
ALGORITHMS FOR BIGRAM AND TRIGRAM WORDCLUSTERINGSven Martin, J�org Liermann, Hermann NeyLehrstuhl f�ur Informatik VI,RWTH Aachen, University of Technology, D-52056 Aachen, GermanyABSTRACT. This paper presents and analyzes im-proved algorithms for clustering bigram and trigramword equivalence classes, and their respective results: 1)We give a detailed time complexity analysis of bigramclustering algorithms. 2) We present an improved imple-mentation of bigram clustering so that large corpora (38million words and more) can be clustered within a smallnumber of days or even hours. 3) We extend the cluster-ing approach from bigrams to trigrams. 4) We presentexperimental results on a 38 million word training corpus.1. INTRODUCTIONWord equivalence classes are a method for improving un-dertrained word M{gram language models [1], [2], [4].Words are grouped into classes, and each word belongsto only one such class. Thus, if a word pair is not seenin training, it is quite likely that the corresponding classpair is seen. For bigram and trigram class models, wehave the equationsp(wnjwn�1) = p0(wnjG(wn)) (1)�p1(G(wn)jG(wn�1))p(wnjwn�2; wn�1) = p0(wnjG(wn)) (2)�p2(G(wn)jG(wn�2);G(wn�1));where G : w ! G(w) denotes the unique class mappingfor all words w. p0(�) is the word membership probability,p1(�) is the �rst order and p2(�) the second order Markovchain probability. The probabilities are computed usingmaximum likelihood estimation, e.g. in the case of p1(�)by p1(G(wn)jG(wn�1)) = C(G(wn�1);G(wn))C(G(wn�1)) (3)with C(�) being the number of occurrences of the eventgiven in the parentheses. The problem of unseen eventsis circumvented by smoothing methods, which take awaysome probability mass from the seen events and redis-tribute it over the unseen events. The basic smoothingmethod for our class models is absolute discounting withbacking o�. See [3] and [6] for further discussion of thisissue. Word equivalence classes also considerably reducethe number of model parameters, in the bigram case fromO(V 2) for words to O(V +G2) for classes, with V as vo-cabulary size and G as number of classes. Furthermore,a linear interpolation of the M{gram class and the M{gram word models may yield a better performance thaneach model on its own.

2. CLUSTERING ALGORITHMWord equivalence classes are obtained by a clustering al-gorithm. The goal of this algorithm is to �nd a wordclass G(w) for each word w such that the perplexity ofthe class model is minimized. For both trigram and bi-gram clustering, we used an exchange (k{means{style)algorithm, which works as follows [1]:
set up initial mapping

compute initial train set perplexity

do until some stopping criterion is met

 do for each word w in vocabulary V

 remove w from class G(w)

 do for all existing classes g

 compute perplexity as if w were moved to g

 assign w to the class with the best perplexityFor initialization, we used the following method: we con-sider the most frequent G � 1 words, and each of thesewords de�nes its own class. The remaining words are as-signed to class G. To improve the perplexity, we go onestep further and move only those words whose countsare larger than a prespeci�ed threshold. The stoppingcriterion is a prespeci�ed number of iterations. Also, thealgorithm stops if no words are moved any more.3. BIGRAM CLUSTERINGThe essential aspect of the algorithm is the e�cient com-putation of the perplexity. Inserting the likelihood esti-mates (e.g. (3) for p1(�)) in the log{perplexity formulaand dropping the factor (�1=N), we arrive at [4]:Fbi = Xg2;g1 C(g2; g1) � logC(g2; g1) (4)�2 �Xg C(g) � logC(g) +Xw C(w) � logC(w)= Xg2;g1 C(g2; g1) � log C(g2; g1)C(g2) �C(g1) (5)+Xw C(w) � logC(w);where g, g1 and g2 are class indexes from 1 up to G andw is a word index from 1 up to V . C(g1; g2) is the bigramcount of class pairs (g1; g2), and C(g) is the unigramcount of class g. During the iteration, it is su�cient tocompute only the di�erences in perplexity. We consideronly those terms in the above formula which are a�ectedby moving word w from class gw to class kw. Here, we

give the update formulae for removing a word w fromclass gw:8g 6= gw : C(g; gw) := C(g; gw)� C(g;w); (6)8g 6= gw : C(gw ; g) := C(gw; g) � C(w;g); (7)C(gw; gw) := C(gw; gw) �C(gw ; w) (8)�C(w;gw) +C(w;w):This is an application of the so{called sieve formula byPoincar�e{Sylvester [7]. There are similar operations formoving w to class kw. Obviously, these count updatesand the resulting perplexity computation can be per-formed in O(G) time. The counts C(g; w) and C(w;g)are computed for each word w once it is under consider-ation. By scanning through the occurrences of the con-sidered word in the training corpus, each occurrence ofa word is visited exactly once per iteration. With G � Vexchange attempts per iteration, we obtain a time com-plexity of O(I � (N + V �G2)) (9)for the whole clustering algorithm, with N as corpuslength and I as the number of iterations.To reduce the time complexity, we use a special organi-zation of the training corpus. For each observed wordpair, we store its count. Instead of visiting each occur-rence of the considered word w in the running text, wecollect all bigram occurrences which involve w. Assum-ing a direct access array to these counts, we obtain thetime complexity O(I � (B + V �G2)); (10)with B as the number of di�erent word pairs encounteredin the training corpus. Since B is usually far smaller thanN (3.5 million di�erent bigrams vs. 38 million total bi-grams for the Wall Street Journal corpus), the CPU timeis substantially reduced. For large vocabularies, however,direct access is prohibitive due to large memory require-ments. We use lists and binary search instead. Sincethere are B/V bigrams per word on the average, the re-sulting time complexity isO(I � (B � log2(BV) + V �G2)): (11)4. TRIGRAM CLUSTERINGFor a trigram class model, the log{perplexity takes theform [4]Ftri = Xg3;g2 ;g1 C(g3; g2; g1) � logC(g3; g2; g1) (12)�Xg3;g2 C(g3; g2) � logC(g3; g2)�Xg1 C(g1) � logC(g1)+Xw C(w) � logC(w)= Xg3;g2 ;g1 C(g3; g2; g1) � log C(g3; g2; g1)C(g3; g2) �C(g1)+Xw C(w) � logC(w): (13)

To e�ciently compute the perplexity, we again exploitthe sieve formula [7]. The bigram counts are updated inthe same way as above, but for the trigram counts, weobtain:8g1; g2 6= gw :C(g1; g2; gw) := C(g1; g2; gw) �C(g1; g2; w): (14)For C(gw ; g1; g2) and C(g1; gw; g2), we have similar for-mulae.8g 6= gw :C(g; gw; gw) := C(g; gw ; gw) �C(g; gw; w) (15)�C(g;w; gw) +C(g; w;w)For C(gw; g; gw) and C(gw; gw; g), we have similar formu-lae.8g 6= gw :C(g; gw; w) := C(g; gw; w)�C(g; w;w) (16)For C(gw; g; w), C(g; w;gw), C(gw; w; g), C(w;g; gw);and C(w;gw; g), we have similar formulae.C(gw; gw ; gw) := C(gw; gw; gw)�C(w; gw; gw)(17)�C(gw; gw; w)� C(gw; w; gw)+C(gw; w;w) + C(w;gw ; w)+C(w;w; gw)� C(w;w;w)C(gw; gw; w) := C(gw ; gw; w)�C(gw ; w;w) (18)�C(w; gw; w) + C(w;w;w)For C(w; gw; gw) and C(gw ; w; gw), we have similar for-mulae.C(gw; w;w) := C(gw; w;w)�C(w;w;w) (19)For C(w; gw; w) and C(w;w;gw), we have similar formu-lae.Note that some of the counts on the left hand side ofthe above formulae also appear on the right hand side.The given formulae are only valid for unmodi�ed countson the right hand side. The computation of this is onlypossible with a time complexity of O(G2), thus resultingin a total time complexity ofO(I � (N + V �G3)): (20)Clustering for a large number of classes is computation-ally expensive. Trigram clustering was performed for upto 100 classes only. For a larger number of classes, wedid not use the clustering algorithm, but used the bigramclusters instead to de�ne the trigram class models.We can also get the counts from the word trigrams in-stead of the corpus, as before in the case of bigram clus-tering. As in the case of bigram clustering, we have touse lists and binary search. However, �nding the countsC(�; w; �) for a given w is computationally more expen-sive, and we obtain a time complexity ofO(I � (T � log2(BV) � (TB) + V 2 � log2(BV) + V �G3)); (21)with T being the number of di�erent word trigrams. Thismethod was applied to very large corpora only, for whichthe other method runs into memory problems.

5. LANGUAGE MODEL INTERPOLATIONWe use linear interpolation to combine the word trigrammodel pword(wnjwn�2; wn�1) with the class trigram mod-el pclass(wnjwn�2; wn�1):p(wnjwn�2; wn�1) = � � pword(wnjwn�2; wn�1) (22)+ (1� �) � pclass(wnjwn�2; wn�1):This method is especially suitable if none of the two mod-els is to be preferred. By allowing � 2 [0 : 1], the indi-vidual models are included as special cases for � = 1or � = 0. Thus, the interpolated model with optimal� cannot be worse than the best of the two individualmodels. The word model used is the singleton trigram asdescribed in [6].6. CORPORA AND CLUSTERING TIMESFor the evaluation of our models, we used the Wall StreetJournal task [5] with a vocabulary of 20000 words. Fromthe data bases of this task, we constructed a training cor-pus of 38 million words for clustering and event counting,a development corpus of 2 million words for smoothingand interpolation parameter estimation, and a test cor-pus of 0.3 million words. To check the model behavior fordi�erent amounts of training data, two smaller clusteringword sets were taken from of the 38 million corpus withsizes of 1 and 5 million words. The composition of the38M, 5M and 1M training corpora and of the test corpusis as described in [5].The threshold separating the words not considered formoving was estimated for the bigram clustering by clus-tering 100 classes for di�erent threshold values for 20iterations on all three training corpora and choosing thethreshold performing best on the development data. Thethreshold was 3 for the 1M, 4 for the 5M and 50 for the38M corpus. For trigram clustering, due to the CPUcosts, these thresholds were estimated less exactly. Thistype of threshold not only a�ects the perplexity of the re-sulting class model, but also decreases the CPU time, be-cause the e�ective size of the vocabulary is reduced. Forthe thresholds given above for bigram clustering, 57% ofthe vocabulary was considered for the clustering on the1M corpus, 92% on the 5M and 99% on the 38M corpus.Table 1 shows the CPU times per iteration for bigramclustering using the improved version of the algorithmon an R4000 based SGI workstation. These times arewell predicted by the time complexity formula (11).Table 1: CPU seconds per iteration for the improvedbigram clustering algorithm on an R4000 based SGIworkstationClasses 1M 5M 38M50 61 111 204100 219 377 507200 860 1488 1776500 5716 9468 104741000 26173 41832 45721The clustering times for trigram clustering are not direct-ly comparable because the clustering was performed ondi�erent machines. To give an idea of the computation

times, we mention that clustering 50 classes on the 1Mcorpus takes about two hours per iteration on an R4000based SGI workstation, whereas clustering 100 classes onthe 38M corpus takes about 10 days per iteration on thesame machine.The bigram clustering was performed until no words weremoved any more, resulting in about 20 to 30 iterations.A bigram class model was constructed after each itera-tion and, for the further experiments, we selected thatmodel which performed best on the development corpus.Due to the CPU costs for trigram clustering, such a �netuning was not possible, and only a few iterations wereperformed so that the resulting classes are not as goodas they could be. 7. RESULTSWe will present two main series of experimental results.The �rst series, Tables 2 to 4, summarizes the perplexitiesof the class models on the test corpus after parametertuning. The second series, Tables 5 to 8, shows the resultsof the interpolation of the class and word models on thetest corpus after the interpolation parameter estimation.After clustering, bigram and trigram models were con-structed from the resulting classes, and those smooth-ing parameters which performed best on the developmentcorpus were selected for the experiments reported here.Table 2 shows the measured perplexities for the bigramclass models. For 1000 classes, the same perplexity wasobtained as for the word bigram on the 1M corpus.Table 2: Class bigram perplexitiesClasses 1M 5M 38M50 456.2 428.9 420.2100 390.0 363.9 357.5200 341.2 310.3 302.3500 302.1 258.4 244.81000 285.4 231.4 211.0Word 286.3 216.1 167.4For the class trigram, we could use the trigram clusteringalgorithm for obtaining up to 100 classes. Results aresummarized in Table 3.Table 3: Class trigram perplexities with classes fromtrigram clusteringClasses 1M 5M 38M50 403.8 359.7 350.8100 370.9 298.7 277.2Word 221.6 150.1 96.5For larger numbers of classes, we must rely on the classesobtained by the bigram clustering operation. The train-ing corpora are merely used for getting the trigram classcounts. To see whether the classes obtained by the tri-gram clustering operation are any better than those ob-tained by the bigram clustering operation, we also ap-plied this procedure to the models with 50 and 100 class-es. Results are summarized in Table 4. With the excep-tion of the 100 class model clustered on the 1M corpus,

which appears to be too small for a good trigram cluster-ing with that many model parameters, the perplexities ofthe classes obtained by trigram clustering shown in Ta-ble 3 are about as good or slightly better than those ob-tained by bigram clustering. The perplexities are betterthan for bigram class models in Table 2, but still con-siderably worse than those of the word trigrams. Maybea �ner tuning of parameters improves performance as inthe case of the class bigrams.Table 4: Class trigram perplexities with classes frombigram clusteringClasses 1M 5M 38M50 410.1 373.1 359.5100 342.3 297.4 283.4200 301.5 245.6 220.0500 274.6 202.8 162.21000 263.6 183.9 134.6Word 221.6 150.1 96.5Tables 5, 6, 7 and 8 summarize the results of the in-terpolation of class and word models. The interpolationfactor was determined on the 2M development corpus.For well{trained word models, the interpolation factor� in Eq. (22) is about 0.9, whereas for the word modelstrained on the 1M corpus � is about 0.5. Generally, it canbe seen that undertrained word models are considerablyimproved (best result: from perplexity 221.6 to 195.1 for200 classes on the 1M corpus in Table 8), whereas thewell{trained 38M word models remain almost unchangedin performance. Note the increase in perplexity for 1000classes on the 1M training corpus in Table 5. At someclass number, even class models become undertrained.This e�ect also appears in Tables 6 and 8.Table 5: Perplexity of interpolated class and wordbigram modelsClasses 1M 5M 38M50 263.2 207.0 166.0100 256.3 204.0 165.3200 252.0 201.3 164.6500 251.0 197.9 163.51000 255.6 196.7 162.7Word 286.3 216.1 167.4Table 6: Perplexity of interpolated class bigram andword trigram modelsClasses 1M 5M 38M50 208.8 146.0 96.5100 204.5 144.0 96.1200 202.2 142.9 95.7500 201.8 141.5 95.71000 204.6 140.9 95.3Word 221.6 150.1 96.5

Table 7: Perplexity of interpolated class and wordtrigram modelsClasses 1M 5M 38M50 202.5 142.2 95.8100 200.9 140.5 94.8Word 221.6 150.1 96.5Table 8: Perplexity of interpolated class and wordtrigram models, with classes taken from bigramclusteringClasses 1M 5M 38M50 203.6 143.2 95.7100 197.1 140.0 94.8200 195.1 137.1 94.2500 198.4 136.4 92.91000 204.7 138.3 92.8Word 221.6 150.1 96.58. CONCLUSIONSWord equivalence classes are a means of building smallbut e�ective language models, which could in some casesimprove word M{gram language models. In this paper,we have presented an e�cient implementation for bigramclustering and an algorithm for trigram clustering.REFERENCES1. R. Kneser, H. Ney: \Improved ClusteringTechniques for Class{Based Statistical LanguageModelling", Proc. European Conference on SpeechCommunication and Technology, Berlin, pp. 973{976, September 1993.2. P.F. Brown, V.J. Della Pietra, P.V. deSouza, J.C.Lai, R.L. Mercer: \Class{Based n{gram Models ofNatural Language", Computational Linguistics, Vol.18, No. 4, pp. 467{479, 1992.3. R. Kneser, H. Ney: \Improved Backing-O� for m-gram Language Modeling", Proc. International Con-ference on Acoustics, Speech, and Signal Processing,Detroit, MI, pp. 181{184, May 1995.4. H. Ney, U. Essen, R. Kneser: \On StructuringProbabilistic Dependences in Stochastic LanguageModelling", Computer Speech and Language, Vol.8, pp. 1-38, 1994.5. R. Rosenfeld: \Adaptive Statistical LanguageModeling: A Maximum Entropy Approach", Schoolof Computer Science, Carnegie Mellon Universi-ty, Ph.D. Thesis, Pittsburgh, PA, CMU-CS-94-138,1994.6. M. Generet, H. Ney, F. Wessel: \Extensions of Ab-solute Discounting for Language Modeling", Proc.European Conference on Speech Communicationand Technology, Madrid, September 1995.7. R. Mathar, D. Pfeifer: \Stochastik f�ur Infor-matiker", B.G. Teubner Verlag, Stuttgart, p. 13,1990.

