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Abstract. In this paper we present a new probabilistic interpretation
of tangent distance, which proved to be very effective in modeling im-
age transformations in object recognition. Descriptions of the resulting
distributions in pattern space are given for different possible models of
variation, leading to a natural derivation of tangent distance. Further-
more, a possible generalization is presented and experimental results on
the well known US Postal Service database are presented.

1 Introduction

Invariance of classification algorithms with respect to certain transformations
plays an important role in pattern recognition. For example, in recognition of
image objects like handwritten digits, invariance with respect to (small) affine
variations is desired. One method which can achieve such invariance by using
first order approximation of the manifolds generated by the considered transfor-
mations is known as tangent distance (TD). It was introduced by SIMARD et al.
[14, 13] and successfully used for pattern recognition. TD and related approaches
are usually seen in the context of distance based classifiers, but can as well be
used in parametric classifiers [1]. For those cases, a theoretical model may be
helpful, where the focus on distances can be related to the focus on distributions
using the negative logarithm:

1 1
exp <—§d(a:,,u)> = Ed(m,u) + const

This paper presents a novel description of the relation between a distribution
respecting pattern variation and TD. In [10], a probabilistic view on subspace
methods is considered, but it is only derived that the distribution of distances
from the subspace has the form of a gamma distribution.

The following Section gives an overview of TD, whereas Section 3 deals with
variations of the references u respectively of the observations z and distinguishes
between known derivatives of variation and cases where this information is not
available. After a view on a combination of the described approaches, Section 5
gives some results and the last Section concludes the paper.
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Fig. 1. Examples for tangent approximation (affine transformations and line thickness)
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2 Overview of tangent distance

In 1993 SIMARD et al. proposed an invariant distance measure called tangent
distance, which proved to be especially effective in the domain of digit recogni-
tion [14]. The authors observed that reasonably small transformations of certain
image objects do not affect class-membership. When an image z € R” (seen
as a one-dimensional vector here) is transformed (e.g. scaled and rotated) by a
transformation ¢(z, @) which depends on L parameters o € R” (e.g. the scaling
factor and rotation angle), the set of all transformed patterns

M, = {t(z,a) : a € R'} c R”

is a manifold of at most dimension L in pattern space. The distance between two
patterns can now be defined as the minimum distance between their respective
manifolds, being truly invariant with respect to the L regarded transformations.
As computation of this distance is a hard non-linear optimization problem and
the manifolds concerned do not have an analytic expression in general, small
transformations of the pattern x are approximated by a tangent subspace to the
manifold M, at the point . This subspace is obtained by adding to z a linear
combination of the vectors x;, [ = 1,..., L called tangent vectors that span the
tangent subspace. The tangent vectors are the partial derivatives of ¢(z,«) with
respect to ag (therefore ‘derivative’ and ‘direction’ of variation are regarded as
synonymous here). We obtain a first-order approximation of M,, which is the
subspace containing all 7, = z+ 3", aya; for @ € IR”. The (squared) single-sided
TD with tangents in z is then defined as

(e, 1) = min { |}z + 3 oy — ]}

The tangent vectors z; can be computed using finite differences between the
original image x and a reasonably small transformation of z [14]. Example images
that were computed using tangent approximation are shown in Fig. 1 (with the
original image on the left). Similarly, we can define TD using an approximation
of the manifold generated by p and a double-sided TD, where both manifolds
are approximated and the distance is minimized over possible combinations of
the respective parameters.

3 Probabilistic interpretation of variation

In this Section we will consider the different cases where each reference vector u
or each observation z may be subject to variations.

3.1 Known derivatives of variation in the reference

We first assume presence of a-priori knowledge about these transformations,
e.g. affine transformations for images, such that the directions of variation p;
are known. Consider a Gaussian distribution of the references with covariance
matrix X' and the first order approximation of the transformed reference

plelp,a) = Nzl + Y arp, 2)
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Assuming independent Gaussian distribution for the oy, p(alp) = N (a|0,721)
(which can be justified by the central limit theorem [10]) yields
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The use of maximum approximation in (1) is not essential. The same results
(except for some constant terms) can be obtained without its application, but
the calculations are somewhat more complex [8]. Expression (2) is maximized
when the (double) negative logarithm is minimized, which can now be interpreted
as the distance between x and y, thus deriving an invariant distance measure
(constant terms have been dropped).
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Assuming orthogonality of the y; with respect to X1, that is uf ¥ 1y = 0 for
I # I' (which can be achieved without altering the spanned subspace using an
SVD), it follows that (3=, arur) T X=X, cup) = Y, af ] ¥~ . Furthermore
the third and fourth term of the above sum are identical and the second term is
independent of a. Therefore the expression reduces to
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where the minimization in (3) is equal to zero since it is a minimization of a sum
of weighted squares. At the boundaries of the considered range for «y, [0; c0) this
yields Mahalanobis distance for v — 0 and TD with tangents y; for v — oco. (No
gain could be obtained by restricting the value of .) Using the relation

P A+ =2t A e +aTobTe = 2T A e + (0T 2)?

and assuming v — oo this can be rewritten as
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Eq. (4) can be regarded as assuming ‘infinite’ variance in the directions of the
47, as the inverse of the central matrix can be interpreted as covariance matrix:
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The latter becomes the identity matrix I if A\ —k + Ax =0 or kK = L Thus,
as A approaches 1 as in TD (4), k goes to infinity, so that we can W (belng

aware of the fact that the inverse does not exist in IR”*P):
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The resulting distribution can be considered as a degenerate case of the normal
distribution or as a normal distribution in the reduced vector space that results
from the projection along the directions of the y;. Such a model is generally
called a linear model, which brings about some normalization problems for the
case where 7 — oo. HINTON et al. state that such a model “is not properly
normalizable”, yet very useful, and refer to factor analysis as a resort [6]. This
problem can be circumvented by regarding the distribution in the space originat-
ing from projection along the subspace. Note that the presented considerations
can be interpreted as imposing a certain structure on the covariance matrix due
to tangent distance [2].

3.2 Estimating derivatives of variation in the reference

In some cases there is no a-priori information available about the directions of
variation of the data to be modeled, but it is known that there exists class
specific variability in the data. In this case one needs to estimate the derivatives
of variation for each class to be able to use the methods described above.
Given data zi,...,xN, a reference p and a covariance matrix X, we can
apply a maximum likelihood approach to estimate the directions g, assuming
knowledge of the number of dimensions L to be sought for. One can show that
maximizing the likelihood [, p(z,|p) is equivalent to the maximization of the
following expression with respect to the p;:
2SSy

= max
1 _
l v + 'U,;TZ 1//4 (LSRR 7]



with S =Y, (4 —2,)(p — z,)T. This is maximized when the vectors (Z-2)Ty
correspond to the L eigenvectors with the largest eigenvalues of the matrix
(Z’%)TSE*%, its principal components. For example, assuming X' = T this
implies using the directions of largest intra-class variance of the data. In a more
general case we might consider using the global covariance matrix for X and
the class specific covariance matrix for S, which is equivalent to performing a
global whitening transformation as transformation of parameter space and then
employing the L principal components of the class specific empirical covariance
matrix as tangent vectors. This leads to an algorithm similar to that presented
in [4], respectively within a mixture density based classifier it leads to local PCA
learning [11]. Note that due to the distinction between global and class specific
covariance matrix the approach we present here is inherently discriminative.

In nearest neighbor or kernel density classifiers we may be interested in a
local estimation of the derivatives of variation, that is for each element xz, of
the training set. Then, one approach is to use the first L principal components
of the matrix }° /cy(,.) Bl[2" = 2al]) - (2" — 25)(2" - z,)T where U(z,) is the
set containing the vectors closest to z,, of the same class and 3(-) is a weighting
function depending on the distance of the two vectors. If 3(-) is constant this
yields the local subspace classifier [10]. Note that this method may not be useful
for the estimation of variation in the observation during the recognition process,
because then the directions need to be calculated once for every class that is
hypothesized and furthermore in nearest neighbor based classifiers it leads to
zero distance for all classes, if used in the straightforward manner. Therefore the
following considerations deal with known variations in the observations.

3.3 Known derivatives of variation in the observation
during recognition

Similar to the case of transformed references we can now consider for a given
z all variations z, = x + Y_; oqya;. Since the only difference in the calculations
is the replacement of the term ‘+ Zl aip’ by ‘— Zl oz’ in Section 3.1, we can
perform exactly the same calculations, substituting p; with —z; and obtain (as
the negation cancels out in all places)

CL'T 71T$T -1
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Note that the resulting form of the distribution cannot be expressed as a (de-
generate) Gaussian here, as the matrix depends on the value of z.

3.4 Known derivatives of variation in the observation
during training

One can also look at the a-priori knowledge about the data from another point
of view, namely during parameter estimation, e.g. when training a Gaussian
(mixture) density for recognition. In that case we might be interested in using
the additional knowledge only during training for a more reliable estimation



of parameters. Consider a Gaussian distribution A (z|u, X) with parameters p
and XY to be estimated and training data zi,...,z5 € RP. Furthermore, we
assume that the tangents z,1,...,Z,1 € RP” are given. We can now modify
the maximum likelihood estimates for the parameters by distributing the weight
one of each training vector z,, over “infinitely many” variations z,, with weight
p(a) = N (|0, X,).

One can show that this has no effect on the new mean [8], i.e. ur = p. Yet,
the new covariance matrix does change and assuming independence and equal
variance o2 for the components of a one obtains

Sr= [ 9@ S o = 1(wne — 07 da =402 30 L5 mis 0

If the resulting probabilistic models are interpreted as generative models for
images, the obtained results are similar to those of HINTON et al. [7], who infer
them from a variant of the neural net inspired tangent prop algorithm [13]. A
similar result has also been described in [3] and for support vector machines in
[12], and it is presented in a wider framework here. The estimation of parameters
changes in a fundamental way, if it is assumed that TD will also be used during
recognition. This has consequences for the references as well as the covariance
matrix [4].

4 Combination
It is possible to combine the different approaches mentioned, e.g. combining (4)
and (5) yields double-sided TD. This may be combined with (6) giving
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With {u1,...uar,} being a set of vectors spanning the same subspace as the set
{z1,...21,p1,...pr} with the condition ulTﬂflul/ =0 for | # I'. Since the z;
and the y; play essentially the same role here, and this is in turn the same as for
the differences z' — z,, from the Section 3.2, we might construct an even more
general case, in which the first principal components of the matrix

Yorev(en) Pz’ = znl)) (2’ — 2n) (2" —2n)"
+ 5 Bzl + Bapupd + Ba Y, anzl,
are used as tangent vectors for the calculation of the distance d(z,, u). Different

settings of the coefficients 3 (-), 82, 083, 81 allow to reproduce each special case
considered before, thus arriving at a valid generalization.

5 Results

All results presented here were obtained on the well known US Postal Service
handwritten digits recognition task (USPS). It contains normalized greyscale
images of size 16x16, divided into a training set of 7291 patterns and a test



Table 1. Summary of results for USPS
: obtained with a training set extended by 2,400 machine-printed digits

*

[Method ER [%]] [Method ER [%]]
Human Performance [14, 13] 2.5 Neural Net (LeNet1/4) [13] 4.2
1-NN Classifier 5.6 Support Vectors [12] 3.0
This work: TD, 1-NN 3.3 Boosting [13] *2.6

TD, KD, virtual data 2.2 Tangent Distance [13] “2.5

set of 2007 patterns. Reported results for this database are summarized in Ta-
ble 1. Best results reported so far were obtained with an extended training set
augmented with about 2,400 machine printed digits, using a nearest neighbor
classifier implementing TD and a boosted neural network. In our experiments
we were not able to obtain better results than 3.3% error rate with the original
training set employing a 1-NN classifier with TD (affine transformations and
line thickness). Using a bagged kernel density based classifier and virtual train-
ing and testing data (by shifting the images 1 pixel into 8 directions, keeping
training and test set nevertheless separated), where different test results were
combined using the sum rule, we were able to reduce the error rate further to
2.2%, showing the effectivity of the TD approach [9].

We also experimented with classifiers using only a single reference per class.
Here, the estimation of tangent vectors in p yielded an error rate of 6.4% for
L = 7 (which compares favorably to 11.8% for the tangents calculated using
a-priori knowledge and 18.6% for a NN without tangents) and 5.5% for L = 12.

To obtain results for patterns for which the derivatives of variation within
each class are not known a-priori, we also carried out experiments with a re-
duced feature space. The patterns were transformed performing an LDA using
40 clusters of the data, yielding 39 features [1]. These features reduce the error
rate without tangents from 18.6% to 12.5%. Using the estimated directions of
variation this result can be improved to 8.6%. The computational complexity of
the algorithms was not the key issue in the experiments but it does not impose
problems, as the classification of a single observation using TD requires about
one second of CPU time using all 7291 USPS training samples as references.

6 Conclusions

In this paper we presented a new probabilistic interpretation of tangent distance,
deriving it from the assumption of intra-class variance. We examined different
possible settings and inferred the corresponding distance measures as well as
a combined representation. Tangent distance can be regarded as a structuring
method for covariance matrices, assuming infinite variance in the directions of
variation. Estimating the derivatives of variation amounts to local PCA if the
global covariance matrix is white. The derived distance measures may be helpful
in the design of classification algorithms when the considered type of variation is
present in the data. The experiments carried out support our theoretical results.

Due to space limitations, some calculations were abbreviated respectively
omitted. An in-depth discussion can be found in [8]. The considerations in this



paper are mostly based on maximum likelihood estimation. Future work includes
further investigation of the possibilities of discriminative training, taking into
account the information of competing classes. One such approach that may be
combined with local tangent information was presented in [5].
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