ALGORITHMS FOR BIGRAM AND TRIGRAM WORD
CLUSTERING

Sven Martin, Jorg Liermann, Hermann Ney

Lehrstuhl fir Informatik VI,
RWTH Aachen, University of Technology, D-52056 Aachen, Germany

ABSTRACT. This paper presents and analyzes im-
proved algorithms for clustering bigram and trigram
word equivalence classes, and their respective results: 1)
We give a detailed time complexity analysis of bigram
clustering algorithms. 2) We present an improved imple-
mentation of bigram clustering so that large corpora (38
million words and more) can be clustered within a small
number of days or even hours. 3) We extend the cluster-
ing approach from bigrams to trigrams. 4) We present
experimental results on a 38 million word training corpus.

1. INTRODUCTION

Word equivalence classes are a method for improving un-
dertrained word M-gram language models [1], [2], [4].
Words are grouped into classes, and each word belongs
to only one such class. Thus, if a word pair is not seen
in training, it is quite likely that the corresponding class
pair is seen. For bigram and trigram class models, we
have the equations

p(wn|wn-1) = po(wn|G(wn)) (1)
P1(G(wn)|Gwn-1))

po(wn|G(wn)) (2)
P2(G(wn)|G(wn—2), G(wn-1)),

P(Wn|wn—2, wn_1)

where G : w — G(w) denotes the unique class mapping
for all words w. po(-) is the word membership probability,
p1(+) is the first order and p2(-) the second order Markov
chain probability. The probabilities are computed using
maximum likelihood estimation, e.g. in the case of p1(+)

by

C(Glwas), Glwn)
Gy

p1(G(wn)|G(wn-1)) =

with C(-) being the number of occurrences of the event
given in the parentheses. The problem of unseen events
is circumvented by smoothing methods, which take away
some probability mass from the seen events and redis-
tribute it over the unseen events. The basic smoothing
method for our class models is absolute discounting with
backing off. See [3] and [6] for further discussion of this
issue. Word equivalence classes also considerably reduce
the number of model parameters, in the bigram case from
O(V2) for words to O(V + G2) for classes, with V as vo-
cabulary size and G as number of classes. Furthermore,
a linear interpolation of the M—gram class and the M—
gram word models may yield a better performance than
each model on its own.

2. CLUSTERING ALGORITHM

Word equivalence classes are obtained by a clustering al-
gorithm. The goal of this algorithm is to find a word
class G(w) for each word w such that the perplexity of
the class model is minimized. For both trigram and bi-
gram clustering, we used an exchange (k-means-style)
algorithm, which works as follows [1]:

set up initial mapping
conpute initial train set perplexity
do until some stopping criterion is met

do for each word win vocabulary V

renove w fromclass Qw)

do for all existing classes g

conmpute perplexity as if wwere noved to g

assign wto the class with the best perplexity

For initialization, we used the following method: we con-
sider the most frequent G — 1 words, and each of these
words defines its own class. The remaining words are as-
signed to class GG. To improve the perplexity, we go one
step further and move only those words whose counts
are larger than a prespecified threshold. The stopping
criterion is a prespecified number of iterations. Also, the
algorithm stops if no words are moved any more.

3. BIGRAM CLUSTERING

The essential aspect of the algorithm is the efficient com-
putation of the perplexity. Inserting the likelihood esti-
mates (e.g. (3) for p1()) in the log—perplexity formula
and dropping the factor (—=1/N), we arrive at [4]:

Fi = 3 Clgaug) -1og Clga, 1) (4)

92,91

~2-) C(g)-log Clg) + Y C(w)-log C(w)

B 0(92,91)
= > Clg,0) - log C(g2)-Cg1) “

92,91

+) C(w) - log C(w),

where g, g1 and ¢ are class indexes from 1 up to GG and
w is a word index from 1 up to V. C(g1, g2) is the bigram
count of class pairs (g1,g92), and C(g) is the unigram
count of class g. During the iteration, it is sufficient to
compute only the differences in perplexity. We consider
only those terms in the above formula which are affected
by moving word w from class g., to class k,,. Here, we

give the update formulae for removing a word w from
class gu:

Vg # guw: Clg,9w) = C(g,9u) - Clg,w), (6)
Vg # guw : Clguw,g9) = Cgw,9) —C(w,g), (7)
C(gw’ gw) = C(gw’ gw) - C(gw, w) (8)

—C(w, gw) + C(w, w).

This is an application of the so—called sieve formula by
Poincaré—Sylvester [7]. There are similar operations for
moving w to class k.. Obviously, these count updates
and the resulting perplexity computation can be per-
formed in O(G) time. The counts C(g,w) and C(w,g)
are computed for each word w once it is under consider-
ation. By scanning through the occurrences of the con-
sidered word in the training corpus, each occurrence of
a word is visited exactly once per iteration. With G -V
exchange attempts per iteration, we obtain a time com-
plexity of

O(I- (N +V - G?)) (9)
for the whole clustering algorithm, with N as corpus
length and [as the number of iterations.

To reduce the time complexity, we use a special organi-
zation of the training corpus. For each observed word
pair, we store its count. Instead of visiting each occur-
rence of the considered word w in the running text, we
collect all bigram occurrences which involve w. Assum-
ing a direct access array to these counts, we obtain the
time complexity

O(I - (B+V-G?%), (10)

with B as the number of different word pairs encountered
in the training corpus. Since B is usually far smaller than
N (3.5 million different bigrams vs. 38 million total bi-
grams for the Wall Street Journal corpus), the CPU time
is substantially reduced. For large vocabularies, however,
direct access is prohibitive due to large memory require-
ments. We use lists and binary search instead. Since
there are B/V bigrams per word on the average, the re-
sulting time complexity is

O(I (B -logy () + V- G*)). (11)

4. TRIGRAM CLUSTERING

For a trigram class model, the log—perplexity takes the
form [4]

Fii = Y Clgs,g2,91) 1og Clga, 02,91) (12)
93,92,91
=) Clgs,92) log Clgs, g2)
93,92

- Z C(g1) -log C(g1)
+ Z C(w) - log C(w)

Clga, g2,

93,92,91

+Y " C(w) -log C(w). (13)

To efficiently compute the perplexity, we again exploit
the sieve formula [7]. The bigram counts are updated in
the same way as above, but for the trigram counts, we
obtain:

V91,92 # guw
Clg1,92,9w) = C(g1,92,9w) — C(g1, g2, w). (14)

For C(gw, g1, 92) and C(g1, gw, g2), we have similar for-
mulae.

Vg # gw :
C(9, guw,gw) = C(g, 9w, gw) — C(g, g, w) (15)
_C(gawagw)—i—c(gawaw)

For C(gw, 9, gw) and C(gw, guw, g), we have similar formu-
lae.

Vg # guw
C(g,gw,’w) = C(g,gw,w)—C(g,w,w) (16)

FOI C(gw,g, ’LU), C(g,w,gw), C(gw,w,g), C(w,g,gw),
and C(w, gw, g), we have similar formulae.

Cgwsgusgw) = Clguw,guw,gw) = C(w, guw, 9w)(17)
—C(gw; guw, w) = Cguw, w, gw)
+C(guw, w,w) + C(w, guw, w)
+C0(w,w, gu) — Cw,w, w)

C(gw’ Jw, w) = C(gwa Juw, w) - C(gw, w, w) (18)
—C(w, gu,w) + C(w,w, w)

For C(w, guw, gw) and C(gw,w, gw), we have similar for-
mulae.

Cgw, w,w) := Cguw, w,w) — C(w, w,w) (19)

For C(w, guw, w) and C(w, w, g), we have similar formu-
lae.

Note that some of the counts on the left hand side of
the above formulae also appear on the right hand side.
The given formulae are only valid for unmodified counts
on the right hand side. The computation of this is only
possible with a time complexity of O(G?), thus resulting
in a total time complexity of

O(I - (N+V-G%). (20)

Clustering for a large number of classes is computation-
ally expensive. Trigram clustering was performed for up
to 100 classes only. For a larger number of classes, we
did not use the clustering algorithm, but used the bigram
clusters instead to define the trigram class models.

We can also get the counts from the word trigrams in-
stead of the corpus, as before in the case of bigram clus-
tering. As in the case of bigram clustering, we have to
use lists and binary search. However, finding the counts
C(-,w,-) for a given w is computationally more expen-
sive, and we obtain a time complexity of

B T B
O - (T Togy () - (5) 4 V7 logy (2) 4 v -6, (21)
with 7' being the number of different word trigrams. This
method was applied to very large corpora only, for which
the other method runs into memory problems.

5. LANGUAGE MODEL INTERPOLATION

We use linear interpolation to combine the word trigram
model puwora(Wn|wn—2, wr—1) with the class trigram mod-
el pclass(wn|wn—2, wn—l):

p(wn|wn—2, wn—l) = A pword(wn|wn—2, wn—l) (22)

+ (1 -)\) . pclass(wn|wn—2, wn—1)~

This method is especially suitable if none of the two mod-
els is to be preferred. By allowing A € [0 : 1], the indi-
vidual models are included as special cases for A = 1
or A = 0. Thus, the interpolated model with optimal
A cannot be worse than the best of the two individual
models. The word model used is the singleton trigram as
described in [6].

6. CORPORA AND CLUSTERING TIMES

For the evaluation of our models, we used the Wall Street
Journal task [5] with a vocabulary of 20000 words. From
the data bases of this task, we constructed a training cor-
pus of 38 million words for clustering and event counting,
a development corpus of 2 million words for smoothing
and interpolation parameter estimation, and a test cor-
pus of 0.3 million words. To check the model behavior for
different amounts of training data, two smaller clustering
word sets were taken from of the 38 million corpus with
sizes of 1 and 5 million words. The composition of the
38M, 5M and 1M training corpora and of the test corpus
is as described in [5].

The threshold separating the words not considered for
moving was estimated for the bigram clustering by clus-
tering 100 classes for different threshold values for 20
iterations on all three training corpora and choosing the
threshold performing best on the development data. The
threshold was 3 for the 1M, 4 for the 5M and 50 for the
38M corpus. For trigram clustering, due to the CPU
costs, these thresholds were estimated less exactly. This
type of threshold not only affects the perplexity of the re-
sulting class model, but also decreases the CPU time, be-
cause the effective size of the vocabulary is reduced. For
the thresholds given above for bigram clustering, 57% of
the vocabulary was considered for the clustering on the
1M corpus, 92% on the 5M and 99% on the 38M corpus.

Table 1 shows the CPU times per iteration for bigram
clustering using the improved version of the algorithm
on an R4000 based SGI workstation. These times are
well predicted by the time complexity formula (11).

Table 1: CPU seconds per iteration for the improved
bigram clustering algorithm on an R4000 based SGI

workstation
| Classes || 1M | 5M | 38M |
50 61 111 204
100 219 377 507
200 860 1488 1776

500 5716 9468 | 10474
1000 || 26173 | 41832 | 45721

The clustering times for trigram clustering are not direct-
ly comparable because the clustering was performed on
different machines. To give an idea of the computation

times, we mention that clustering 50 classes on the 1M
corpus takes about two hours per iteration on an R4000
based SGI workstation, whereas clustering 100 classes on
the 38M corpus takes about 10 days per iteration on the
same machine.

The bigram clustering was performed until no words were
moved any more, resulting in about 20 to 30 iterations.
A bigram class model was constructed after each itera-
tion and, for the further experiments, we selected that
model which performed best on the development corpus.
Due to the CPU costs for trigram clustering, such a fine
tuning was not possible, and only a few iterations were
performed so that the resulting classes are not as good
as they could be.

7. RESULTS

We will present two main series of experimental results.
The first series, Tables 2 to 4, summarizes the perplexities
of the class models on the test corpus after parameter
tuning. The second series, Tables 5 to 8, shows the results
of the interpolation of the class and word models on the
test corpus after the interpolation parameter estimation.

After clustering, bigram and trigram models were con-
structed from the resulting classes, and those smooth-
ing parameters which performed best on the development
corpus were selected for the experiments reported here.
Table 2 shows the measured perplexities for the bigram
class models. For 1000 classes, the same perplexity was
obtained as for the word bigram on the 1M corpus.

Table 2: Class bigram perplexities

| Classes || 1M | 5M | 38M |

50 || 456.2 | 428.9 | 420.2
100 || 390.0 | 363.9 | 357.5
200 || 341.2 | 310.3 | 302.3
500 || 302.1 | 258.4 | 244.8

1000 || 285.4 | 231.4 | 211.0

[Word || 286.3 | 216.1 [167.4 |

For the class trigram, we could use the trigram clustering
algorithm for obtaining up to 100 classes. Results are
summarized in Table 3.

Table 3: Class trigram perplexities with classes from
trigram clustering

| Classes || 1M | 5M | 38M |

50 || 403.8 | 359.7 | 350.8
100 || 370.9 | 298.7 | 277.2

[Word [221.6 [150.1 [96.5 |

For larger numbers of classes, we must rely on the classes
obtained by the bigram clustering operation. The train-
ing corpora are merely used for getting the trigram class
counts. To see whether the classes obtained by the tri-
gram clustering operation are any better than those ob-
tained by the bigram clustering operation, we also ap-
plied this procedure to the models with 50 and 100 class-
es. Results are summarized in Table 4. With the excep-
tion of the 100 class model clustered on the 1M corpus,

which appears to be too small for a good trigram cluster-
ing with that many model parameters, the perplexities of
the classes obtained by trigram clustering shown in Ta-
ble 3 are about as good or slightly better than those ob-
tained by bigram clustering. The perplexities are better
than for bigram class models in Table 2, but still con-
siderably worse than those of the word trigrams. Maybe
a finer tuning of parameters improves performance as in
the case of the class bigrams.

Table 4: Class trigram perplexities with classes from
bigram clustering

| Classes || 1M | 5M | 38M |

50 410.1 | 373.1 | 359.5
100 342.3 | 2974 | 283.4
200 301.5 | 245.6 | 220.0
500 274.6 | 202.8 | 162.2
1000 263.6 | 183.9 | 134.6

[Word [221.6 [150.1 [96.5 |

Tables 5, 6, 7 and 8 summarize the results of the in-
terpolation of class and word models. The interpolation
factor was determined on the 2M development corpus.
For well-trained word models, the interpolation factor
Ain Eq. (22) is about 0.9, whereas for the word models
trained on the 1M corpus A is about 0.5. Generally, it can
be seen that undertrained word models are considerably
improved (best result: from perplexity 221.6 to 195.1 for
200 classes on the 1M corpus in Table 8), whereas the
well-trained 38M word models remain almost unchanged
in performance. Note the increase in perplexity for 1000
classes on the 1M training corpus in Table 5. At some
class number, even class models become undertrained.
This effect also appears in Tables 6 and 8.

Table 5: Perplexity of interpolated class and word
bigram models

| Classes || 1M | 5M | 38M |

50 263.2 | 207.0 | 166.0
100 256.3 | 204.0 | 165.3
200 252.0 | 201.3 | 164.6
500 251.0 | 197.9 | 163.5
1000 255.6 | 196.7 | 162.7

[Word || 286.3 | 216.1 [167.4 |

Table 6: Perplexity of interpolated class bigram and
word trigram models

| Classes || 1M | 5M | 38M |

50 || 208.8 | 146.0 | 96.5
100 || 204.5 | 144.0 | 96.1
200 || 202.2 | 142.9 | 95.7
500 || 201.8 | 141.5 | 95.7

1000 || 204.6 | 140.9 | 95.3

[Word [221.6 | 150.1 | 965 |

Table 7: Perplexity of interpolated class and word
trigram models

| Classes || 1M | 5M | 38M |

50 || 202.5 | 142.2 | 95.8
100 || 200.9 | 140.5 | 94.8

[Word [221.6 | 150.1 | 965 |

Table 8: Perplexity of interpolated class and word
trigram models, with classes taken from bigram
clustering

| Classes || 1M | 5M | 38M |

50 || 203.6 | 143.2 | 95.7
100 || 197.1 | 140.0 | 94.8
200 || 195.1 | 137.1 | 94.2
500 || 198.4 | 136.4 | 92.9

1000 || 204.7 | 138.3 | 92.8

[Word [221.6 | 150.1 | 965 |

8. CONCLUSIONS

Word equivalence classes are a means of building small
but effective language models, which could in some cases
improve word M—gram language models. In this paper,
we have presented an efficient implementation for bigram
clustering and an algorithm for trigram clustering.

REFERENCES

1. R. Kneser, H. Ney: “Improved Clustering
Techniques for Class—Based Statistical Language
Modelling”, Proc. European Conference on Speech
Communication and Technology, Berlin, pp. 973—
976, September 1993.

2. P.F. Brown, V.J. Della Pietra, P.V. deSouza, J.C.
Lai, R.L. Mercer: “Class—Based n—gram Models of
Natural Language”, Computational Linguistics, Vol.
18, No. 4, pp. 467-479, 1992.

3. R. Kneser, H. Ney: “Improved Backing-Off for m-
gram Language Modeling”, Proc. International Con-
ference on Acoustics, Speech, and Signal Processing,
Detroit, MI, pp. 181-184, May 1995.

4. H. Ney, U. Essen, R. Kneser: “On Structuring
Probabilistic Dependences in Stochastic Language
Modelling”, Computer Speech and Language, Vol.
8, pp. 1-38, 1994.

5. R. Rosenfeld: “Adaptive Statistical Language
Modeling: A Maximum Entropy Approach”; School
of Computer Science; Carnegie Mellon Universi-
ty, Ph.D. Thesis, Pittsburgh, PA, CMU-CS-94-138,
1994.

6. M. Generet, H. Ney, F. Wessel: “Extensions of Ab-
solute Discounting for Language Modeling”, Proc.
European Conference on Speech Communication
and Technology, Madrid, September 1995.

7. R. Mathar, D. Pfeifer: “Stochastik fir Infor-
matiker”, B.G. Teubner Verlag, Stuttgart, p. 13,
1990.

