decision rule [6, pp.10-39]x 7�! r(x) = argmaxk fp(k)p(xjk)g (2)where p(k) is the a priori probability of class k, p(xjk) is the class conditionalprobability for the observation x given class k and r(x) is the classi�er's deci-sion. As neither p(k) nor p(xjk) are known, we have to choose models for themand estimate their parameters using the training data. In our experiments, weestimate p(k) via relative frequencies and model p(xjk) by using GMD, being alinear combination of Gaussian component densities N (xj�ki ; �ki):p(xjk) = IkXi=1 cki � N (xj�ki ; �ki) (3)where Ik is the number of component densities used to model class k, cki are



Table2. Results reported on USPSMethod Error Rate [%]Human Performance [4] 2.5Two-Layer Neural Net [8] 5.95-Layer Neural Net (LeNet1) [9] 4.2Invariant Support Vectors [10] 3.0This work: Gaussian Mixture Densities 4.5Gaussian Mixture Densities, VTS 3.4weight coe�cients (with cki > 0 and Pi cki = 1), �ki is the mean vector and�ki is the covariance matrix of the component density i of class k. To avoid theproblems of estimating a covariance matrix in a high-dimensional feature space,i.e. to keep the number of parameters to be estimated small, we make use ofglobally pooled covariance matrices in our experiments, that is we only estimatea single �, i.e. �ki = � 8 k = 1; :::;K and 8 i = 1; :::; Ik. Furthermore, we onlyuse a diagonal covariance matrix, i.e. a variance vector. Note that this does notnecessarily imply a loss of information, as a mixture density of that form can stillapproximate any density function with arbitrary precision. Maximum-likelihoodparameter estimation is now done using the Expectation-Maximization (EM)algorithm. More information on this topic can be found in [7].5 ResultsWe started our RBC experiments by using each image pixel as a feature. Notsurprisingly, we were not able to achieve an error rate below 31% (averaged overall 10 subsets). Extracting 288 RST-invariant features (as described above) with-out performing an LDA reduced the error rate to 18.8%. This error rate couldfurther be reduced to 15.3% by using 47 LDA features (with a total of about200 component densities). Finally, by using a simple reject rule (the likelihoodof the `best' class must be at least 20% better than that of the second best),the error rate could be reduced to 13.6% at 2:4% reject, with the subset errorrates ranging from 10:7% to 16:1%. Note that a single view of an RBC oftenprovides only poor information for classi�cation (e.g. in some cases, stomato-cytes and discocytes are hard to distinguish). Therefore, it seems necessary toclassify image sequences rather than single images to further reduce this errorrate. We also applied our approach to the USPS task. Using � 1 pixel shifts,we created virtual training and testing data. The virtual training data (65:619samples) was then used to train our classi�er, whereas the virtual test samples(VTS) were used to come to a combined decision for the original test sample[11]. Using a total of about 8000 component densities, we obtained an excellenterror rate of 3.4% (4.5% without VTS). A comparison of our results with thatachieved by other state-of-the-art classi�ers can be found in Table 2.6 ConclusionIn this paper we presented a statistical approach to classifying red blood cells.Having extracted RST-invariant features using a Fourier-Mellin transformation
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