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t. In this paper we evaluate the performan
e with respe
t to
lassi�
ation of red blood 
ells of an invariant statisti
al 
lassi�er thatwas su

essfully applied to a variety of obje
t re
ognition tasks. The
lassi�er is based on distan
e fun
tions invariant to aÆne transforma-tions and additive brightness and on kernel densities within a Bayesianframework. Given a database of 5062 grays
ale images, we follow an `ap-pearan
e based' approa
h obtaining an error rate of 16.3%, lying belowthe human error rate of greater than 20%. Our experiments show thegeneral appli
ability of the approa
h taken. A 
omparison with resultsobtained in other domains underlines the task dependen
y of the perfor-man
e of di�erent 
lassi�
ation algorithms.1 Introdu
tionIn medi
al tests, the e�e
t of a drug on the 
ell membrane of red blood 
ells(RBC) may be of interest, possibly measured by the indu
ed shape 
hanges [1℄.The 
omparison of the shape 
hanges with known behavior in presen
e of drugsfor evaluation is usually performed by a human expert and therefore time 
on-suming and 
ostly. This fa
t and the desire for reprodu
ible results stress theneed for automati
 
lassi�
ation. We present an invariant statisti
al approa
hto 
lassifying RBC automati
ally. The experien
e with 
lassi�
ation tasks su
has radiograph 
ategorization and opti
al 
hara
ter re
ognition suggests that in-varian
e plays a major role for obje
t re
ognition [2℄. Sin
e the images of RBCused in this work are taken during sedimentation, one observes high variabilityhere, indi
ating the usage of invariant 
lassi�
ation methods. We evaluate theperforman
e of a Bayesian 
lassi�er based on kernel densities, tangent distan
eand virtual data 
reation, whi
h has obtained ex
ellent results in the domainsmentioned above. Furthermore we 
ompare it to a di�erent method based on in-variant features presented re
ently in [3℄. Thus the purpose of this work is twofold{ to give eviden
e for the general appli
ability of the approa
h presented hereand to introdu
e a new method to the automati
 
lassi�
ation of RBC.The experiments are 
ondu
ted on a set of 5062 images (whi
h were labelledas stomato
yte (3259), e
hino
yte (916) resp. dis
o
yte (887) by an expert),where ea
h 
ell is represented by a 64�64 pixels sized grays
ale image. Invari-an
e is in
orporated using invariant Gaussian densities based on tangent distan
e(TD), whi
h 
ompensates for small aÆne transformations and additive bright-ness 
hanges. We obtain an error rate of 16.3% using the proposed 
lassi�er,whi
h seems high for a three 
lass problem but is still 
onsiderably lower than



Fig. 1. RBC example images, left to right: stomato
ytes, dis
o
ytes, e
hino
ytes.the human error rate of >20% [4℄. Yet the error rate is higher than that of a sta-tisti
al 
lassi�er using Gaussian mixture densities (GMD) and rotation-, s
ale-and translation-invariant (RST) features based on the Fourier-Mellin transform,whi
h obtained an error rate of 15.3% [3℄. On the other hand for the task ofopti
al 
hara
ter re
ognition (OCR) the 
lassi�er presented here performs 
on-siderably better than the approa
h based on invariant features (2.2% error onthe US Postal Servi
e database [2℄). This 
omparison shows that the 
hoi
e ofthe appropriate 
lassi�er strongly depends on the spe
i�
 task within the do-main of obje
t re
ognition. Nevertheless it 
an be observed that the presented
lassi�er performs well in a variety of obje
t re
ognition tasks (OCR, radiograph
lassi�
ation [2℄, RBC 
lassi�
ation), yielding state-of-the-art results.2 RBC 
lassi�
ation and invarian
eThe images are taken in a 
apillary where the RBC show their shapes withoutapplied for
es during sedimentation [5℄. Figure 1 shows some example images.With only 5062 images available, we do not subdivide the dataset into a trainingand a test set, but make use of a leaving-one-out approa
h. I.e., when 
lassify-ing an image we use the remaining 5061 images as training data, still stri
tlyseparating training and test data, but fully using all available information. In[3℄, ten-fold 
ross-validation was used instead, due to the larger training require-ments of a GMD based 
lassi�er using linear dis
riminant analysis (LDA).One drawba
k of the RBC database is that there is only one result obtainedby a 
ompeting 
lassi�
ation method available. Therefore, and be
ause we wishto 
ompare the results obtained on the RBC data with those on other databases,we also brie
y present results for the US Postal Servi
e database. For the per-forman
e of the 
lassi�er on a database of radiographs see e.g. [6℄. The USPSdatabase 
ontains 7291 training and 2007 test samples of isolated, handwrittendigits, whi
h are represented by 16�16 pixels sized grays
ale image. It is knownto be a hard task in the domain of OCR with a human error rate of 2.5% [7℄.We apply appearan
e based pattern re
ognition, i.e. we interpret ea
h pixelof an image as a feature, whi
h is a 
ontrary approa
h to the extra
tion of in-variant features as employed in [3℄. The 
lassi�er used is a kernel density based
lassi�er, where additional emphasis is put on invarian
e with respe
t to relevanttransformations, as explained brie
y in the following. (For more detailed infor-mation see e.g. [2℄.) There exists a variety of ways to deal with the problem ofinvarian
e in pattern re
ognition, where one is the use of invariant distan
e mea-sures within a statisti
al 
lassi�er, whi
h repla
es the 
ommonly used Eu
lideanor the Mahalanobis distan
e. In the following, we sket
h the idea of one su
hdistan
e measure 
alled tangent distan
e, whi
h proved to be espe
ially e�e
tive



Fig. 2. Examples for tangent approximation (aÆne transformations and line thi
kness)in the domain of digit re
ognition and was introdu
ed by Simard et al. (see e.g.[7℄). When an image x 2 IRD is transformed (e.g. s
aled and rotated), the set ofall transformed patterns is a manifold in pattern spa
e. The distan
e betweentwo patterns 
an now be de�ned as the minimum distan
e between their respe
-tive manifolds, truly invariant with respe
t to the regarded transformations. As
omputation of this distan
e is a hard non-linear optimization problem, smalltransformations of the pattern x are approximated by a tangent subspa
e tothe manifold at the point x. This subspa
e is obtained by adding to x a linear
ombination of the ve
tors xl; l = 1; : : : ; L 
alled tangent ve
tors that span thetangent subspa
e. We obtain a �rst-order approximation of the manifold whi
his the subspa
e 
ontaining all x� = x +Pl �lxl for � 2 IRL. The (squared)single-sided TD with tangents in x is then de�ned asd(x; �) = min� nkx+Xl �lxl � �k2oand 
an be 
omputed eÆ
iently as it is a linear least squares optimization prob-lem. Example images that were 
omputed using the tangent approximation tothe manifold are shown in Fig. 2 (with the original image on the left; here, animage from the USPS 
orpus is 
hosen to illustrate the e�e
t). Similarly, we 
ande�ne a double-sided TD approximating both manifolds. TD 
an lead to trans-formation toleran
e in 
lassi�
ation and 
an furthermore be easily in
orporatedinto statisti
al 
lassi�ers as it has a well-founded probabilisti
 interpretation [8℄.By adding to the training set a number of transformed instan
es of the orig-inal data (virtual data), one 
an a
hieve better performan
e of the 
lassi�erwithout a
tually requiring more training data. For the RBC task we used rota-tions by multiples of �=2 and 
ipping. For the OCR data, rotation and 
ipping isnot desired, but small image shifts were 
hosen. It is also possible to use virtualdata for testing, whi
h 
an improve 
lassi�
ation signi�
antly [9℄.3 Results and 
omparison of approa
hesTable 1 shows a summary of the obtained results in 
omparison to the GMDapproa
h with RST-invariant features presented in [3℄. We started our experi-ments regarding the appearan
e based method with a nearest neighbor (1-NN)
lassi�er, whi
h is often used as a baseline result. We found that applying a two-bin histogram equalization to the data during 
lassi�
ation improved the resultTable 1. Summary of Results for the RBC dataMethod ER [%℄Human [4℄ >20.0GMD [3℄ appearan
e based 31.0RST-invariant 18.8+ LDA 15.3 This work: 1-NN 24.4+ histogram equal. 21.4+ kernel densities 19.6+ tangent distan
e 17.8+ virtual data 16.3



from 24.4% to 21.4%, diminishing di�erent ba
kground graylevel intensities inthe data. By using a kernel density based Bayesian 
lassi�er the error rate 
ouldbe further redu
ed to 19.6%. Finally, we added two ingredients to improve trans-formation toleran
e, i.e. tangent distan
e and virtual data as introdu
ed above.These led to the best error rate for the appearan
e based approa
h of 16.3%error. The tangents used in these experiments were six for the aÆne transfor-mations and one for additive brightness o�sets. By using a simple reje
t rule(reje
t, if the negative log-likelihood of the se
ond best 
lass is not at least r%larger than that of the best 
lass) we 
ould redu
e the error rate to 15.5% at1.4% reje
t for r = 10 resp. to 14.5% at 3.9% reje
t for r = 12. This is slightlyinferior to the result of 13.6% error at 2.4% reje
t as reported in [3℄. We alsoperformed a number of further experiments, whi
h did not lead to improvedre
ognition rates. Among these was the use of image normalization w.r.t. rota-tion, the use of gradient information as additional features and the appli
ationof the invariant distan
e measure 
alled image distortion model, where the latterled to signi�
ant improvements in the 
ase of radiograph 
ategorization [2℄.The main motivation for the experiments presented here was that the appear-an
e based 
lassi�
ation approa
h with invarian
e methods (tangent distan
e,image distortion model, virtual data) a
hieved ex
ellent results on other tasks. Asummary of results for the USPS task with many resear
h results from 
ompetingmethods available is given in Table 2. Likewise for the IRMA (Image Retrievalin Medi
al Appli
ations) database of radiographs, the approa
h performed verywell, although only few other results are known. For detailed information on theIRMA 
ategorization and the performan
e of the algorithm see e.g. [6℄.The obtained results show that on this spe
i�
 task { RBC 
lassi�
ation {the appearan
e based approa
h does not lead to the best possible performan
e,while it does for some OCR tasks. This observation 
an be explained by regard-ing the di�erent types of variability present in the data: the RBC images appearin rotations of all possible angles during sedimentation, while handwritten digitsare only subje
t to small rotations and some other transformations with 
om-paratively small extent. Thus, the information loss inherent in the extra
tionof invariant features is tolerable for RBC images but not for images of digits,while tangent distan
e is able to model small transformations in OCR, but doesnot perform as well for larger transformations. Nevertheless it 
an be observedthat the usage of tangent distan
e and virtual data improves 
lassi�
ation sig-ni�
antly. The presented method has the advantage that less parameters needto be 
hosen, suggesting better generalization properties.Table 2. Summary of results for USPS�: obtained with a training set extended by 2,400 ma
hine-printed digitsMethod ER [%℄1-NN Classi�er [2℄ 5.6GMD appearan
e based [9℄ 6.0LDA, virtual data [9℄ 3.4TD 1-NN [2℄ 3.3KD, virtual data [2℄ 2.2 Method ER [%℄Human Performan
e [7℄ 2.5Neural Net (LeNet1/4) [7℄ 4.2Support Ve
tors [10℄ 3.0Boosting [7℄ �2.6Tangent Distan
e [7℄ �2.5



4 Con
lusionIn this paper we evaluated the appli
ability of an invariant statisti
al 
lassi�
a-tion approa
h to a medi
al task. The proposed methods { whi
h a
hieve highperforman
e on other data { yield a 
ompetitive result on this task of RBC
lassi�
ation without tedious adaptation. This suggests the general usefulness ofthe approa
h for a wide range of appli
ations in the �eld of obje
t re
ognition.Yet, we 
ould not improve the previously presented result based on extra
tionof invariant features, for whi
h we gave some explanation. It seems likely thata 
ombination of these two approa
hes may lead to better re
ognition, whi
hremains to be examined in the future. Furthermore, the 
hoi
e of an appropriate
lassi�er seems to depend on the spe
i�
 obje
t re
ognition task.A
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