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t. In this paper we present a new probabilisti
 interpretationof tangent distan
e, whi
h proved to be very e�e
tive in modeling im-age transformations in obje
t re
ognition. Des
riptions of the resultingdistributions in pattern spa
e are given for di�erent possible models ofvariation, leading to a natural derivation of tangent distan
e. Further-more, a possible generalization is presented and experimental results onthe well known US Postal Servi
e database are presented.1 Introdu
tionInvarian
e of 
lassi�
ation algorithms with respe
t to 
ertain transformationsplays an important role in pattern re
ognition. For example, in re
ognition ofimage obje
ts like handwritten digits, invarian
e with respe
t to (small) aÆnevariations is desired. One method whi
h 
an a
hieve su
h invarian
e by using�rst order approximation of the manifolds generated by the 
onsidered transfor-mations is known as tangent distan
e (TD). It was introdu
ed by Simard et al.[14, 13℄ and su

essfully used for pattern re
ognition. TD and related approa
hesare usually seen in the 
ontext of distan
e based 
lassi�ers, but 
an as well beused in parametri
 
lassi�ers [1℄. For those 
ases, a theoreti
al model may behelpful, where the fo
us on distan
es 
an be related to the fo
us on distributionsusing the negative logarithm:� log p(xj�) = � log 1norm exp��12d(x; �)� = 12d(x; �) + 
onstThis paper presents a novel des
ription of the relation between a distributionrespe
ting pattern variation and TD. In [10℄, a probabilisti
 view on subspa
emethods is 
onsidered, but it is only derived that the distribution of distan
esfrom the subspa
e has the form of a gamma distribution.The following Se
tion gives an overview of TD, whereas Se
tion 3 deals withvariations of the referen
es � respe
tively of the observations x and distinguishesbetween known derivatives of variation and 
ases where this information is notavailable. After a view on a 
ombination of the des
ribed approa
hes, Se
tion 5gives some results and the last Se
tion 
on
ludes the paper.Fig. 1. Examples for tangent approximation (aÆne transformations and line thi
kness)



2 Overview of tangent distan
eIn 1993 Simard et al. proposed an invariant distan
e measure 
alled tangentdistan
e, whi
h proved to be espe
ially e�e
tive in the domain of digit re
ogni-tion [14℄. The authors observed that reasonably small transformations of 
ertainimage obje
ts do not a�e
t 
lass-membership. When an image x 2 IRD (seenas a one-dimensional ve
tor here) is transformed (e.g. s
aled and rotated) by atransformation t(x; �) whi
h depends on L parameters � 2 IRL (e.g. the s
alingfa
tor and rotation angle), the set of all transformed patternsMx = ft(x; �) : � 2 IRLg � IRDis a manifold of at most dimension L in pattern spa
e. The distan
e between twopatterns 
an now be de�ned as the minimum distan
e between their respe
tivemanifolds, being truly invariant with respe
t to the L regarded transformations.As 
omputation of this distan
e is a hard non-linear optimization problem andthe manifolds 
on
erned do not have an analyti
 expression in general, smalltransformations of the pattern x are approximated by a tangent subspa
e to themanifold Mx at the point x. This subspa
e is obtained by adding to x a linear
ombination of the ve
tors xl; l = 1; : : : ; L 
alled tangent ve
tors that span thetangent subspa
e. The tangent ve
tors are the partial derivatives of t(x; �) withrespe
t to �l (therefore `derivative' and `dire
tion' of variation are regarded assynonymous here). We obtain a �rst-order approximation of Mx, whi
h is thesubspa
e 
ontaining all x� = x+Pl �lxl for � 2 IRL. The (squared) single-sidedTD with tangents in x is then de�ned asd(x; �) = min� nkx+Xl �lxl � �k2oThe tangent ve
tors xl 
an be 
omputed using �nite di�eren
es between theoriginal image x and a reasonably small transformation of x [14℄. Example imagesthat were 
omputed using tangent approximation are shown in Fig. 1 (with theoriginal image on the left). Similarly, we 
an de�ne TD using an approximationof the manifold generated by � and a double-sided TD, where both manifoldsare approximated and the distan
e is minimized over possible 
ombinations ofthe respe
tive parameters.3 Probabilisti
 interpretation of variationIn this Se
tion we will 
onsider the di�erent 
ases where ea
h referen
e ve
tor �or ea
h observation x may be subje
t to variations.3.1 Known derivatives of variation in the referen
eWe �rst assume presen
e of a-priori knowledge about these transformations,e.g. aÆne transformations for images, su
h that the dire
tions of variation �lare known. Consider a Gaussian distribution of the referen
es with 
ovarian
ematrix � and the �rst order approximation of the transformed referen
ep(xj�; �) = N (xj�+Xl �l�l; �)



= 1p(2�)D j�j exp��12 ��+Xl �l�l � x�T ��1 ��+Xl �l�l � x��Assuming independent Gaussian distribution for the �l, p(�j�) = N (�j0; 
2I)(whi
h 
an be justi�ed by the 
entral limit theorem [10℄) yieldsp(xj�) = Z p(x; �j�) d� = Z p(�j�) p(xj�; �) d�� max� �N (�j0; 
2I) N (xj��; �)	 (1)= max� ( 1p2�
2L exp�� 12
2 Xl �2l� �1p(2�)D j�j exp��12 ��+Xl �l�l � x�T ��1 ��+Xl �l�l � x��) (2)The use of maximum approximation in (1) is not essential. The same results(ex
ept for some 
onstant terms) 
an be obtained without its appli
ation, butthe 
al
ulations are somewhat more 
omplex [8℄. Expression (2) is maximizedwhen the (double) negative logarithm is minimized, whi
h 
an now be interpretedas the distan
e between x and �, thus deriving an invariant distan
e measure(
onstant terms have been dropped).d(x; �) := �2 log p(xj�)� min� � 1
2 Xl �2l + ��+Xl �l�l � x�T ��1 ��+Xl �l�l � x��= min� � 1
2 Xl �2l + (�� x)T��1(�� x) + (�� x)T��1 �Xl �l�l�+�Xl �l�l�T ��1(�� x) + �Xl �l�l�T ��1 �Xl �l�l��Assuming orthogonality of the �l with respe
t to ��1, that is �Tl ��1�l0 = 0 forl 6= l0 (whi
h 
an be a
hieved without altering the spanned subspa
e using anSVD), it follows that (Pl �l�l)T��1(Pl �l�l) = Pl �2l �Tl ��1�l. Furthermorethe third and fourth term of the above sum are identi
al and the se
ond term isindependent of �. Therefore the expression redu
es tod(x; �) � (�� x)T��1(�� x)+ min� �Xl �2l � 1
2 + �Tl ��1�l�+ 2(�� x)T��1 �Xl �l�l��= (�� x)T��1(�� x)�Xl ((�� x)T��1�l)21
2 + �Tl ��1�l+ min� 8<:Xl� 1
2 + �Tl ��1�l� �l + (�� x)T��1�l1
2 + �Tl ��1�l !29=; (3)= (�� x)T��1(�� x)�Xl ((�� x)T��1�l)21
2 + �Tl ��1�l



where the minimization in (3) is equal to zero sin
e it is a minimization of a sumof weighted squares. At the boundaries of the 
onsidered range for 
, [0;1) thisyields Mahalanobis distan
e for 
 ! 0 and TD with tangents �l for 
 !1. (Nogain 
ould be obtained by restri
ting the value of 
.) Using the relationxT (A�1 + bbT )x = xTA�1x+ xT bbTx = xTA�1x+ (bTx)2and assuming 
 !1 this 
an be rewritten asd(x; �) � (�� x)T ���1 �Xl (�Tl ��1)T (�Tl ��1)�Tl ��1�l � (�� x) (4)Eq. (4) 
an be regarded as assuming `in�nite' varian
e in the dire
tions of the�l, as the inverse of the 
entral matrix 
an be interpreted as 
ovarian
e matrix:���1 � �Xl (�Tl ��1)T (�Tl ��1)�Tl ��1�l ��� + �Xl �l�Tl�Tl ��1�l�= I � (�� �+ ��)Xl ��1�l�Tl�Tl ��1�lThe latter be
omes the identity matrix I if � � � + �� = 0 or � = �1�� . Thus,as � approa
hes 1 as in TD (4), � goes to in�nity, so that we 
an write (beingaware of the fa
t that the inverse does not exist in IRD�D):p(xj�) = N (xj�;�0) with �0 = lim�!1�� + �Xl �l�Tl�Tl ��1�l�The resulting distribution 
an be 
onsidered as a degenerate 
ase of the normaldistribution or as a normal distribution in the redu
ed ve
tor spa
e that resultsfrom the proje
tion along the dire
tions of the �l. Su
h a model is generally
alled a linear model, whi
h brings about some normalization problems for the
ase where 
 ! 1. Hinton et al. state that su
h a model \is not properlynormalizable", yet very useful, and refer to fa
tor analysis as a resort [6℄. Thisproblem 
an be 
ir
umvented by regarding the distribution in the spa
e originat-ing from proje
tion along the subspa
e. Note that the presented 
onsiderations
an be interpreted as imposing a 
ertain stru
ture on the 
ovarian
e matrix dueto tangent distan
e [2℄.3.2 Estimating derivatives of variation in the referen
eIn some 
ases there is no a-priori information available about the dire
tions ofvariation of the data to be modeled, but it is known that there exists 
lassspe
i�
 variability in the data. In this 
ase one needs to estimate the derivativesof variation for ea
h 
lass to be able to use the methods des
ribed above.Given data x1; : : : ; xN , a referen
e � and a 
ovarian
e matrix �, we 
anapply a maximum likelihood approa
h to estimate the dire
tions �l, assumingknowledge of the number of dimensions L to be sought for. One 
an show thatmaximizing the likelihood Qn p(xnj�) is equivalent to the maximization of thefollowing expression with respe
t to the �l:Xl �Tl ��1S��1�l1
2 + �Tl ��1�l != max�1;:::;�l



with S =Pn(��xn)(�� xn)T . This is maximized when the ve
tors (�� 12 )T�l
orrespond to the L eigenve
tors with the largest eigenvalues of the matrix(�� 12 )TS�� 12 , its prin
ipal 
omponents. For example, assuming � = I thisimplies using the dire
tions of largest intra-
lass varian
e of the data. In a moregeneral 
ase we might 
onsider using the global 
ovarian
e matrix for � andthe 
lass spe
i�
 
ovarian
e matrix for S, whi
h is equivalent to performing aglobal whitening transformation as transformation of parameter spa
e and thenemploying the L prin
ipal 
omponents of the 
lass spe
i�
 empiri
al 
ovarian
ematrix as tangent ve
tors. This leads to an algorithm similar to that presentedin [4℄, respe
tively within a mixture density based 
lassi�er it leads to lo
al PCAlearning [11℄. Note that due to the distin
tion between global and 
lass spe
i�

ovarian
e matrix the approa
h we present here is inherently dis
riminative.In nearest neighbor or kernel density 
lassi�ers we may be interested in alo
al estimation of the derivatives of variation, that is for ea
h element xn ofthe training set. Then, one approa
h is to use the �rst L prin
ipal 
omponentsof the matrix Px02U(xn) �(jjx0 � xnjj) � (x0 � xn)(x0 � xn)T where U(xn) is theset 
ontaining the ve
tors 
losest to xn of the same 
lass and �(�) is a weightingfun
tion depending on the distan
e of the two ve
tors. If �(�) is 
onstant thisyields the lo
al subspa
e 
lassi�er [10℄. Note that this method may not be usefulfor the estimation of variation in the observation during the re
ognition pro
ess,be
ause then the dire
tions need to be 
al
ulated on
e for every 
lass that ishypothesized and furthermore in nearest neighbor based 
lassi�ers it leads tozero distan
e for all 
lasses, if used in the straightforward manner. Therefore thefollowing 
onsiderations deal with known variations in the observations.3.3 Known derivatives of variation in the observationduring re
ognitionSimilar to the 
ase of transformed referen
es we 
an now 
onsider for a givenx all variations x� = x +Pl �lxl. Sin
e the only di�eren
e in the 
al
ulationsis the repla
ement of the term `+Pl �l�l' by `�Pl �lxl' in Se
tion 3.1, we 
anperform exa
tly the same 
al
ulations, substituting �l with �xl and obtain (asthe negation 
an
els out in all pla
es)d(x; �) = (�� x)T  ��1 �Xl (xTl ��1)T (xTl ��1)1
2 + xTl ��1xl ! (�� x) (5)Note that the resulting form of the distribution 
annot be expressed as a (de-generate) Gaussian here, as the matrix depends on the value of x.3.4 Known derivatives of variation in the observationduring trainingOne 
an also look at the a-priori knowledge about the data from another pointof view, namely during parameter estimation, e.g. when training a Gaussian(mixture) density for re
ognition. In that 
ase we might be interested in usingthe additional knowledge only during training for a more reliable estimation



of parameters. Consider a Gaussian distribution N (xj�;�) with parameters �and � to be estimated and training data x1; : : : ; xN 2 IRD. Furthermore, weassume that the tangents xn1; : : : ; xnL 2 IRD are given. We 
an now modifythe maximum likelihood estimates for the parameters by distributing the weightone of ea
h training ve
tor xn over \in�nitely many" variations xn� with weightp(�) = N (�j0; ��).One 
an show that this has no e�e
t on the new mean [8℄, i.e. �T = �. Yet,the new 
ovarian
e matrix does 
hange and assuming independen
e and equalvarian
e �2� for the 
omponents of � one obtains�T = Z 1N p(�)Xn(xn� � �)(xn� � �)T d� = � + �2�Xl 1N Xn xnlxTnl (6)If the resulting probabilisti
 models are interpreted as generative models forimages, the obtained results are similar to those of Hinton et al. [7℄, who inferthem from a variant of the neural net inspired tangent prop algorithm [13℄. Asimilar result has also been des
ribed in [3℄ and for support ve
tor ma
hines in[12℄, and it is presented in a wider framework here. The estimation of parameters
hanges in a fundamental way, if it is assumed that TD will also be used duringre
ognition. This has 
onsequen
es for the referen
es as well as the 
ovarian
ematrix [4℄.4 CombinationIt is possible to 
ombine the di�erent approa
hes mentioned, e.g. 
ombining (4)and (5) yields double-sided TD. This may be 
ombined with (6) givingd(x; �) = (�� x)T  ��1T � 2LXl=1 (uTl ��1T )T (uTl ��1T )uTl ��1T ul ! (�� x)With fu1; : : : u2Lg being a set of ve
tors spanning the same subspa
e as the setfx1; : : : xL; �1; : : : �Lg with the 
ondition uTl ��1T ul0 = 0 for l 6= l0. Sin
e the xland the �l play essentially the same role here, and this is in turn the same as forthe di�eren
es x0 � xn from the Se
tion 3.2, we might 
onstru
t an even moregeneral 
ase, in whi
h the �rst prin
ipal 
omponents of the matrixPx02U(xn) �1(jjx0 � xnjj)(x0 � xn)(x0 � xn)T+Pl �2xnlxTnl + �3�l�Tl + �4Pn0 xn0lxTn0lare used as tangent ve
tors for the 
al
ulation of the distan
e d(xn; �). Di�erentsettings of the 
oeÆ
ients �1(�); �2; �3; �4 allow to reprodu
e ea
h spe
ial 
ase
onsidered before, thus arriving at a valid generalization.5 ResultsAll results presented here were obtained on the well known US Postal Servi
ehandwritten digits re
ognition task (USPS). It 
ontains normalized greys
aleimages of size 16�16, divided into a training set of 7291 patterns and a test



Table 1. Summary of results for USPS�: obtained with a training set extended by 2,400 ma
hine-printed digitsMethod ER [%℄Human Performan
e [14, 13℄ 2.51-NN Classi�er 5.6This work: TD, 1-NN 3.3TD, KD, virtual data 2.2 Method ER [%℄Neural Net (LeNet1/4) [13℄ 4.2Support Ve
tors [12℄ 3.0Boosting [13℄ �2.6Tangent Distan
e [13℄ �2.5set of 2007 patterns. Reported results for this database are summarized in Ta-ble 1. Best results reported so far were obtained with an extended training setaugmented with about 2,400 ma
hine printed digits, using a nearest neighbor
lassi�er implementing TD and a boosted neural network. In our experimentswe were not able to obtain better results than 3.3% error rate with the originaltraining set employing a 1-NN 
lassi�er with TD (aÆne transformations andline thi
kness). Using a bagged kernel density based 
lassi�er and virtual train-ing and testing data (by shifting the images 1 pixel into 8 dire
tions, keepingtraining and test set nevertheless separated), where di�erent test results were
ombined using the sum rule, we were able to redu
e the error rate further to2.2%, showing the e�e
tivity of the TD approa
h [9℄.We also experimented with 
lassi�ers using only a single referen
e per 
lass.Here, the estimation of tangent ve
tors in � yielded an error rate of 6.4% forL = 7 (whi
h 
ompares favorably to 11.8% for the tangents 
al
ulated usinga-priori knowledge and 18.6% for a NN without tangents) and 5.5% for L = 12.To obtain results for patterns for whi
h the derivatives of variation withinea
h 
lass are not known a-priori, we also 
arried out experiments with a re-du
ed feature spa
e. The patterns were transformed performing an LDA using40 
lusters of the data, yielding 39 features [1℄. These features redu
e the errorrate without tangents from 18.6% to 12.5%. Using the estimated dire
tions ofvariation this result 
an be improved to 8.6%. The 
omputational 
omplexity ofthe algorithms was not the key issue in the experiments but it does not imposeproblems, as the 
lassi�
ation of a single observation using TD requires aboutone se
ond of CPU time using all 7291 USPS training samples as referen
es.6 Con
lusionsIn this paper we presented a new probabilisti
 interpretation of tangent distan
e,deriving it from the assumption of intra-
lass varian
e. We examined di�erentpossible settings and inferred the 
orresponding distan
e measures as well asa 
ombined representation. Tangent distan
e 
an be regarded as a stru
turingmethod for 
ovarian
e matri
es, assuming in�nite varian
e in the dire
tions ofvariation. Estimating the derivatives of variation amounts to lo
al PCA if theglobal 
ovarian
e matrix is white. The derived distan
e measures may be helpfulin the design of 
lassi�
ation algorithms when the 
onsidered type of variation ispresent in the data. The experiments 
arried out support our theoreti
al results.Due to spa
e limitations, some 
al
ulations were abbreviated respe
tivelyomitted. An in-depth dis
ussion 
an be found in [8℄. The 
onsiderations in this



paper are mostly based on maximum likelihood estimation. Future work in
ludesfurther investigation of the possibilities of dis
riminative training, taking intoa

ount the information of 
ompeting 
lasses. One su
h approa
h that may be
ombined with lo
al tangent information was presented in [5℄.Referen
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