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Abstract

This diploma thesis investigates the use of appearance-based features for the recogni-
tion of gestures using video input. Previously, work in the field of gesture recognition
usually first segmented parts of the input images — for example the hand — and
then used features calculated from this segmented input. Results in the field of object
recognition in images suggest that this intermediate segmentation step is not neces-
sary and we can instead employ features directly obtained from the input images,
so-called appearance-based features. In this work, we show that using these features
and appropriate models of image variability, we can obtain excellent results for gesture
recognition tasks. Very good results can be obtained using a downscaled image of each
video frame and tangent distance as a model of image variability. Also a new dynamic
tracking algorithm is introduced which makes its tracking decisions at the end of a
video sequence using the information of all frames. This tracking method allows for
tracking under very noisy circumstances. Finally, a new database with the German
fingerspelling alphabet was recorded which will be freely available for further research.
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Chapter 1

Introduction

This diploma thesis investigates the use of appearance-based features for the recogni-
tion of gestures using video input. Previously, work in the field of gesture recognition
usually first segmented parts of the input images — for example the hand — and
then used features calculated from this segmented input. Results in the field of object
recognition in images suggest that this intermediate segmentation step is not neces-
sary and we can instead employ features directly obtained from the input images,
so-called appearance-based features. In this work, we show that using these features
and appropriate models of image variability, we can obtain excellent results for gesture
recognition tasks. For example, on the LTI-Gesture database, very good results can
be obtained using a downscaled image of each video frame and tangent distance as a
model of image variability.

Sign language is the natural language of deaf people. Two main reasons for studying
gesture and sign language recognition are:

• to create applications to help deaf people

• to use this know-how for gestural input devices in the field of human computer
interfaces.

Developing sign language applications for deaf people can be very important, as many
of them, being not able to speak a language, are also not able to read or write a spoken
language. Ideally, a translation systems would make it possible to communicate with
deaf people. — Imagine a system for blind and deaf people ...

In human computer interfaces, one of the main advantages of using visual input is
the possibility to communicate without need for physical contact with the equipment
to be controlled (so-called “10 foot” user interfaces). This is achieved by eliminating
input devices such as joysticks, mice, and keyboards e.g. allowing the unrestricted
body to give signals to the computer through gestures such as finger pointing.

Compared to speech commands, hand gestures are advantageous in noisy environ-
ments, in situations where speech commands would be disturbing, as well as for com-
municating quantitative information and spatial relationships.

Unlike haptic interfaces, gesture recognition does not require the user to wear any
special equipment or attach any devices to his body. The gestures of the body are
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read by a camera instead of sensors attached to a device such as a data glove. Using
cameras and looking at users is a powerful technique to facilitate the human-computer
interaction.

In addition to hand and body movement, gesture recognition technology can also
be used in combination with facial and speech expressions (i.e. lip reading), or eye
movements.

Gestural input devices are in great demand today, as the growing amount of func-
tions of e.g. a television, a car, or a simple mobile phone confronts the users with new
problems. Previous approaches which added a new button or wheel for each new func-
tion on the teleguidance or the car dashboard ended in complex and no longer usable
input devices. Today’s mainstream trend goes in the contrary direction, making input
devices smaller and overloading functions: the best example might be the buttons of
a mobile phone where each button can have plenty of functions in different contexts.
Creating gestural input devices offers the possibility to extend often used devices with-
out the need of overloading functions or buttons. Intuitively usable gestures are more
easily accepted and learned by users and do not distract them by the habitual use of
the device, e.g. integrating a gesture controlled unit into a car dashboard might be
more easily controlled than searching small buttons while driving. The well known
Sony-EyeToy of Playstation is an example where such a gestural input device is al-
ready fully accepted by the users and offers new possibilities for interacting with a
game console.

The main focus in this work is set on using simple appearance-based features with
no need for complex feature extraction. Appearance-based features in combination
with hidden Markov model classifiers known from speech-recognition and newly in-
tegrated distance measures known from image and optical character recognition (e.g.
being invariant against affine transformations) are investigated. Also a new tracking
algorithm was developed which traces the best tracking path at the end of an entire
observation sequence.

Chapter 1 explains the differences between gestures and sign language and gives
a short overview of current notation system for sign language. The remainder of
this work is organized as follows: Chapter 2 gives a survey of sign language recog-
nition and human computer interfaces systems available to show what has already
been developed and to show the differences between these two fields. In Chapter 3
we introduce appearance-based features used in gesture recognition and in this work.
Chapter 4 gives a short overview of the hidden Markov model (HMM) theory. We
tried to be as general as possible in developing our methods for recognizing gestures
and focused especially on hidden Markov models (HMMs) properties and the use of
different distance measures. Especially the theory part important for this work is ex-
plained and the different distance measures and used inside the HMMs are introduced.
In Chapter 5, a new tracking algorithm based on dynamic programming techniques is
introduced. This tracking method makes its decision at the end of a sequence. Chap-
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ter 6 presents the databases used to test our gesture recognition system. Also a new
database of finger-spelling letters of German Sign Language (GSL), which was created
in the course of this work and recorded neither under clothing constraints nor under
constant lighting conditions, is presented. Chapter 7 shows the interesting results ob-
tained with appearance-based features and different distance measures or tracking on
these databases. Finally, we conclude and summarize this work in Chapter 8.

1.1 Gestures and Sign Language

A gesture is a form of non-verbal communication made with a part of the body and
used instead of verbal communication (or in combination with it). Most people use
gestures and body language in addition to words when they speak. These gestures
include acts such as pointing, one of the few gestures whose meaning varies little from
one country to the next, as well as using the hands and body to keep time with the
rhythms of speech and emphasize certain words or phrases. Most of these gestures
have no invariable or specific meaning.

A sign language is a language which uses gestures instead of sound to convey
meaning — combining hand-shapes, orientation and movement of the hands, arms or
body, facial expressions and lip-patterns. Sign languages are usually developed in deaf
communities, which include interpreters and friends and families of deaf people as well
as people who are deaf or hearing-impaired themselves.

Contrary to popular belief, sign language is not international. Wherever communi-
ties of deaf people exist, sign languages develop. As with spoken languages, these vary
from region to region. They are not completely based on the spoken language in the
country of origin. Other simple forms of signed communication have been developed
in situations where speech is not practical to speak, such as between scuba divers, in
television recording studios, in loud workplaces, or while hunting.

Sign language is a visual language and consists of 3 major components:

• finger-spelling: used to spell words letter by letter

• word level sign vocabulary: used for the majority of communication

• non-manual features: facial expressions and tongue, mouth and body position

Today three famous notation systems for gesture and sign language exist. A short
overview of these systems is given in the following sections. Figure 1.1 shows the
difference between their notation forms.
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(a) (b) (c) (d)

Figure 1.1. Some examples of the different sign language notion systems taken from
http://signwriting.org/forums/linguistics/ling001.html visited
17.12.2004: (a) a person signing“What”, (b) in Stokoe notation, (c) in SignWriting
notation, (d) in HamNoSys notation

1.2 Stokoe Notation System

According to the sign linguist Stokoe [Stokoe 80], one can represent a sign as a kind
of “chireme”, as vowels and consonants are kinds of phonemes in spoken language. He
invented a written notation for sign language in 1960 as ASL1 had no written form at
that time. Such a chireme includes three visual features:

1. DEZ (designator): hand shape or configuration of the hand involved in the
sign

2. SIG (signation): movement executed by the hands

3. TAB (tabula): location of the sign in relation to the body

By using symbols to represent the component parts of American Sign Language,
he was able to demonstrate how these parts fit together to form a linguistic structure
identical with that of spoken language. The original notation consisted of 55 symbols
in three groups, each representing one of the formational parameters of a sign: location,
hand shape, and movement (see Figure 1.2).

1.3 SignWriting Notation System

Another method to describe signs called“SignWriting”was developed in 1974 by Sutton
[Sutton 77], a dancer who had developed “DanceWriting” two years earlier, a notation
system for representing dance movements. When Sutton applied this iconic method to
recording signed languages, she realized that recording the movement is also recording

1ASL = American Sign Language
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Figure 1.2. Example of sentences in Stokoe notation taken from
http://www.signwriting.org/forums/linguistics/ling006.html, visited
21.09.2004

Figure 1.3. A selection of basic ASL SignWriting signs taken from
http://www.omniglot.com/writing/signwriting.htm, visited 21.09.2004

the language. It uses visual symbols to represent the hand shapes, movements, and
facial expressions of sign languages (see Figure 1.3).

1.4 The HamNoSys Notation System

HamNoSys [Prillwitz & Leven+ 89] was developed by a group of hearing and deaf peo-
ple as a scientific/research tool and first made publicly available in 1989. The purpose
of HamNoSys, unlike SignWriting, has never been an everyday use to communicate
(e.g. in letters) in sign language. It was designed to fit a research setting and should
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be applicable to every sign language in the world.
It consists of about 200 symbols covering the parameters of hand shape, hand con-

figuration, location and movement (cf. Stokoe Notation). The symbols are as iconic
as possible and are easily recognizable. The order of the symbols within a string is
fixed, but still it is possible to write down one and the same sign in lots of different
ways.

Hence, the transcriptions are very precise, but on the other hand also very long
and cumbersome to decipher. It is possible to transcribe facial expressions, but their
development is not quite finished yet. HamNoSys is still being improved and extended
all the time as the need arises. Figure 1.4 shows some example sentences in HamNoSys
notion.

6



Figure 1.4. Some example sentences in HamNoSys notation taken from
http://www.signwriting.org/forums/linguistics/ling007.html, visited
17.12.2004

7
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Chapter 2

State of the Art in Gesture Recognition

The research in computer gesture recognition primarily focuses on sign language recog-
nition and human-computer interaction (HCI). People frequently use gestures to com-
municate, and HCI studies usually focus on the computer input/output interface. The
researchers who use gestural input use their own definitions of gestures. These gestures
can be translated by computers into either symbolic commands or trajectory motion
commands to control their experimental systems.

In sign language the gestures are part of a visual language and well defined. The
gestures are used to communicate in form of finger-spelling, as complete words, or as
non-manual features.

Many disciplines must be combined to achieve a reliable recognition system as one
has to deal with e.g. capturing problems like varying lighting conditions, skin colored
clothes or tracking of multiple objects.

Most of the systems presented in the remainder assume constant environment vari-
ables for their systems, e.g. constant lighting conditions. The sign language recogni-
tion systems presented in Section 2.1 mostly assume persons wearing non-skin-colored
clothes with long sleeves and a fixed camera position under constant lighting condi-
tions. The systems presented in Section 2.2 are often too person-dependent and use
only gestures which exhibit great differences to be easily recognizable.

The remainder of this chapter gives an overview on systems and methods available
for gesture and sign language recognition. Results from [Rigoll & Kosmala+ 98] and
[Pelkmann 99] are also given in Chapter 7 in comparison to the results obtained in
this work.

2.1 Related Work in the Context of Sign Language

One of the first working real-time sign language recognition systems was developed
by Starner et. al [Starner & Pentland 95]. Their HMM-based system works without
explicitly modeling the fingers and recognizes sentence level American Sign Language.
The tracking module (see also [Wren & Azarbayejani+ 97]) can be used with or with-
out colored gloves, where the resultant shape, orientation and trajectory information
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is input to an HMM for recognition of the signed words. With a 40 word lexicon they
achieve an error rate of 8 % for the skin color tracking case.

The idea of an automatic sign language recognition system using subunits rather
than models for whole signs was presented in [Bauer & Kraiss 02]. The advantage of
such a system will be a future reduction of necessary training material and simplified
enlargement of the existing vocabulary. Their system is able to detect sign subunit
boundaries automatically by a so called fenomic model, which is completely data
driven. The system was trained and tested by one person and thus is highly person
dependent.

[Triesch & von der Malsburg 02] presented a system for person-independent classi-
fication of hand postures in grayscale images against complex backgrounds in video
images. They use the elastic bunch graph matching method to model variance in hand
posture appearance between different subjects and variance in backgrounds. Their lo-
cal image descriptions are based on a wavelet transform with complex Gabor-based
kernels.

[Bowden & Windridge+ 04] present in their paper a two-stage classification pro-
cedure where an initial classification stage extracts a high level description of hand
shape and motion. A second stage of classification is then used to model the tempo-
ral transitions of individual signs using a classifier bank of Markov chains combined
with Independent Component Analysis. The system performs well with single instance
training.

[Wu & Chiu+ 04] propose an error-tolerant approach to retrieving sign words from
a Taiwanese Sign Language database in their paper. The database is tagged with
visual gesture features, which are defined in terms of the visual characteristics of sign
gestures (see also [Stokoe 80]). The maximum a posteriori estimation is exploited
to retrieve the most likely sign word given the input feature sequence and an error
tolerant mechanism based on mutual information criterion is proposed to retrieve a
sign word of interest efficiently and robustly.

2.2 Related Work in the Context of Human Computer
Interaction

Many interface systems have been developed for intelligent room systems. For example
the ALIVE system [Maes & Darrell+ 97] allows unencumbered full-body interaction
between a human participant and a rich graphical world inhabited by autonomous
agents. PFINDER [Wren & Azarbayejani+ 97], a real-time system for tracking people
in arbitrarily complex but single-person, fixed-camera situations and interpreting their
behavior, is a descendant of the vision routines originally developed for the ALIVE
system.

[Freeman & Anderson+ 98] used computer vision techniques to find the user’s open
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hand across a room. This was used to control a television such as volume change or
switching channels.

[Black & Jepson 98] extended the condensation algorithm by [Isard & Blake 98] to
recognize gestures, which where modeled as temporal trajectories of some estimated
parameters over time. The condensation algorithm is used to incrementally match the
gesture models to the input data. They combined Dynamic Time Warping and Hidden
Markov Model properties for recognition and matching of the model trajectories to
the input trajectories. Their system cannot distinguish between different shapes as it
recognizes only trajectories.

[Rigoll & Kosmala+ 98] presented a person-independent real-time system for gesture
recognition. The system uses global motion features, extracted from each difference
image of the image sequence, and HMMs as a statistical classifier. These HMMs are
trained on a database of 24 isolated gestures, performed by 14 different people. An
error rate of 7.1% is achieved for a person and background independent recognition,
but the system can only distinguish between gestures, which can be characterized by
their movement.

[Little & Boyd 98] developed a vision system that can recognize people by the way
they walk. The system computes optical flow for an image sequence of a person
walking, and then characterizes the shape of the motion with a set of sinusoidally-
varying scalars. Feature vectors composed of the phases of the sinusoids are able to
discriminate among people.

[Pelkmann 99] extended a gesture recognition system to control a car-navigation
system, where one infrared camera is installed inside a car to capture the gestures.
The system uses Hidden Markov Models as statistical classifiers and is trained on
a set of 14 isolated gestures using several geometric features such as compactness,
Hu-Moments and global motion as gesture features. It achieved an error rate of 4.5%.

[Bobick & Davis 01] presented a view-based approach to the representation and
recognition of human movement using temporal templates, which are static vector-
images where the vector value at each point is a function of the motion properties at
the corresponding spatial location in an image sequence. They explore two versions of
those templates (motion-energy- and motion-history-images) and develop a recogni-
tion method matching temporal templates against stored instances of views of known
actions.

Sony developed the USB EyeToy camera [Sony 04], a commercial system, aimed
at the player and plugged into a PlayStation(R)2 computer entertainment system,
the gamer enters the short calibration process before beginning the fast-paced, active
gameplay. The camera uses a combination of advanced facial and motion tracking
technology to lock onto the player and capture movement to enable gamers to become
physically part of the game. The gamer’s movements are then used to control steering,
jumping, ducking, grinding, acceleration, braking, and tricks, as they interact with
the environment and avoid obstacles. Sony has sold more than 4 million EyeToy units
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worldwide since its release.
[Wilson & Oliver 03] created a stereo-vision based system and demonstrate their

algorithm in combination with speech recognition to perform several basic window
management tasks. They use a fast stereo vision algorithm for recognizing hand po-
sitions and gestures. Their system uses two inexpensive video cameras to extract
depth information. This depth information enhances automatic object detection and
tracking robustness and can be used also in applications (e.g. painting programs).

[Zobl & Nieschulz+ 04] present the gesture part of their multimodal system, which
consists of a gesture-optimized user interface, a real time gesture recognition system
and an adaptive help system for gesture input. The system can deal with eleven
dynamic hand gestures classes and four hand poses. They use an adaptive background
to segment and threshold the images. After filtering those images with a forearm filter,
they calculate moment based features like area, centroids and Hu-Moments [Hu 62]
(i.e. trajectory and hand form). The system was trained and tested by using data of
one person and thus is highly person dependent.

[Morrison & McKenna 04] compare trajectory-based and history-based methods for
visual recognition of gestures. They use skin colour as a common visual cue, recognition
methods based on hidden Markov models, moment features and normalised template
matching. They propose skin history images as a useful history-based representation
and report results on a database of sixty gestures.
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Chapter 3

Features for Appearance-Based Gesture
Recognition

Many research groups in gesture recognition use quite complex methods to recognize
the gestures, like fingertip detection, calculating the angles between the fingers or
matching of 3D-models. They split up their systems into several subsystems. This
approach has the disadvantage that a possible error is propagated through the whole
system when the parent system makes a wrong decision.

Often used features for gesture recognition are:

• Color: brightness, skin color models, ...

• Texture: Gabor-filters, gradients, ...

• Shape: Active Shapes, Active Contour Models, ...

• Motion: centroids, difference images, optical flow, ...

A short survey on features for the visual analysis of human movement can be found
in [Gavrila 99]. Spatio-temporal segmentation of video sequences is also an often
used and essential step in video analysis. It attempts to extract backgrounds and
independent objects in the dynamic scenes captured in the sequences. A survey can
be found in [Megret & DeMenthon 02].

In an appearance-based approach one does not create such modular systems which
have to extract features, even though all the information one needs to recognize a
gesture is the image itself — segmenting images is very difficult and never perfect.

As we wanted to create a system which is person- and background-independent, we
specially analyzed difference images and centroid features. In Section 3.1, we present
and discuss different image-subtracting methods and features and in Section 3.2 some
centroid features.

3.1 Image Features

In an appearance-based approach the image itself and transformations (distortion,
filtering, sub-sampling, ...) of the image are usually used as features.
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Figure 3.1. Original infrared-image sequence of the gesture“Daumen Rechts” seen from car
interior roof

In this thesis, we will denote an original image X in a sequence at time t = 1, ..., T
by Xt and by Xt(x, y) the pixel value at the position (x, y). Any transformed image
will be denoted by X̃.

Although this notation is slightly overloaded, it will be clear from the context which
transformation is being used.

3.1.1 Original Images

When working for example with gray valued images (e.g. infrared-images like in Fig-
ure 3.1), a (thresholded) original image can be used as a feature.

This allows a simple description of the gesture without any movement properties as
one image feature at time t contains only information about this time frame. Also a
performer (in front of a camera) should wear the same clothing as seen in the training
process.

If more exact information is needed, e.g. to distinguish between gestures which differ
only in one finger, the area of interest with the signing hand can be extracted and used
as a feature with higher resolution (see tracking in Chapter 5).

Using original image sequences as feature without any thresholding or tracking can
already lead to very good results (see Chapter 7). Another motivation to use this
feature is that nearest neighbour classifiers perform very well in a number of image
recognition cases by simply comparing the original images as they are.

Other often useful features are the spatial derivative images of such an original
image sequence as in Figure 3.2. They allow to detect important image features such
as fingers or fingertips which then appear as edges.

3.1.2 Difference Images

Calculating difference images is one of the simplest methods to detect motion in an
image sequence.

Motion is a very important feature in image sequences, which demonstrates us the
relation between local properties and time variation. This method is fast and the
optical flow in the motion field can be used in further processing steps and applications.
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Figure 3.2. Spatial derivative image sequence of the gesture“Five”using a Sobel filter which
detects edges and suppresses background. The first row uses a vertical Sobel filter so
that the fingertips appear as short dark edges. The second row uses a horizontal
Sobel filter so that the fingers appear as longer dark and light edges. The last row
uses a Sobel filter so that the hand shape appears as light edges.

Common applications of image differencing include object tracking [Yang & Levine 92],
or intruder and vehicle surveillance systems [Koller & Weber+ 94]. There are also ex-
amples of its use for analysing satellite images [Singh 89] to measure land erosion,
deforestation, urban growth and crop development. Other applications are motion de-
tection for gait analysis [Little & Boyd 98], data compression (e.g. MPEG), 3D-scene
reconstruction, traffic control, or analysing medical images to measure cell distribution
[Knoll & Brinkley+ 85].

A difference calculation usually represents a first derivative in movement direction
of the objects whereas the gradients are perpendicular to the movement direction.

For some applications these difference images are sufficient, but they are very sus-
ceptible to noise, changes in the lighting conditions or camera position because these
transformations also lead to an intensity change in the difference image. On the other
hand not every movement results in a image change, e.g. difference images of homo-
geneous surfaces.

The use of temporal data is mostly based on the assumption of a static background
and a fixed camera position. A good survey on these assumptions and recognition
systems can be found in [Moeslund & Granum 01].

Subtraction is widely used by simply subtracting the previous image from the current
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Figure 3.3. Absolute difference sequence of the gesture“Daumen Rechts”

image in a pixel-by-pixel fashion, and the use of three consecutive frames instead of
two is an extended version [Haritaoglu & Harwood+ 98].

Also the use of background subtraction is very popular, and a more advanced
version is to update the background image during processing but using this tech-
nique the system has to be initialized before recognizing any gesture. Kim et al.
[Kim & Chalidabhongse+ 04] models the background using quantization/clustering
techniques and a comparison of this technique and other background subtraction tech-
niques are presented.

One of the research topics of this thesis is to investigate if different subtraction
methods play a role in the recognition of gestures. We analysed three methods for
subtracting images: absolute difference, first derivative and second derivative.

Absolute Difference

The absolute difference image X̃t corresponding to the original image Xt is calculated
as follows:

X̃t(x, y) = |Xt−1(x, y)−Xt(x, y)|+ |Xt(x, y)−Xt+1(x, y)| (3.1)

This feature allows to detect shape and motion, but not the direction of the motion.
Figure 3.3 shows five absolute difference frames of the gesture “Daumen Rechts”where
the right hand with extended thumb is moving to the right inside a car, i.e. to the top
of the image.

First Derivative

The first time derivative difference image X̃t corresponding to the original image Xt

is calculated as follows:

X̃t(x, y) = Xt+1(x, y)−Xt−1(x, y) (3.2)

This feature allows to detect shape, motion, and the direction of motion in each frame
disregarding the current frame Xt.

Changes in the number of subtraction images or the temporal distance between
them influences for example the bounding-box tracking (see Section 5.1): with normal
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Figure 3.4. First derivative difference sequence of the gesture“Daumen Rechts”: the first row

shows the first time derivative sequence eXt, the second row shows the negative parteX−
t and the third row shows the positive part eX+

t

difference function t − (t + 1) worse results are obtained than with first derivative
(t+1)−(t−1) function. On the other hand using t−(t+1) can improve the error rate
obtained with the COG-features presented in Section 3.2 on the DUISBURG-Gesture
database (see Section 6.2) from 13% to 10%.

Additionally, this difference image can be split into a negative and positive difference
image as follows:

X̃−
t (x, y) = |X̃t(x, y)|, if X̃t(x, y) < 0, otherwise 0

X̃+
t (x, y) = X̃t(x, y), if X̃t(x, y) > 0, otherwise 0

(3.3)

Figure 3.4 shows the same sequence as in Figure 3.3 but calculated with the first
derivative difference method.

Thresholding the obtained time difference image by an appropriate value can reduce
noise which can e.g. emerge from camera noise. This can also be helpful for tracking
but the results from Section 7.1.3 show that the outcome of thresholding the difference
images results in a loss of features, too.

Second Derivative

The second time derivative difference image X̃t corresponding to the original image
Xt is calculated as follows:

X̃t(x, y) = Xt−1(x, y)− 2 ·Xt(x, y) + Xt+1(x, y) (3.4)
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Figure 3.5. Second derivative difference sequence of the gesture“Daumen Rechts”

This feature allows to detect motion and the direction of motion in each frame, taking
into account the current frame Xt. Also this difference image can be split into a
negative and positive difference image.

Figure 3.5 shows the same sequence as in Figure 3.3 but calculated with the second
derivative difference method.

3.1.3 Skin Color Images

The skin color model used in this work is based on the Compaq Cambridge Research
Lab image-database presented in [Jones & Rehg 98] and [Jones & Rehg 02]. The skin
color probability histograms were generated from 3077 pictures containing masked skin
regions and 6286 pictures not containing skin, i.e. from a dataset of nearly 1 billion
labelled pixels.

The probability s of a specified color c being skin color is calculated according to
the Bayes formula:

p(s|c) =
p(c|s) · p(s)

p(c|s) · p(s) + p(c|s̄) · p(s̄)
(3.5)

where c is a representation of the RGB of the image at a specific position, p(s) is
the overall skin probability and p(s̄) := 1 − p(s). The probabilities p(c|s) and p(c|s̄)
are read from the given skin- and non-skin color models which were estimated from a
larger collection of pictures.

Skin probability images denoted as S were created according to their skin probability
maps. Therefrom one can also segment the original image X by its own skin color
probability where Tp is a suitable skin color probability threshold:

X(x, y) =

{
S(x, y) if S(x, y) > Tp

0 otherwise
(3.6)

Applying a Gaussian filter on the skin color probability map before segmenting
(thresholding) the original image can improve the segmentation as gaps in contiguous
skin regions are reduced (smoothed). Instead of a fixed threshold, the segmentation
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Figure 3.6. Example of three different sigmoid functions with α = 10, 20, 30 and Tp = 0.5
which improve the segmentation of original images with skin color probability maps

can be improved once again by using a sigmoid function like:

X(x, y) =

{
1

1+exp(−α·(S(x,y)−Tp)) if S(x, y) > Tp

0 otherwise
(3.7)

Some sigmoid functions usable for skin color segmentation are shown in Figure 3.6.

Figure 3.7 shows the differences between normal skin color probability maps and
Gaussian filtered skin color probability maps with their thresholding results. One can
see that the original image thresholded by a sigmoid function with a smoothed skin
color probability map has less artifacts and gaps.

These Gaussian and sigmoid smoothing functions to segment skin regions are not
necessarily the optimal methods and many alternative algorithms have been suggested
(e.g. [Raja & McKenna+ 98], [Sigal & Sclaroff+ 00] or [Zhu & Yang+ 00]).
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Figure 3.7. Skin color segmentation: the first row shows the skin color probability map and
the original image thresholded by a fixed value, the second row shows the skin color
probability map modified by a Gaussian filter and the original image thresholded by a
fixed value, the third row the same skin color probability map but the original image
thresholded by a sigmoid function. The original image thresholded by a sigmoid
function with a smoothed skin color probability map has less artifacts and gaps.

Figure 3.8 shows some examples of possible features derived from skin color proba-
bility maps.

3.1.4 Energy and History Images

The notions motion-energy-image (MEI) and motion-history-image (MHI) were intro-
duced by [Bobick & Davis 01]. The basic idea is to construct a vector-image that can
be matched against stored representations of known movements. This image is used
as a temporal template.

A binary MEI Eτ (x, y) is defined as follows:

Eτ (x, y, t) =
τ−1⋃
i=0

X̃t−i(x, y) (3.8)
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Figure 3.8. Skin color image features: original, skin probability, 1st time derivative of skin

probability, original thresholded by skin probability and 1st time derivative of original
thresholded by skin probability

The duration τ is critical in defining the temporal extent of a movement and they
derive a backward-looking (in time) algorithm that dynamically searches over a range
of τ in recognition. Thus a MEI describes where motion occurs.

To represent how (as opposed to where) motion in the image is moving, a motion-
history image (MHI) is formed. In an MHI Hτ , pixel intensity is a function of the
temporal history of motion at that point and τ is used as a simple replacement and
decay operator (with 1 ≤ τ ≤ N for a sequence of length N):

Hτ (x, y) =

{
τ if X̃t(x, y) > T0

max(0,Hτ (x, y, t− 1)− 1) otherwise
(3.9)

The result is a scalar-valued image where more recently moving pixels are brighter.
Note that the MEI can be generated by thresholding the MHI above zero. Figure 3.9
shows a key frame with its corresponding MHI and MEI.

Skin history image (SHI) features are an extension of the MHI and were pre-
sented by [Morrison & McKenna 04]. Analogously to the motion history image of
[Bobick & Davis 01] a skin history image is defined using a replacement and decay
factor:

Hτ (x, y) =

{
τ if St(x, y) > Tp

max(0,Hτ (x, y, t− 1)− 1) otherwise
(3.10)

This results in a scalar-valued image in which pixels that are currently skin coloured are
brightest, pixels that have not been skin coloured for some time are darker and pixels
that have never been skin coloured during the last τ frames are black. Figure 3.10
shows a key frame with his corresponding SHI and SEI.
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(a) (b) (c)

Figure 3.9. Motion energy and history image examples on the DUISBURG-Gesture database:
the original key frame (a) at time t = 47 of the gesture“Round-Clockwise”with the
corresponding motion-history-image (b) and motion-energy-image (c)

(a) (b) (c)

Figure 3.10. Skin energy and history image examples on the i6-Gesture database: the
original key frame (a) at time t = 44 of the gesture“J”with the corresponding
skin-history-image (b) and skin-energy-image (c)

3.2 Centroid Features

The center of gravity (COG) is a common feature to trace the movement path of a
gesture: e.g. the difference between two consecutive COGs provides information about
the movement speed and direction.

[Rigoll & Kosmala+ 98] also analyzed other centroid features with which they were
able to differentiate between 24 dynamic gestures (see Section 6.2).

They analyzed the following centroid features, where X̃t is an ordinary time deriva-
tive image Xt −Xt−1:

• the center of gravity in x direction

Mx
t =

∑
x,y |x · X̃t(x, y)|∑

x,y |X̃t(x, y)|
(3.11)
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• the center of gravity in y direction

My
t =

∑
x,y |y · X̃t(x, y)|∑

x,y |X̃t(x, y)|
(3.12)

• the mean absolute deviation from the center of gravity in x direction

Ax
t =

∑
x,y |(Mx

t − x) · X̃t(x, y)|∑
x,y |X̃t(x, y)|

(3.13)

• the mean absolute deviation from the center of gravity in y direction

Ay
t =

∑
x,y |(M

y
t − y) · X̃t(x, y)|∑

x,y |X̃t(x, y)|
(3.14)

• the positive center of gravity in x direction

Mx+

t =

∑
x,y| eXt(x,y)>0

|x · X̃t(x, y)|∑
x,y| eXt(x,y)>0

|X̃t(x, y)|
(3.15)

• the positive center of gravity in y direction

My+

t =

∑
x,y| eXt(x,y)>0

|y · X̃t(x, y)|∑
x,y| eXt(x,y)>0

|X̃t(x, y)|
(3.16)

• the negative center of gravity in x direction

Mx−
t =

∑
x,y| eXt(x,y)<0

|x · X̃t(x, y)|∑
x,y| eXt(x,y)<0

|X̃t(x, y)|
(3.17)

• the negative center of gravity in y direction

My−

t =

∑
x,y| eXt(x,y)<0

|y · X̃t(x, y)|∑
x,y| eXt(x,y)<0

|X̃t(x, y)|
(3.18)

• the distance between the positive and negative center of gravity in x direction

dMx
t = Mx+

t −Mx−
t ; (3.19)
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(a) (b) (c)

Figure 3.11. Some examples of the centroid features on the DUISBURG-Gesture database,
where a green circle means the positive COG, a yellow circle the COG and a red
circle the negative COG: (a) Centroids of one frame of gesture“To-Top”, (b)
Centroids of one frame of gesture“Round-Counterclockwise”, (c) Centroids of one
frame of gesture“To-Right”

• the distance between the positive and negative center of gravity in y direction

dMy
t = My+

t −My−

t ; (3.20)

• the overall intensity of motion

Gt =
∑
x,y

|X̃t(x, y)| (3.21)

An error rate of 7.1 % (with hold out method) was achieved by [Rigoll & Kosmala+ 98]
on the DUISBURG-Gesture database with the seven features (3.11), (3.12), (3.13),
(3.14), (3.19), (3.20), and (3.21). In the following, this feature set will be called
“COG-features”.

Figure 3.11 shows a difference image with an overlayed feature vector.
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Chapter 4

Hidden Markov Models

The ability of Hidden Markov models (HMMs) to compensate time and amplitude
variations has been proven for speech recognition [Jelinek 98], gesture recognition
[Schlenzig & Hunter+ 94], [Pavlovic & Sharma+ 97], [Bobick & Wilson 97], sign lan-
guage [Starner & Weaver+ 98], [Vogler & Metaxas 01], and human actions like walk-
ing or acrobatic [Brand & Oliver+ 97], [Moore & Essa 02], [Nguyen & Bui+ 03].

Hidden Markov models have a number of parameters, whose values are set to best
explain training patterns for the known category. Test patterns are classified by the
model that has the highest posterior probability, i.e. that best explains the test pattern
[Duda & Hart+ 01].

During the last 10 years many research groups have used HMMs in gesture recog-
nition [Yamato & Ohya+ 92], [Darrell & Pentland 93], [Schlenzig & Hunter+ 94],
[Wilson & Bobick 95], [Yang & Xu+ 97], [Orio 99], [Wilson & Bobick 00],
[Bretzner & Laptev+ 01], [Starner & Leibe+ 03]. Instead of words or phonemes, as in
speech recognition, we have to consider gestures in this case.

In this work, we considered only whole gestures for models as opposed to speech
recognition, where most of the speech recognition systems work on phoneme basis.
This can be problematic when extending a corpus, because each time a word is added
to the corpus, training material has to be added in order to train the according model.
[Bauer & Kraiss 02] made experiments with HMMs using self-organizing subunits.

Recognizing sign language is much more complicated than recognizing gestures,
that is why we decided to use whole word models. We focused especially on distance
measures being invariant against slight affine transformations or distortions.

In Section 4.1 we present an overview of the theory of the HMMs and in Section 4.2
we present an overview on the distance measures.

4.1 The Theory of Hidden Markov Models

Problems that have an inherent temporality (a process that unfolds in time) may have
states at time t that are influenced directly by a state at t− 1. The idea of a HMM is
to represent a signal by a state of a stochastic finite state machine. A more detailed
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description can be found in [Jelinek 98], and an often cited tutorial on HMM can be
found in [Rabiner 89].

To classify an observation sequence XT
1 , we use the Bayesian decision rule:

XT
1 −→ r(XT

1 ) = argmax
k

{
p(k|XT

1 )
}

= argmax
k

{
p(XT

1 , k)
}

= argmax
k

{
p(k) · p(XT

1 |k)
}

(4.1)

where XT
1 is a sequence with images X1, ..., Xt, ..., XT . Here, p(k) is the a priori

probability of class k, p(XT
1 |k) is the class conditional probability for the observation

XT
1 given class k and r(XT

1 ) is the decision of the classifier. This decision rule is
known to be optimal with respect to the expected number of classification errors if the
required distributions are known [Duda & Hart+ 01].

The class conditional probability of this observation is then defined using an HMM
as follows:

p(XT
1 |k) =

∑
sT
1

p(XT
1 , sT

1 |k) (4.2)

p(XT
1 , sT

1 |k) =
T∏

t=1

p(Xt, st|Xt−1
1 , st−1

1 , k) (4.3)

where sT
1 is a time sequence of the states s1, ..., st, ..., sT .

We assume now that the probability p(Xt, st|Xt−1
1 , st−1

1 , k) depends only on the
abstract states s = s1, ..., sT of the gesture classes k (hidden: not observable). Now
we can simplify (4.3) as follows:

p(Xt, st|Xt−1
1 , st−1

1 , k) = p(Xt, st|st−1
1 , k) (4.4)

Another assumption is that the transition probabilities only depend on the prede-
cessor state and that the emission probabilities depend on the reached state:

p(Xt, st|st−1
1 , k) = p(Xt, st|st−1, k)

= p(st|st−1, k)︸ ︷︷ ︸
Transition probability

· p(Xt|st, k)︸ ︷︷ ︸
Emission probability

(4.5)

The transition probability p(sj |si, k) = aij is the time-independent probability of
having state sj at any time t given that the state at time t − 1 was si. There is no
requirement that the transition probabilities are symmetric and a particular state may
be visited in succession.
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Figure 4.1. Different HMM topology examples taken from [Ney 04] where the discrete states
s are represented by nodes and the transition probabilities by links: (a)
(0,1,2)-standard model, (b) model with long skips and (c) model with empty
transitions (without observations)

We only used linear models in this work, e.g. the 0-1 model and the 0-1-2 model.
The 0-1 model allows only loop and forward transitions whereas the 0-1-2 model ad-
ditionally allows skip transitions. Figure 4.1 shows some examples of different HMM
topologies.

In any state st we have a probability of emitting a particular visible state Xt, and
we denote this emission probability by p(Xt|st, k) = bts.

Making these two assumptions we pass from a “First-order Markov model” to a
“First-order hidden Markov model”, because we have access to the visible states only,
while the states st are unobservable and by inserting (4.5) in (4.2), we finally have:

p(XT
1 |k) =

∑
sT
1

T∏
t=1

p(st|st−1, k) · p(Xt|st, k)

=
∑
sT
1

T∏
t=1

p(Xt, st|st−1, k)

∼= max
sT
1

{
T∏

t=1

p(st|st−1, k) · p(Xt|st, k)

}
(4.6)

However, as neither p(k) nor p(XT
1 |k) are known in practical situations, it is neces-

sary to choose models for the respective distributions and estimate their parameters
using training data. The class conditional probabilities are modeled using Laplacian
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mixture densities (LMD), Gaussian mixture densities (GMD) or kernel densities (KD)
in the experiments presented later.

The latter can be regarded as an extreme case of the mixture density model, where
each training sample is interpreted as the center of a Gaussian distribution. A Gaussian
mixture is defined as a linear combination of Gaussian component densities, which can
(in principal) approximate any density function with arbitrary precision, even if only
component densities with diagonal covariance matrices are used.

The observations belonging to a state s of a class k vary statistically and e.g. Gaus-
sian or Laplacian distributions can be used to model these variations [Ney 99]. For a
Gaussian distribution N(µ, σ) we have:

p(Xtd|st, k) =
1√

2πσ2
stkd

· exp

(
−1

2

(
Xtd − µstd

σstkd

)2
)

(4.7)

where Xtd component of the feature image X at time t, µstd mean and σ2
stkd variance.

To get the overall distribution for the image Xt = [Xt1, ..., Xtd, ..., XtD] of dimensions
D one has to multiply all components d = 1, ..., D:

p(Xt|st, k) =
D∏

d=1

p(Xtd|st, k) (4.8)

When assuming statistical independence of the components, the overall distribution
is calculated as follows:

p(Xt|st, k) =
D∏

d=1

p(Xtd|st, k)

=
1

D∏
d=1

√
2πσ2

stkd

· exp

(
−1

2

D∑
d=1

(
Xtd − µstd

σstkd

)2
)

(4.9)

The negative logarithm of p(Xt|st, k) can be interpreted as a distance d(p(Xt|st, k))
and is used as emission score:

− log(p(Xt|st, k)) =
1
2


D∑

d=1

((
Xtd − µstd

σd

)2

︸ ︷︷ ︸
distance

+ log(2πσ2
d)︸ ︷︷ ︸

normalization factor

)(4.10)

Often the variances are pooled over s and k, e.g. σstkd = σd = const(s, k) is often
used in image recognition as the image values all describe a similar measurement (of
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brightness). Variance thresholding, i.e. σd ≥ σ0 also is an important issue and can have
high impact on the distances. This also turns out to be true for gesture recognition
as shown in the results presented in Section 7.1.1. Using pooling, σd only depends on
the vector component and is the same for all states and classes. This results in:

d(p(Xt|st, k)) =
1
2

(
D∑

d=1

((
Xtd − µstd

σd

)2

+ const(s, k)

))
(4.11)

Using a Laplacian distribution L(µ, σ) we have the following equations:

p(Xt|st, k) =
1

D∏
d=1

2σstkd

· exp

(
−1

2

D∑
d=1

∣∣∣∣Xtd − µstd

σstkd

∣∣∣∣
)

(4.12)

− log(p(Xt|st, k)) =
D∑

d=1

(∣∣∣∣Xtd − µstd

σstkd

∣∣∣∣+ log(2σstkd)
)

(4.13)

where Xtd a vector component of the feature image X at time t represented as a feature
vector, µstd mean and σstkd variance.

Multimodal distributions are well modelled with mixture densities. In a typical
case a weighted sum of Gaussian of Laplacian densities is used where each centre is
identified with a unimodal density.

p(Xt|st, k) =
L(st,k)∑

l=1

p(Xt, l|st, k) (4.14)

p(Xt, l|st, k) = p(l|st, k) · p(Xt|st, k, l) (4.15)

where L(st.k) is the number of densities depending on state st and class k, p(Xt|st, k)
the multimodal distribution of state st from class k, p(Xt|st, k, l) unimodal distribution
for density l of state st from class k and p(l|st, k) a mixture weight with normalization∑

l p(l|st, k) = 1. The number L(st, w) of component densities is kept constant.
Figure 4.2 shows the mean images for each state in the HMM of the gesture “Stop”

obtained with difference features which shows the fast waving movement of the hand.
Each image represents the trained mean values µ for one state s of a gesture class k
obtained for a Gaussian kernel density with squared Euclidian distance.

Figure 4.3 shows two different alignments of the same gesture using a best score
alignment of the HMM and a forced alignment to the correct model. (a) shows the
alignment for the gesture “Two” which obtained the best score for gesture “Three”,
i.e. which was classified wrong. The upper row represents the trained mean images µ,
the lower row an observation XT

1 . All images in the lower row are assigned to mean
images in the upper row, but not every state was assigned to, e.g. state s3 was not
assigned to and all the observations X4, .., X14 were assigned to state s4. Figure 4.4
shows their corresponding trellis diagrams.
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Figure 4.2. Mean images for each of the states obtained with 1st difference feature in the
HMM of the gesture“Stop”

4.2 Distance Measures for the Emission Probabilities

In each state st of a HMM a distance has to be calculated. When working with
image sequences, we have to calculate a distance between two images, e.g. we have to
compare the current observation image Xt (or any transformed image X̃t) with the
mean image µst at this state. Simply comparing the pixel values is quite often used in
object recognition but different methods have been proposed to do this. An overview
on methods for retrieving and comparing images can be found in [Deselaers 03].

One of the main topics in this diploma thesis is the use of different distance measures
inside the HMM’s emission probabilities. As in character or image recognition we
want to analyze if transformation independent distance measures could improve the
recognition performance.

When calculating distances, thresholding the distance results by min(d(Xt, µ), d0)
with d0 between 5% or 10% of the maximum distance can improve recognition results
[Keysers & Dahmen+ 03].

Creating virtual data by rotating the images by ±α degree can also improve recogni-
tion results [Dahmen & Keysers+ 01]: when calculating a distance d(Xt, µst) between
an observation Xt and µst , the virtual data set R(Xt) = {X−α

t , X0
t , X+α

t } is created
and the image from R(Xt) with the smallest distance to the µst is chosen.
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(a) (b)

Figure 4.3. Path alignment of the gesture“Two“, where the upper row are the state images
and the lower row the observation images: (a) wrong classification against the
gesture“Three” (path with the best score), (b) forced alignment to the gesture
“Two”(path with wors score)
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(a)

(b)

Figure 4.4. Trellis diagram of the alignments, where the darkness of the points corresponds
to the emission probability at this state: (a) shows the trellis of the winner
alignment, (b) shows the trellis of the forced alignment

4.2.1 Minkowski Distances

If we have to compare two images Xt = [Xt1, ..., Xtd, ..., XtD] and
µst = [µst1, ..., µstd, ..., µstD] in a D-dimensional space, probably the most common
distance measures are the ρ-Minkowski distances:

dρ(Xt, µst) =

(
D∑

d=1

|Xtd − µstd|ρ
)1/ρ

(4.16)

where ρ = 1 gives us the Manhattan distance and ρ = 2 the Euclidian distance.
Usually normalized distance measures are used, e.g. when using Laplace or Gaussian
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distributions, for example:

L1-norm := d1(Xt, µst) =
D∑

d=1

∣∣∣∣Xtd − µstd

σd

∣∣∣∣ (4.17)

squared Euclidian := d2(Xt, µst) =
D∑

d=1

(
Xtd − µstd

σd

)2

(4.18)

The Euclidian distance has been successfully used e.g. in optical character and object
recognition and has been extended by different methods [Uchida & Sakoe 03].

4.2.2 Tangent Distance

As the Euclidian distance does not account for any image transformation (such as
the affine transformations scaling, translation and rotation) if they are not part of
the training corpus, the tangent distance (introduced by [Simard & Le Cun+ 98]) as
described in [Keysers & Macherey+ 01] is one approach to incorporate invariance with
respect to certain transformations into a classification system. Here, invariant means
that image transformations that do not change the class of the image should not have
a large impact on the distance between the images. A more detailed description can
be found in [Keysers & Macherey+ 04] and application in medical image classification
can be found in [Keysers & Dahmen+ 03].

Let X ∈ RD be a pattern and T (X, α) denote a transformation of X that depends
on a parameter L-tuple α ∈ RL. We assume that T does not change class membership
(for small α). The manifold of all transformed patterns MX = {T (X, α) : α ∈ RL} ⊂
RD now offers new possibilities for distance calculations. The distance between two
patterns X and µ can be defined as the minimum distance between the two manifolds
MX and Mµ, which is truly invariant with respect to the regarded transformations:

dT (X, µ) = min
α,β∈RL

||T (X, α)− T (µ, β)||2 (4.19)

The distance calculation between these manifolds is a hard non-linear optimization
problem for which it is necessary to find faster techniques. In this case optimization
is done using a tangent subspace approximation M̃. This subspace is spanned by a
set of tangent vectors X l that are the partial derivatives of the transformation T with
respect to the parameters αl. Thus, the transformation T (X, α) can be approximated
using a Taylor expansion around α = 0. The set of points consisting of all linear
combinations of the tangent vectors X l in the point X forms the tangent subspace
M̃X . This is a first-order approximation of MX .

The use of linear approximation allows to calculate the distances as a solution of a
least squares problem or projections into subspaces. Both are computationally inex-
pensive operations.
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In optical character recognition the use of six derivatives for affine transformations
and one derivative accounting for line thickness yields very good results
[Dahmen & Keysers+ 01]. In other domains (e.g. radiograph recognition) line thick-
ness is replaced by brightness. In the results presented in Section 7.2.1 we used the
first six derivatives for affine transformations.

Instead of calculating the distance between the current observation X̃t and the mean
image µst , first the mean is transformed by the function F to be invariant against affine
transformations. Figure 4.5 shows a transformed mean image with respect to an ob-
servation image. The distance functions (4.17) and (4.18) are replaced by the following
equations, where the distance is now calculated with the mean image F (µst , Xt) that
is closest to Xt in the tangent subspace spanned by µst :

d1(Xt, µst) =
D∑

d=1

∣∣∣∣Xtd − F (µst , Xtd)
σd

∣∣∣∣ (4.20)

d2(Xt, µst) =
D∑

d=1

(
Xtd − F (µst , Xtd)

σd

)2

(4.21)

4.2.3 Image Distortion Model

The image distortion model has been examined earlier at the Lehrstuhl für Informatik
VI of the RWTH Aachen [Keysers & Dahmen+ 03] and further research is presented
in [Gollan 03]. The image distortion model is an easily implemented method allowing
for small local deformations of an image. Each pixel is aligned to the pixel with the
smallest squared distance from its neighborhood. These squared distances are summed
up for the complete image to get the global distance. To compare an observation image
Xt with a mean image µst , d(Xt, µst) is calculated as follows:

didm(Xt, µst) =
Nx∑
x=1

Ny∑
y=1

x+w
min

x′=x−w

y+w

min
y′=y−w

d′(Xt(x, y), µst(x
′, y′)) (4.22)

Here, w is the warp range. That is, the radius of the neighborhood in which a
pixel may be chosen for alignment and d′ is a pixel distance comparing the image
pixels Xt(x, y) and µst(x′, y′) for example the Euclidian distance. This method can be
improved by enhancing the pixel distance d′ to compare sub images of size (2v + 1)×
(2v + 1) instead of single pixels only:

d′(Xt(x, y), µst(x
′, y′) =

v∑
i=−v

v∑
j=−v

(Xt(x + i, y + j)− µst(x
′ + i, y′ + j))2 (4.23)
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(a)

(b)

Figure 4.5. (a) shows one-sided tangents used for transformation in tangent distance: the
mean image is transformed so that it is closest to Xt in the tangent subspace
spanned by µst . The image shows the tangent vectors corresponding to the six affine
transformations horizontal shift, vertical shift, first and second hyperbolic
transformation, scaling and rotation of a mean image µ (from the i6-Gesture
database) used to create the transformed mean image F (µst , Xt). (b) shows the
result of such a distance calculation on the i6-Gesture database where the first image
represents Xt, the second the transformed mean image F (µst , Xt) and the third the
mean image µ.

Further improvement is achieved by using spatial derivatives instead of the pixel
values directly. Intuitively, the use of derivatives makes the image distortion model
align edges to edges and homogeneous areas to homogeneous areas.

In [Gollan 03] further methods for aligning images are proposed, but these are not
considered here due to the high computational complexity and the low gain in classi-
fication performance in comparison to the IDM.

In our experiments in Section 7.2.2 we did not use the IDM distance directly to
calculate the emission probabilities as we also wanted to analyze the effect of Laplace
and Gaussian distributions. Instead we used the mean image F (µst , Xt) with the
smallest IDM distance to Xt for respective distance function L1-norm and Euclidian.

Figure 4.6 shows some examples of distorting mean images with respect to observa-
tions so that their pixel distance is minimal.
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(a)

(b)

Figure 4.6. IDM distortion examples on I6-Gesture database, showing the effect of different
patch sizes (f.l.t.r.: observation Xt, distorted mean image with the smallest distance
d′(Xt, µst), original mean image µst , vertical and horizontal Sobel images used for
distortion): (a) with patch size 5x5 and (b) with patch size 3x3

4.3 Training and Classification

In the following section a short overview is given about the system developed in the
course of this work.

For each training sequence XT1
1 , ..., XTn

1 , ..., XTN
1 of a gesture of class k with N

sequences the feature images like time-derivative, spatial-derivative or skin-color are
prepared and then extracted depending on a chosen tracking method, e.g. full-image
extraction or extraction depending on dynamic-tracking results.

These extracted images are scaled down and used as feature vectors in the Viterbi
training to train a hidden Markov model λk for each gesture. Usually we used the
minimum sequence length of the sequences seen in training to estimate the number of
states S in λk, .i.e |Sλk

| = minn(XTn
1 ). Figure 4.7 shows this work flow.

The feature extraction of the test sequences is identical to the training process.
Then for each test pattern the hidden Markov model which best describes the current
observation sequence is searched. Figure 4.8 shows this work flow.

When searching the model λk that best explains the observation, position-synchronous
pruning over all models can be applied to improve the runtime of the system. In speech
recognition the system can usually be speedup by a factor 10 without degrading the
error. In the experiments presented in Section 7.1.2 we could speedup the system by
a factor 4 as we do not use such a large vocabulary as in speech recognition.
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Chapter 5

Tracking

When detailed information about moving objects in video sequences is needed, tracking
comes into play. Tracking can be used e.g. to differentiate between multiple moving
targets and to retrace their movements, to extract detailed image information or to
detect self-occlusion from two tracked hands.

Some popular tracking methods are for example the Condensation tracking
[Isard & Blake 98], Kalman filtering [Kalman 60], Meanshift tracking
[Comaniciu & Ramesh+ 00] or Camshift tracking [Bradski 98].

As this work is not primarily a work on tracking we did not investigate the advan-
tages and disadvantages of these popular tracking methods. A good overview of some
tracking methods used in gesture and human movement recognition can be found in
[Gavrila 99].

An introduction to Kalman filtering can be fond in [Welch & Bishop 03]. View-
based location and tracking of body parts for visual interaction was analyzed by
[Micilotta & Bowden 04], and [Gavrila & Giebel+ 04] shows the need of tracking in
a vision-based pedestrian detection system. In [Balcells & DeMenthon+ 04] an
appearance-based approach for consistently labeling people and for detecting human-
object interactions using mono-camera surveillance video is presented.

In an appearance-based approach one usually uses a down scaled (transformed)
image as feature vector, but when downscaling an image of size 320x240 down to 32x32
many visual details are lost due to the scaling operation. That is why we needed a
method to extract only a specific part of the images, the area of interest, which will
then be extracted, down scaled and used as feature vector. To achieve this we used as
a first approach a simple bounding box tracking which is presented in Section 5.1.

In Section 5.3 we present a new kind of dynamic tracking algorithm which uses
dynamic programming to reconstruct the path at the end of an observation sequence
and thus the best tracking. We compared our results to the Camshift tracker presented
in Section 5.2.
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(a) (b)

Figure 5.1. Bounding-Box tracking examples for the Duisburg database in Section 6.2: (a)
Tracking too small at the gesture“Hand-Waving-Both”because of a bad threshold,
(b) Tracking too large at the gesture“Hand-Waving-Right”because of the moving
clothing at bottom right side

5.1 Bounding-Box Tracking

One of the simplest and fastest tracking algorithms is the Bounding-Box tracking. It
works on image sequences and uses difference images to track moving objects. It is
very susceptible to noise or multiple moving objects (see Figure 5.1), because it tracks
every pixel moving from one frame to another.

Depending on the difference calculation between frames (e.g. with or without adap-
tive background segmentation, difference calculation with two, three or more frames)
and possible thresholds (e.g. skin color), the tracking may be controlled. This tracking
method should only be used with a static background and one object to be tracked in
front.

In fact, this is not a real tracking method, as no information about the object itself
or any previous images are used to make a tracking decision. Nevertheless, this simple
method can lead to very good results, if the assumptions about background and targets
are true (cf. to results in Section 7.3.1).

5.2 Meanshift/Camshift Tracking

The Meanshift Algorithm was developed by [Comaniciu & Ramesh+ 00]. They pro-
pose a real-time tracking algorithm of non-rigid objects based on visual features such
as color and/or textures, whose statistical distributions characterize the object of in-
terest.

It is robust to partial occlusions, clutters, rotation in depth and changes in camera
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position. The meanshift procedure earlier introduced by [Fukunaga & Hostetler 75]
was used to find the target candidate that is most similar to a given target object.

The Camshift (continuously adaptive meanshift) tracking algorithm was developed
by [Bradski 98]. Their computer vision color tracking algorithm was used for tracking
human faces in real-time and is a modification of the mean shift algorithm, which was
modified to deal with dynamically changing color probability distributions.

The implementation of the algorithm we used was taken from the LTI-Lib1 and
implemented as described in [Bradski 98].

5.3 Dynamic Tracking

This tracking algorithm prevents taking (possibly wrong) local decisions, because the
tracking is done at the end of a sequence by making a traceback of the decisions to
reconstruct the best path t → (x, y). This can be compared to time alignment in
speech recognition.

Dynamic Tracking performs well when one wants to track an object with many
occlusions, information gaps or for offline tracking. It may also be used with non-
static background or multiple target objects in the foreground.

5.3.1 Dynamic Tracking with Fixed Size

Dynamic Tracking on large images is very time consuming, when making a full search
of all possible tracking rectangles. In a first step we developed a simple tracking
algorithm with fixed tracking rectangle size.

Since the dynamic tracking is an algorithm that can use any image score function,
the minimum search window size I × J must be greater than one in order to calculate
a score of at least one pixel, and in order to center the window, it should be of odd
size. Thus for discrete functions or distributions, the minimum window size is set at
3x3.

In each dynamic programming algorithm, we need a recursion equation as in an
HMM to calculate the best score over the whole image sequence, and to reconstruct
the path which achieved this score. Our dynamic tracking recursion equation is defined
as follows:

D(t, x, y) = max
x′,y′∈M(x,y)

{
(D(t− 1, x′, y′)− J (x′, y′, x, y)

}
+ d(Xt, x, y) (5.1)

B(t, x, y) = argmax
x′,y′∈M(x,y)

{
(D(t− 1, x′, y′)− J (x′, y′, x, y)

}
1The LTI-Lib is an object oriented library with algorithms and data structures frequently used in

image processing and computer vision. See http://ltilib.sourceforge.net/doc/homepage/
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p(x, y)
N

M

I

J

Figure 5.2. Dynamic Tracking example with first time derivative as image feature fXt

M(x, y) = Set of possible predecessors of point (x, y)
d(Xt, x, y) = Tracking-score of the feature image Xt at position (x, y)
D(t, x, y) = Total-score for the best tracking until time t

which ended in position (x, y)
B(t, x, y) = Backpointer at time t of point (x, y)

J (x′, y′, x, y) = Jump-penalty from point (x′, y′) to point (x, y)

Figure 5.2 shows one frame of a dynamic tracking sequence, where the current
tracking window of size I × J is placed at a point (x, y) of the feature image (a first
time derivative as image feature).

When using a first time derivative as image feature X̃t the local score can be calcu-
lated by taking a weighted sum over the pixel values inside the tracking area, but any
other score function may be defined here:

d(X̃t, x, y) =

x′=x+I/2

y′=y+J/2∑
x′=x−I/2

y′=y−J/2

wy′ · wx′ · |X̃t(x′, y′)| (5.2)

wy′ = 1.5− |y′ − y|
J/2

, wx′ = 1.5− |x′ − x|
I/2

As jump-penalty one can use the following penalty functions where α is a relative
weighting factor with respect to the score function:
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• Euclidian distance:

J (x′, y′, x, y) =α ·
(√

(x− x′)2 + (y − y′)2
)

(5.3)

• squared Euclidian distance:

J (x′, y′, x, y) =α ·
(
(x− x′)2 + (y − y′)2

)
(5.4)

• absolute distance:

J (x′, y′, x, y) =α ·
(
|x− x′|+ |y − y′|

)
(5.5)

One can control the tracking by the following parameters:

• tracking size I and J

• jump-width M(x, y) and -penalty J (x′, y′, x, y)

Integrating backward pruning into the dynamic tracking algorithm can reduce the
runtime as not each possible tracking center produces a high score and can thus
be pruned. At time t = 0 each point (x,y) has to be initialized by the local score
d(Xt=0, x, y) and all points are activated as possible predecessors for time t = 1. From
this time step until the end of the sequence, a point (x, y) will only be considered as a
predecessor for time step t+1 if D(t, x, y) < maxx,y(D(t, x, y))−T0 holds for a suitable
pruning threshold T0.

Dynamic Tracking and Camshift Tracking Under Noisy Circumstances. The advan-
tage of considering the whole sequence before making any decision becomes apparent
when tracking has to be done under noisy circumstances. To compare the dynamic
tracking and camshift tracking algorithms, we added random noise in some sequences
of the i6-Gesture database.

The noise was added in the sequences with the convert-Tool of ImageMagick2.
This can be easily done by invoking e.g. convert +noise Gaussian original.jpg
noise.jpg to add Gaussian noise to an image. We tested all available noise types:
Uniform, Multiplicative, Gaussian, Impulse, Laplacian and Poisson3.

Figure 5.3 shows the dynamic tracking compared to the camshift tracker on a se-
quence with impulse noise. One can see that at this noise-level both trackers are able
to follow the hand gesturing a “Z” of the German fingerspelling alphabet.

2ImageMagick is a robust collection of tools and libraries to read, write, and manipulate an image in
many image formats http://www.imagemagick.org/

3A movie clip showing the tracking results with different noise levels is available from http://www-

i6.informatik.rwth-aachen.de/~dreuw/
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Figure 5.3. Tracking examples on impulse noise for the i6-Gesture database: (a) is a plot of
the dynamic tracking window centers and (c) dynamic tracking examples at time
t = 4, 11, 18, 28, 36. (b) and (d) are the corresponding camshift tracking examples.
Both trackers are able to track the hand gesturing a“Z”of the German fingerspelling
alphabet at this noise level.

Figure 5.4 shows the dynamic tracking compared to the camshift tracker on a se-
quence with Poisson noise. At this noise-level The camshift is no longer able to track
the hand at time t = 28 but still works. The dynamic tracker also looses some precision
but performs still better than the camshift tracker.

Figure 5.5 shows the dynamic tracking compared to the camshift tracker on a se-
quence with Laplacian noise. Subfigure 5.5b shows that at this noise-level the camshift
is no longer able to reasonably track the hand. Subfigure 5.5b shows that the dynamic
tracker continuous to loose precision but still tracks good.

Figure 5.6 shows the dynamic tracking compared to the camshift tracker on a se-
quence with Gaussian noise. At this noise-level it is even very difficult for a human eye
to track the movement of the hand. Subfigure 5.6b shows that the camshift does not
track at all but Subfigure 5.6b shows that the dynamic tracker still tracks the hand.
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Figure 5.4. Tracking examples on poisson noise for the i6-Gesture database: (a) is a plot of
the dynamic tracking window centers and (c) dynamic tracking examples at time
t = 4, 11, 18, 28, 36. (b) and (d) are the corresponding camshift tracking examples.
The camshift is no longer able to track the hand around time t = 28 but still works.
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Figure 5.5. Tracking examples on Laplacian noise for the i6-Gesture database: (a) is a plot
of the dynamic tracking window centers and (c) dynamic tracking examples at time
t = 4, 11, 18, 28, 36. (b) and (d) are the corresponding camshift tracking examples.
The camshift tracker is no longer able to reasonably track the hand. (a) shows that
dynamic tracking still works good at this noise-level.

46



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120

Gaussian noise

(a)

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120

Gaussian noise

(b)

(c)

(d)

Figure 5.6. Tracking examples on Gaussian noise for the i6-Gesture database: at this
noise-level it is even very difficult for a human eye to track the movement of the
hand. (a) is a plot of the dynamic tracking window centers and (c) dynamic tracking
examples at time t = 4, 11, 18, 28, 36. (b) and (d) are the corresponding camshift
tracking examples. The camshift tracker does not track at all but (a) shows that
dynamic tracking still works even if imprecise.
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5.3.2 Dynamic Tracking with Variable Size

In many cases it might be necessary to allow a change of the tracking box size, which
means a full search over all possible predecessors for the upper left and bottom right
corner of the tracking rectangle. In this case we have to adapt our dynamic tracking
recursion equation algorithm and jump penalty assumption as follows:

D(t, x, y, rx, ry) = max
x′,y′∈M(x,y)

r′x,r′y∈M∇(rx,ry)

{D(t− 1, x′, y′, r′x, r′y)

−J ((x′, y′, r′x, r′y, x, y, rx, ry)}

+d(X̃t, x, y, rx, ry) (5.6)
B(t, x, y) = argmax

x′,y′∈M(x,y)

r′x,r′y∈M∇(rx,ry)

{D(t− 1, x′, y′, r′x, r′y)

−J (x′, y′, r′x, r′y, x, y, rx, ry)} (5.7)

J (x′, y′, r′x, r′y, x, y, rx, ry) = α ·
(
(x− x′)2 + (y − y′)2

)
+β ·

(
(rx − r′x)2 + (ry − r′y)

2
)

(5.8)

Currently, a dynamic tracking search on the LTI-Gesture database runs on a AMD-
2600XP machine approximately 1 hour with fixed size tracking and no pruning. Here
we calculate what happens with variable size tracking by first making some assump-
tions:

• Image size: (Nx ×Ny)

• Number of possible tracking rectangles in one image: (Nrx ×Nry)

• Assume that

– (Nx ×Ny) = (Nrx ×Nry) = (100× 100)
– Maximum jump width δ ± 5,
– Maximum size change δ′ ± 5

This will run into serious runtime problems with variable size. We would have the
following runtime:

(Nx ·Ny) · (Nrx ·Nry) · |M(x, y)| · |M(rx, ry)| = 1002 · 1002 · ((δ · 2) + 1)2 · ((δ′ · 2) + 1)2

∼= 1.2 · 106︸ ︷︷ ︸
fixed size = 1 hr

·1.2 · 106

∼= 68 years!

Even with using pruning as mentioned for the fixed size tracking and reducing the
runtime from 1 hour down to 10 minutes, the runtime for the variable size tracking
would be 0.1667 · 106 ∼= 19 years!.
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5.3.3 Integration of Recognition and Dynamic Tracking

One idea when working with HMMs and tracking was the integration of the tracking
inside the recognition process. Combining dynamic tracking and HMM recognition
can be written as follows:

r(XT
1 ) = argmax

k

{
p(k) · p(XT

1 |k)
}

p(XT
1 |k) =

∑
[sT

1 ,lT1 ]

p(XT
1 , sT

1 , lT1 |k)

p(XT
1 , sT

1 , lT1 |k) =
T∏

t=1

p(Xt, st, lt|Xt−1
1 , st−1

1 , lt−1
1 , k) (5.9)

with XT
1 sequence over time of the images X1, ..., Xt, ..., XT , sT

1 sequence over time of
the states s1, ..., st, ..., sT and lT1 sequence over time of the locations l1, ..., lt, ..., lT .

A location lt in this notation form can be a simple point (xt, yt), e.g. the center
of a tracking rectangle, a point with a specific range (xt, yt, rt), e.g. the center of a
tracking rectangle of size rt or any other location (xt, yt, rt, ...).

Combining these two processes together can be very time consuming. To reduce
this we have to make some additional assumptions to those from Section 4.1. We now
assume that the probability p(Xt, st, lt|Xt−1

1 , st−1
1 , lt−1

1 , k) depends only on the abstract
states s = s1, ..., sT of the gesture classes k (which means “hidden” states). We can
simplify (5.9) now as follows:

p(Xt, st, lt|Xt−1
1 , st−1

1 , lt−1
1 , k) = p(Xt, st, lt|st−1

1 , lt−1
1 , k) (5.10)

Another assumption is that the transition probabilities only depend on the prede-
cessor state, and that the emission probabilities depend on the reached state as in
Section 4.1:

p(Xt, st, lt|st−1
1 , lt−1

1 , k) = p(Xt, st, lt|st−1, lt−1, k)
= p(st, lt|st−1, lt−1, k)︸ ︷︷ ︸

Transition probability

· p(Xt|st, lt, k)︸ ︷︷ ︸
Emission probability

Additionally, we assume that the transition probability is independent from location,
i.e.

p(st, lt|st−1, lt−1, k) = p(st|st−1, k) · p(lt|st−1, lt−1, k) (5.11)

and that the location probability only depends on the predecessor location, i.e.

p(st, lt|st−1, lt−1, k) = p(st|st−1, k) · p(lt|lt−1, k) (5.12)
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Combining dynamic tracking and recognition into a HMM would change the emission
probability to:

p(Xt|st, lt, k) = N (f(Xt, lt)|µst ,Σ)

Then, the emission distribution can be modeled by the following equation:

N(f(Xt, lt), lt − lt−1|µst ,Σ) = N(f(Xt, lt), lt − lt−1|µX
st

, µl
st

,Σ)

Assuming for the transition probability that the state probability stays the same,
one could assume two cases for the location probabilities:

− log(p(lt|lt−1[, st−1], k)) =

{
α · ||lt − lt−t||2

α · ||(lt − lt−1)− µl
st−1

||2

which can be interpreted as that the distance between two locations will be learned
with the HMM.

All these assumptions presented here have not been tested in this work and present
only an interesting proposal for future works.
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Chapter 6

Databases

In this chapter we present the three databases used to test our applications. A database
with infrared images inside a car as well as a database with body centered grey-scale
images to control robots were applied. A new database with color images of the
German fingerspelling or manual alphabet is introduced.

Results other groups obtained on these databases are given along with our results
in Chapter 7.

6.1 LTI-Gesture Database

The LTI-Gesture database was created at the Chair of Technical Computer Science1

at the RWTH Aachen and is not freely available. It contains 14 dynamic gestures.
The resolution of each video sequence is 106 x 96 grey-scale pixel. The videos were
recorded with an infrared camera inside a car. In total, 364 sequences were recorded,
of which 84 are used for testing and 280 are used for training. Figure 6.1 shows some
examples of the different gestures.

The 280 sequences dedicated for training a continuous gesture recognition system
were splitted into a train and test set. These two sets were then used to test a single
gesture recognition system.

This database was also used in [Pelkmann 99] where a combination of several geo-
metric features such as compactness, Hu-Moments and global motion as gesture fea-
tures achieved an error rate of 4.5% on this database, using hidden Markov Models as
statistical classifiers.

Unfortunately it was not clearly and fully indicated in [Pelkmann 99] how the data
was split into a training and testing database. The database we received contains only
276 sequences, i.e. some of the 14 gestures only contain 19 sequences instead of 20.

We decided to create two setups, denoted as “1st split” and “2nd split” to be com-
parable with their results. The former consists of the first 10 (or 9) sequences of each
class for training and the last 10 for testing, the latter consists of the last 10 (or 9)

1Visit http://www.techinfo.rwth-aachen.de
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(a) (b) (c)

(d) (e) (f)

Figure 6.1. Some examples of the LTI-Gesture database showing different gestures of
numbers: (a) one thumb, (b) one finger, (c) two, (d) three, (e) four, (f) five

sequences for training and the first 10 for testing. This means that we have always
140 test sequences as in [Pelkmann 99] but only 136 training data sequences.

6.2 DUISBURG-Gesture Database

The goal of the research project described in [Rigoll & Kosmala+ 98] was the recogni-
tion of gestures to control robots. The recognition system is capable of recognizing 24
different gestures. The database consists of 336 image sequences that contain gestures
of 12 different persons.

For the training and the testing of the system video sequences of 24 different gestures
were recorded. The resolution of the video sequences was 96 x 72 gray-scale pixel and
16 frames per second. Each sequence consists of 50 frames, resulting in a sequence
length of approximately three seconds. Figure 6.2 shows some examples of the different
gestures.

6.3 i6-Gesture Database

In the course of this work, a new database of fingerspelling letters of German Sign
Language (Deutsche Gebärdensprache, DGS) was created2. The database contains 35
gestures with video sequences for the signs A to Z and SCH, the German umlauts Ä,
Ö, Ü, and for the numbers 1 to 5. Five of the gestures contain inherent motion (J, Z,
Ä, Ö and Ü).

2Our database is freely available at http://www-i6.informatik.rwth-aachen.de/~dreuw/
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(a) (b) (c)

Figure 6.2. Some examples of the DUISBURG-Gesture database showing different gestures:
(a) hand waving both, (b) hand waving left, (c) hand waving right

The recording was done under non-uniform daylight lighting conditions, the back-
ground and the camera viewpoints are not constant, and the persons had no restrictions
on the clothing while gesturing. Figure 6.3 shows an overview of the alphabet from A
to Z.

The database consists of 1400 image sequences that contain gestures of 20 different
persons. Each person had to sign each gesture twice on two different days. The
gestures were recorded by two different cameras, one webcam and one camcorder,
from two different points of view. Figure 6.4 shows the record setup.

The webcam recorded the sequences with a resolution of 320x240 at 25 frames per
second, and the camcorder with a resolution of 352x288 at 25 frames per second. The
persons were not trained to perform the signs, therefrom the gestures may differ from
the standard. Figure 6.5 shows some examples of the different gestures.

For recording the gestures we programmed a shell script which gave us the possibility
of recording and converting gestures for as many persons as we wanted in a flexible and
easy way. All videos were recorded in MPEG-4 DivX format using the freely available
software MPlayer3. The script offers possibilities to easily integrate new recording
devices or changing the record resolution and frame rate.

Also we programmed another shell script to convert the recorded videos into single
image files. For each person, session, and camera a sequence file was generated which
contains all images belonging to this sequence. We chose the PNG image format with
high compression factor but one may change this to any other value. These two scripts
are also available online.

Before recording, the proband was asked if he agrees in making his sequence publicly
available. It was clearly mentioned that he could abandon the record-session at any
time. After a short explanation of the course of events he had to sign a letter of
agreement. This is a very important task when recording a proband with cameras: on
one hand the proband exactly knows what will happen with his records and on the
other hand the proband cannot defy with hindsight to the publishing of the complete

3http://www.mplayerhq.hu/
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A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z Ä Ö Ü SCH

Figure 6.3. The German fingerspelling alphabet taken from
http://www.sign-lang.uni-hamburg.de/fa/ visited 06.12.2005

database. A more detailed overview on usability evaluation and working with probands
can be found in [Nielsen 00] and [Schweibenz & Thissen 02].

For each gesture an example video was shown before recording. The proband could
view this video as often as he wanted. He then started the recording by hitting the
RETURN-key and stopped it by hitting it again. Then his recording was displayed
to be compared with the previous reference example. The proband could record his
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(a) (b)

Figure 6.4. i6-Gesture database record setup: (a) record setup with the webcam on the desk
and the camcorder on the chair, (a) record setup from proband sight, showing the
lighting conditions

(a) (b) (c)

(d) (e) (f)

Figure 6.5. Some examples of the i6-Gesture database showing different gestures of letters:
(a)-(c) the letters A-C recorded with the webcam, (d)-(f) the letters A-C recorded
with the camcorder,

gesture as often as he wanted. One recording-session took between 10 and 20 minutes.
Figure 6.6 shows one example for each class of the i6-Gesture database with different

persons. One can see the different lighting conditions. Also sometimes the hand is
located in front of the face, which make is difficult to track and extract. No instructions
concerning the clothing or jewellery like rings, bracelets or watches were given. We
decided to record such a difficult database with respect to be able to build an online
recognition system later which can work under no constraints.

More informations about the recording, the database, and the used hardware are
available on our websites.
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Figure 6.6. Examples of the German finger-alphabet taken from the i6-Gesture database

recorded with the webcam showing the letters A-Z, Ä, Ö, Ü, SCH and the numbers
1 to 5. Note that J, Z, Ä, Ö and Ü are dynamic gestures.
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Chapter 7

Experiments and Results

In this chapter the results for the HMM settings, the distance measures and the track-
ing methods are presented. If comparable results from other groups are available, these
results are also presented here for comparison.

The promising approach of using appearance-based features in gesture and sign
language recognition in combination with new distance measures is shown on different
databases.

The achieved results on the LTI-Gesture database are always indicated with respect
to either the 1st split or the 2nd split. The results on the DUISBURG-Gesture database
were achieved with a leaving-one-person-out method like in [Rigoll & Kosmala+ 98] to
be comparable. For the results on the i6-Gesture database we used the first session
for training and the second session for testing. See Chapter 6 for further details.

7.1 Basic HMM Settings

The experiments presented in this section were made to build up a basic system and
find out the appropriate HMM settings. All the experiments were made with the 1st

split dataset of the LTI-Gesture database (see Section 6.1).

7.1.1 Emission Distributions

First we had to adjust the minimum variances in the score function, e.g. we made
some experiments concerning σd ≥ σ0 inside Equation 4.17 and Equation 4.18. This
is a very important issue when working with appearance-based features and influences
the error rate as shown in Figure 7.1. All the extracted feature values were normalized
between 0.0 and 1.0. As one can see choosing σ0 = 0.1 seems to be a good threshold
for this value range and for all tests, i.e. when working with gray values between 0
and 255 one should set this value higher (e.g. to 25.5). Choosing σ0 ≥ 1.0 overesti-
mates the variances and makes them useless while choosing σ0 ≤ 0.01 underestimates
the variances of not observed images in training. We fixed σ0 = 0.1 in all further
experiments.
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Figure 7.1. ER[%] with 32x32 original features on the 1st split data from LTI-Gesture 1st

split against minimum variance threshold σ0 with different distributions, densities
and pooling

For these tests we used the LTI-Gesture 1st split database (see Section 6.1), the
minimum sequence length to determine the number of states S in each class k and
estimated transitions probabilities with a 0-1-2 standard model. As features we used
the whole 1st time derivative images (see Section 3.1.2) downscaled to 32x32 pixels.

To have a baseline error rate for our system we first trained a simple HMM and
compared it to the nearest neighbor error rate on the LTI-Gesture database. The
nearest neighbor classification was done by creating a separate model for each training
observation sequence, i.e. having a class k with N observations we created the classes
k1, ..., kn, ..., kN and respective models λk1 , ..., λkn , ..., λkN

where a state st in a model
λkn represents exactly one image feature Xt of the training sequence n. Searching the
model with the best score then represents a nearest neighbor classification. We used
the following settings to create the models:

• original image features downscaled to 32x32

• 0-1-2 model

• single densities

• Gaussian emission densities
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Table 7.1. Primary decisions and mean error rates for basic HMM settings on the

LTI-Gesture 1st split database using original image features

0-1-2 model [10.6% ER] vs. [24.0% ER] 0-1 model
Gauss [8.7% ER] vs. [12.6% ER] Laplace

Mixture densities [7.1% ER] vs. [10.3% ER] Single densities
Pooling [5.7% ER] vs. [8.5% ER] No pooling

Table 7.2. Error rates for basic HMM settings on the LTI-Gesture 1st split database using
original image features and 0-1 model

Densities Pooling Gaussian ER[%] Laplacian ER[%]

Single No 25.0 25.7
Yes 22.8 27.8

Mixture No 18.5 25.0
Yes 19.2 28.5

• pooling

We achieved 5.7% ER with the nearest neighbor versus 11.4% ER with the HMM.
Having better results with nearest neighbor is often the case in image recognition as the
images are the most important features (and for example not necessarily the transition
probabilities). Exact matching of the observations plays a big role in this task and
one also can conclude that using only single densities for the HMM classification is not
enough.

Then we made some experiments about the basic HMM settings concerning:

• 0-1 or 0-1-2 model?

• Which distribution should be used: Gaussian or Laplacian?

• How many densities are needed in each state?

• Should we use pooling or not for the variances?

As one can gather from the results in Table 7.2 and Table 7.3, the following settings
seem to be the best in a first approach: 0-1-2 model, Gaussian distribution, mixture
densities and pooling. These mean results are summarized in Table 7.1. Achieving
better results with pooling was to be expected, because the single features all describe
a similar object – an image pixel.
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Table 7.3. Error rates for basic HMM settings on the LTI-Gesture 1st split database using
original image features and 0-1-2 model

Densities Pooling Gaussian ER[%] Laplacian ER[%]

Single No 11.4 13.5
Yes 9.2 13.5

Mixture No 8.5 13.5
Yes 5.7 10.0

Table 7.4. Error rates for basic HMM settings on the LTI-Gesture 1st split database using 1st

derivative difference image features and 0-1 model

Densities Pooling Gaussian ER[%] Laplacian ER[%]

Single No 29.2 30.7
Yes 29.2 30.7

Mixture No 21.4 29.2
Yes 23.5 27.8

We verified these settings with another image feature, the 1st time derivative dif-
ference image, on the same data set and came to the same results, as one can see in
Table 7.4 and Table 7.5.

In Figure 7.2 one can see again that using the minimum sequence length of obser-
vations seen in training to estimate the number of states S in a model λk, the 0-1-2
model is better than the 0-1 model and allows a greater flexibility on the LTI-Gesture
database. Using a 0-1 model with |S| > 15 it was often impossible for a testing
sequence to reach an end state of a model due to the topology constraints.

We checked this on the DUISBURG-Gesture database (see Section 6.2) with COG-
Features (see Section 3.2) which gave the same results as shown in Figure 7.3. One

Table 7.5. Error rates for basic HMM settings on the LTI-Gesture 1st split database using 1st

derivative difference image features and 0-1-2 model

Densities Pooling Gaussian ER[%] Laplacian ER[%]

Single No 12.1 10.0
Yes 8.5 12.8

Mixture No 3.5 16.4
Yes 5.7 13.5
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Figure 7.2. ER[%] with 32x32 original features against number of HMM states on the

LTI-Gesture 1st split database

can also see that the 0-1 model performs better on this database as each sequence has
the same length of 50 frames.

So we can finally conclude that the following settings should be used for this gesture
recognition task with appearance-based features:

• use the 0-1-2 model

• use mixture densities

• use Gaussian distributions

• use pooling

7.1.2 HMM Topology

For the experiments about the HMM topology settings concerning fixed transition
and estimated probabilities we used the 1st split, maximal 5 densities in each state,
a Gaussian distribution, and model pooling. As features we used the whole original
images (see Section 3.1.1) downscaled to 32x32.

To ensure that
∑δMAX

δ=0 pδ = 1, the transition probabilities were calculated as follows
for a 0-1-2 standard model:
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Figure 7.3. ER[%] with COG-features against number of HMM states on
DUISBURG-Gesture

• Estimated:

p(st ∈ {st−1, st−1 + 1, st−1 + 2}) =
∑Nk

n=0

∑S(Nk)
s=0 N(s, st)∑Nk

n=0

∑S(Nk)
s=0

∑2
δ′=0 N(s, s + δ′)

• Fixed (with 0 < φ < 1):

p(st = st−1 + 1) = φ

p(st ∈ {st−1, st−1 + 2}) =
1− φ

2

One can conclude from the results in Figure 7.4 and Figure 7.5 that transition
probabilities are not very important in the task of recognizing image sequences and
that a high emission score weight is favoured. Also this coincides with the good nearest
neighbor result mentioned in Section 7.1.1.

On the basis of other experiences one can say that the following options are among
the best results in all cases:

• if the number of states for each gesture is chosen small (e.g. 10 states), then a 0-1
model is better, because the mean images are smoother and more often skipped
in distance calculation with a 0-1-2 model.
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showing the influence of transition probabilities with low emission score weight

• if the number of states for each gesture depends on the occurred minimum se-
quence length, then a 0-1-2 model is better

• there can be a big difference in the ER when choosing fixed transition probabili-
ties instead of estimated ones depending on the emission score weight. Choosing
fixed probabilities with a high emission score weight yields more constant results.

Experiments about pruning of hypothesis to reduce the calculations of emission prob-
abilities were made as calculating the emission probabilities and scores in the HMM
can be very time consuming. This can be reduced with beam search by introducing a
pruning factor f in the score calculation function of the emission probabilities.

First we have to define the best emission score until time t denoted as follows:

Qmax(t) := max
s,k

(Q(st, k))
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Figure 7.5. ER[%] with 32x32 original features on LTI-Gesture 1st split and estimated
transition probabilities for 0-1-2 model against emission score weight showing that a
high emission score weight yields the best results

The emission probability p(Xt|st, k) at time t and state s will then only be calculated,
if Q(st, k) ≤ f ·Qmax(t) holds, i.e if − log(Q(st, k)) ≤ − log(Qmax(t)) + log(f) holds
when calculating with scores.

Figure 7.6 shows that pruning can speedup the recognition by a factor 2 without
any changes in the error rate and by a factor 4 while the error rates degrades only
from 5.7% to 10.0%.

7.1.3 HMM Features Using Different Databases

In this section we present the results achieved with some of the features presented in
Chapter 3 on the adequate databases. Results from other groups are also presented
here for comparison where available.
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HMM Features on the LTI-Gesture database

As we made all the basic experiments with either the difference images or the original
images we wanted to know if gray-value thresholding of the image values is helpful,
i.e. reducing noise or background. For these tests we used the LTI-Gesture 1st split
database, maximal 5 densities, a Gaussian distribution and model pooling. As features
we used the whole original or 1st time derivative difference images (see Section 3.1.2)
downscaled to 32x32.

Table 7.6 shows that we obtained the best results without thresholding, i.e. using as
much information as possible achieves the best results as the outcome of thresholding
the image features results in a loss of features, too.

In the following, we present tests concerning different appearance-based features, e.g.
the original images, time derivative images, spatial derivative images (Sobel) and the
COG-features. Table 7.7 shows that the difference images were better than the original
ones. This was to be expected, because the difference images contain information about
the shape and the movement. The 1st time derivative difference images were better
than the 2nd as well for Sobel feature images as for original images.

The COG-features on the LTI-Gesture database achieved an error rate of only 14.2%.
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Table 7.6. Error rates for feature thresholding on LTI-Gesture

Threshold Original ER[%] 1st time derivative ER[%]

0 5.7 5.0
50 5.7 10.7

100 7.1 6.4
150 7.1 9.2
200 7.8 17.1
250 9.2 48.5

This was to be expected because it is quite difficult to differentiate for example the
gesture “Five” and “Two” only by the centroids and global motion.

The good error rate of 7.1% from [Rigoll & Kosmala+ 98] with these features on the
DUISBURG-Gesture database (see Section 6.2) were only possible because the most
discriminative characteristic of these gestures were the location and the movement
direction and not the shape. We could achieve an error rate of 10.3% with the same
features on the DUISBURG-Gesture database which is probably due to the missing
cyclic HMM as mentioned in their work or untested feature weights.

Each gesture is always performed in a body-centered space and there are only two
gestures (“Nod-No” and “Nod-Yes”) which are performed in the same location with
similar shapes. All other gestures can be distinguished by using their motion direction
alone.

Figure 7.7 shows these problems of the COG-features on the LTI-Gesture database.
These features are good to describe different motion patterns like “Thumb-Left” and
“Thumb-Right” and inappropriate to distinguish between gestures with the same mo-
tion but just differing shapes like “Five” and “Two”.

Using the COG-features, such gestures can only be differentiated by the global
motion (see Equation 3.21) which is strongly scale dependent (i.e. person dependent)
and not sufficient.

We verified these features on the LTI-Gesture 2nd split database and came to similar
results. Table 7.8 shows also that the vertical Sobel is better than the horizontal and
that the 1st time derivative is better than the 2nd . One can also observe that the
results on the 2nd split are consequently worse than the results obtained on the 1st

split.
So we can finally conclude that original and time derivative images are good features

and that the 1st time derivative is better than 2nd time derivative.
The COG-features can not achieve good results for example in gestures differing

in only one finger but good results in gestures with movement like “Thumb-Left” or
“Thumb-Right”.
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(a) (b) (c)

(d) (e) (f)

Figure 7.7. Some examples of the centroid features on the LTI-Gesture database, where a
green circle means the positive COG, a yellow circle the COG and a red circle the
negative COG, showing that the COG-features are insufficient to distinguish between
more complex gestures (c), (d), (e) and (f) but very good to distinguish between
motion intensive gestures (a) and (b)

Table 7.7. Error rates for different HMM features on the LTI-Gesture 1st split database in
ER[%]

Spatial derivative Original 1st time derivative 2nd time derivative COG-Features

(Sobel)

no 5.7 5.0 15.7 14.2
horizontal 10.0 9.2 20.0 −
vertical 5.0 4.2 16.4 −
magnitude 7.1 5.0 7.1 −
squared magnitude 8.5 16.4 34.2 −

Using spatial derivative image features can improve the error rate for original image
features once again from 5.7% to 5.0% and for time derivative features from 5.0% to
4.2% on the LTI-Gesture 1st split database and from 12.1% to 6.4% for original image
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Table 7.8. Error rates for different HMM features on the LTI-Gesture 2nd split database in
ER[%]

Spatial derivative Original 1st time derivative 2nd time derivative COG-Features

(Sobel)

no 12.1 18.5 20.7 27.8
horizontal 10.7 21.4 21.4 −
vertical 6.4 16.4 28.5 −
magnitude 12.1 19.2 19.2 −
squared magnitude 15.0 25.0 40.0 −

features on the LTI-Gesture 2nd split database.
Especially the vertical gradient images are good features as the signing hand in the

LTI-Gesture database is presented in a horizontal way, so that the gradients of the
fingertips are more meaningful than with a vertical filter.

The effect of feature augmentation was also investigated. Figure 7.8 shows that if
one e.g. augments the best original image feature (vertical Sobel of original image,
VSO) by the best time derivative feature (vertical Sobel of first time derivative, VSD),
i.e. if one concatenates α · VSO + (1 − α) · VSD with α = 0.5, one can improve the
error rate from 5.0% to 2.1%.

The feature augmentation of the vertical Sobel of the original image by its horizontal
Sobel also improves the error to 3.5% and is better than using the normalized Sobel,
but one can also see that feature augmentation does not always improve the error rate.

With the motion-history-image (MHI) feature (see Section 3.1.4) we could achieve
with a HMM template classification only an error rate of 26.4% which shows that
this feature is too general for differentiating between this complex gestures. For the
template classification we trained a HMM with one state for each gesture with maximal
5 densities, a Gaussian distribution and model pooling.

Choosing an appropriate value for the history size τ is important and should be
estimated during training. Using the MHI as an HMM feature for the normal classi-
fication task, we decided to check only four different setups instead of estimating the
parameter τ .

Table 7.9 shows the results obtained with this feature on the LTI-Gesture database.
We achieved the best results with a maximum history size and the number of states
in each HMM set to the observed minimum sequence length during training. Using
this setup we could achieve a good error rate of 5.7%.

Using as much information as possible improves once again the error rate and using
a HMM instead of a template matching method yields better results for this task, as
the gesture movements are executed only once and contain no partial gestures. Also
the more complex gestures “One” to “Five” are presented without any big rotations of
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Figure 7.8. Feature augmentation on the LTI-Gesture database showing error rate versus
feature weight

Table 7.9. Error rates for motion-history feature on the LTI-Gesture 1st split database

History Size τ Minimum sequence length Number of States S = 10

N (Maximum) 5.7 9.2
10 12.8 14.2

the hand so that the history-images of these gestures are similar to the original images.
Otherwise it is to be expected that the history-image would achieve worse results.

HMM Features on the DUISBURG-Gesture database

As mentioned before we could achieve a leaving-one-person-out error rate of 10.3% with
the COG-features on the DUISBURG-Gesture database instead of 7.1% as presented in
[Rigoll & Kosmala+ 98]. This is probably due to the missing cyclic HMM as mentioned
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in their work or untested feature weights.
The original image features achieved only an error rate of 61.9% which was to be

expected as the database contains 14 different persons recorded in a body-centered
space.

Using the whole absolute motion features downscaled to 32x32 as described in Sec-
tion 3.1.2 with the same HMM settings as for the LTI-Gesture database (maximal 5
densities, a Gaussian distribution and model pooling) we could achieve an error rate of
14.2% which is a good result and shows that the findings from the completely different
LTI-Gesture database are not overfitted and also perform well on this database.

The 1st time derivative image features could only achieve an error rate of 22.2%
which shows that the global motion on this database is more important than the
speed and the direction of the gestures when working with appearance-based features.

With the motion-history-image (MHI) feature (see Section 3.1.4) we could achieve
with a HMM template classification a leaving-one-person-out error rate of 20.8%. For
the template classification we used the same procedure as explained for the LTI-
Gesture database. The gestures “Nod-No” and “Nod-Yes” as well the gestures “A”
to “D” are very difficult to distinguish between with this feature in combination with
template matching and explain the bad error rate, as the important movements and
their directions are often self-overlaid.

Also we split the DUISBURG-Gesture database into two sets as the leaving-one-
person-out classification is very time consuming. We considered 7 persons of the 14
for training and the other 7 persons for testing. This setup is harder than the leaving-
one-person-out data setup but not as time consuming. We could achieve with the MHI
feature an error rate of 22.6% for template matching. Augmenting this feature by the
zero-thresholded motion-energy-image as proposed in [Bobick & Davis 01] worse the
error rate to 31.5% as the gesture “To-Left” becomes more similar to “Hand-Waving-
Left”, “Nod-No” to “Nod-Yes”, and “C” to “D”. Table 7.10 and Table 7.11 show the
resulting confusions when combining the MHI and MEI feature on the DUISBURG-
Gesture split database.

Using the MHI as an HMM feature for the normal classification task, we decided
again to check only some different setups instead of estimating the parameter τ . Ta-
ble 7.12 shows the results obtained with this feature on the DUISBURG-Gesture
database. We achieved the best results with a history size τ = 10 and the num-
ber of states S = 10. Using this setup we could achieve an error rate of 18.7% which
also shows that the HMM classifier is better than template matching.

Choosing τ 6= N is more important for this task as the gestures in the DUISBURG-
Gesture database contain partial gestures, e.g. when signing one of the gestures “A”,
“B”, “C” or “D” (the letters are simply drawn in front of the camera) which is not
the same than signing a letter in sign language. This comes into play when using the
minimum sequence length to determine the number of states where the best error rate
is achieved for τ = 5.
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Table 7.10. Confusion matrix with MHI feature on the DUISBURG-Gesture split database,
error rate 22.6% for template matching (C: correct, I: incorrect)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 C/I ER

Hand-Waving-Both 0 7 7/0 0.0%

Hand-Waving-Right 1 7 7/0 0.0%

Hand-Waving-Left 2 7 7/0 0.0%

To-Right 3 6 1 6/1 14.3%

To-Left 4 6 1 6/1 14.3%

To-Top 5 1 4 1 1 4/3 42.9%

To-Bottom 6 6 1 6/1 14.3%

Round-Clockwise 7 5 2 5/2 28.6%

Round-Counterclockwise 8 6 1 1/6 85.7%

Stop 9 2 1 4 4/3 42.9%

Come 10 1 6 6/1 14.3%

Nod-Yes 11 6 1 6/1 14.3%

Nod-No 12 2 5 5/2 28.6%

Clapping 13 7 7/0 0.0%

Kotow 14 7 7/0 0.0%

Spin 15 7 7/0 0.0%

Go-Left 16 6 1 6/1 14.3%

Go-Right 17 6 1 6/1 14.3%

Turn-Right 18 7 7/0 0.0%

Turn-Left 19 7 7/0 0.0%

A 20 1 3 2 1 1/6 85.7%

B 21 1 2 1 3 2/5 71.4%

C 22 6 1 6/1 14.3%

D 23 1 1 1 4 4/3 42.9%

C 7 7 7 6 6 4 6 5 1 4 6 6 5 7 7 7 6 6 7 7 1 2 6 4

I 1 1 0 0 0 2 1 6 2 4 0 2 1 1 0 0 0 0 1 1 1 4 4 6

I% 3 3 0 0 0 5 3 16 5 11 0 5 3 3 0 0 0 0 3 3 3 11 11 16

Table 7.11. Confusion matrix with MHI and MEI feature on the DUISBURG-Gesture split
database, error rate 31.5% for template matching (C: correct, I: incorrect)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 C/I ER

Hand-Waving-Both 0 7 7/0 0.0%

Hand-Waving-Right 1 7 7/0 0.0%

Hand-Waving-Left 2 7 7/0 0.0%

To-Right 3 6 1 6/1 14.3%

To-Left 4 2 3 1 1 3/4 57.1%

To-Top 5 1 5 1 5/2 28.6%

To-Bottom 6 3 1 2 1 3/4 57.1%

Round-Clockwise 7 4 3 4/3 42.9%

Round-Counterclockwise 8 4 3 3/4 57.1%

Stop 9 1 1 4 1 4/3 42.9%

Come 10 1 6 6/1 14.3%

Nod-Yes 11 5 2 5/2 28.6%

Nod-No 12 4 2 1 2/5 71.4%

Clapping 13 5 1 1 5/2 28.6%

Kotow 14 6 1 6/1 14.3%

Spin 15 5 1 1 5/2 28.6%

Go-Left 16 7 7/0 0.0%

Go-Right 17 7 7/0 0.0%

Turn-Right 18 7 7/0 0.0%

Turn-Left 19 7 7/0 0.0%

A 20 1 1 5 1/6 85.7%

B 21 1 2 4 2/5 71.4%

C 22 1 1 2 3 2/5 71.4%

D 23 1 2 4 4/3 42.9%

C 7 7 7 6 3 5 3 4 3 4 6 5 2 5 6 5 7 7 7 7 1 2 2 4

I 1 1 2 0 0 1 1 4 3 4 1 4 2 1 0 0 0 0 0 0 8 7 1 12

I% 2 2 4 0 0 2 2 8 6 8 2 8 4 2 0 0 0 0 0 0 15 13 2 23
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Table 7.12. Error rates for motion-history feature on the DUISBURG-Gesture database in
ER[%]

History Size τ Minimum sequence length Number of States S = 10

N (Maximum) 33.3 25.2
5 22.9 20.2
10 25.9 18.7
15 24.7 22.3
20 26.4 23.2
25 26.4 25.0

HMM Features on the i6-Gesture database

The i6-Gesture database was unfortunately only finished at the end of the provided
time for this diploma thesis that is why we can not provide as many results as for
the other databases. Also it is harder to extract good features on this database and
maybe one needs more know-how on segmenting or tracking the important regions
which would go beyond the scope of this work.

As the background is not constant for all sequences, the signing persons wear not
all the same clothing and the lighting conditions are changing, we decided to make a
first test with full size skin thresholded original image features downscaled to 32x32.
With this feature we achieved an error rate of 87.1%.

Using the 1st time derivative of original images thresholded by their skin probability
we could achieve an error rate of 72.1%.

It is obvious that this database contains gestures of much higher complexity and
that one need additional methods for feature extraction or other distance measures.

7.2 Distance Measures Using Different Databases

After building up our base system with the results from Section 7.1 we investigated the
effects of transformation independent distance measures. In this section, we present the
achieved results for the distance measures presented in Section 4.2.2 and Section 4.2.3
on different databases.

7.2.1 Tangent Distance

In this section we present the achieved results for the tangent distance measure which
is invariant against affine transformations on different databases.
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Table 7.13. Error rates for tangent distance on LTI-Gesture 1st split

Features Euclidian distance Tangent distance

ER[%] One-sided ER[%] Two-sided ER[%]

Original 5.7 2.8 2.8
vertical Sobel 5.0 2.8 4.2
magnitude Sobel 7.1 2.1 2.1

First time derivative 5.0 5.7 3.5
vertical Sobel 4.2 5.0 3.5
magnitude Sobel 5.0 3.5 5.7

5.3 3.65 3.63

Tangent Distance on the LTI-Gesture database

The results Table 7.13 and the validation results in Table 7.14 show that the tangent
distance can improve the error rate on the LTI-Gesture database.

The whole original image features downscaled to 32x32 can improve the error rate
on 1st split from 5.7% to 2.8% and with 1st time derivative image features from 5.0% to
3.5%. On 2nd split the error rate achieved with original image features can be improved
with two-sided tangent distance from 12.1% to 2.8% and with 1st time derivative image
features from 18.5% to 17.1%.

With the spatial derivative image features obtained with Sobel filtering, the tangent
distance can also improve the error rate on 1st split from 7.1% to 2.1% for original
images and from 5.0% to 3.5% for the 1st time derivative image features. On the 2nd

split the error rate can be improved with two-sided tangent distance from 12.1% to
2.8% for the original images.

On both splits the tangent distance cannot improve the results achieved with the
time derivative image features as much as with the original image features and their
corresponding spatial derivative images.

One can see that on average the two-sided tangent distance achieves slightly better
results than the one-sided tangent distance for this task but this cannot be generalized.

Table 7.15 shows the confusion matrix of the last errors on 2nd split obtained with
the two-sided tangent distance, i.e. we have a mean error rate of 2.8% in comparison
to 4.5% presented in [Pelkmann 99]. We can observe that the remaining errors are all
due to confusions between the classes“One-Thumb”,“One-Finger”, “Two”and“Three”,
which means that the correct alignment of the fingers are possibly not found.

If one adds then the possibility creating virtual data by rotating the images by ±α◦

as explained in Section 4.2 before calculating the tangent distance, the error rate can
be improved once again on the two LTI-Gesture data splits. We exemplified this by the
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Table 7.14. Error rates for tangent distance on LTI-Gesture 2nd split

Features Euclidian distance Tangent distance

ER[%] One-sided ER[%] Two-sided ER[%]

Original 12.1 5.0 2.8
vertical Sobel 6.4 5.7 5.0
magnitude Sobel 12.1 5.0 4.2

First time derivative 18.5 17.8 17.1
vertical Sobel 16.4 16.4 17.8
magnitude Sobel 19.2 19.2 20.7

14.1 11.5 11.2

Table 7.15. Confusion matrix with two-sided tangent distance on the LTI-Gesture 2nd split
database, error rate 2.8% (C: correct, I: incorrect)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 C/I ER

DaumenLinks 0 10 10/0 0.0%

DaumenRechts 1 10 10/0 0.0%

Drei 2 8 1 1 8/2 20.0%

EinsDaumen 3 10 10/0 0.0%

EinsFinger 4 10 10/0 0.0%

Fuenf 5 10 10/0 0.0%

Hoch 6 10 10/0 0.0%

Pause 7 10 10/0 0.0%

Runter 8 10 10/0 0.0%

Stop 9 10 10/0 0.0%

Vier 10 1 9 9/1 10.0%

Vor 11 10 10/0 0.0%

Zurueck 12 10 10/0 0.0%

Zwei 13 1 9 9/1 10.0%

C 10 10 8 10 10 10 10 10 10 10 9 10 10 9

I 0 0 1 0 1 1 0 0 0 0 0 0 0 1

I% 0 0 25 0 25 25 0 0 0 0 0 0 0 25

original image features and their corresponding spatial derivatives on the LTI-Gesture
database.

Table 7.17 shows these improvements achieved on 2nd split: the error rate can be
improved from 12.1% to 1.4% with tangent distance. Table 7.16 shows that the error
rate can also be improved on the 1st split from 5.7% to 1.4% with one-sided tangent
distance. This also means that we can achieve an average error rate of 1.4% with
tangent distance in comparison to 4.5% presented in [Pelkmann 99].

The runtime is extended by a factor 3 when creating this virtual data in combination
with tangent distance.
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Table 7.16. Error rates for tangent distance with rotation on LTI-Gesture 1st split

Features Euclidian distance Tangent distance

ER[%] One-sided ER[%] Two-sided ER[%]

Original 5.7 1.4 2.1
vertical Sobel 5.0 2.8 4.2
magnitude Sobel 7.1 1.4 2.1

Table 7.17. Error rates for tangent distance with rotation on LTI-Gesture 2nd split

Features Euclidian distance Tangent distance

ER[%] One-sided ER[%] Two-sided ER[%]

Original 12.1 1.4 1.4
vertical Sobel 6.4 2.8 2.1
magnitude Sobel 12.1 5.7 5.0

Tangent Distance on the DUISBURG-Gesture database

Using the whole absolute motion features downscaled to 32x32 with two-sided tangent
distance we could not improve the error rate of 14.2% and achieved only an error rate
of 14.8% but with the one-sided tangent distance we could improve the error rate to
13.2%.

By using the MHI feature with tangent distance to calculate the best matching HMM
template we could improve the Euclidian distance error rate from 20.8% to 19.0% with
one-sided tangent distance and to 19.6% with two-sided tangent distance. Also on the
self-defined DUISBURG-Gesture split database we could improve the error rate from
22.6% to 16.7% which is a very good result for this template matching classifier.

Using the MHI feature with one-sided tangent distance for the normal HMM clas-
sification (with S = 10 and τ = 10 as in Section 7.1.3) we could improve the best
Euclidian distance error rate from 18.7% to 16.9% which also is a very good result.
The two-sided tangent distance was also worse than the one-sided for this task and
achieved only 21.1%.

This proves that using distance measures being invariant against affine transforma-
tions performs also well on history-images and template matching classifiers.

Tangent Distance on the i6-Gesture database

Due to the poor results of 87.1% and 72.1% with the full size features and runtime
problems we did not check if the tangent distance could improve the error rate. We
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assumed that tracking must be used before to extract position independent features
and thus improve the error rate. These results are presented in Section 7.3.2.

7.2.2 IDM Distance

In this section we present the achieved results for the IDM distance measure on different
databases.

IDM Distance on the LTI-Gesture database

The results in Table 7.18 and Table 7.19 show that the IDM distance can improve the
error rate on the LTI-Gesture database with whole original image features downscaled
to 32x32 from 5.7% to 1.4%.

The 1st time derivative image features cannot be improved as much as with tangent
distance. Also using Sobel derivatives in IDM for distortion does not improve the error
rate as much as for the original images.

This can be explained by the fact that when using Sobel images in IDM for distortion,
the occurring two contours of the hand inside a time derivative image can be confused.
This is also proven by the results without using Sobel in IDM for distortion which are
always better for this feature than the results with Sobel.

One idea when working with time derivative images and IDM might be to distort
the negative and positive part of the images separately as a form of local motion speed
adjustment.

Also when working with time derivative images a greater patch size is appropriated
which depends on the chosen difference function the time offset between to images
used in this function, i.e. using (t + 1)− t or (t + 1)− (t− 1) when calculating the 1st

time derivative (see Section 3.1.2).
All the results in Table 7.18 and Table 7.19 were obtained with warp range set to

w = 1. Changing the local patch size and using Sobel can improve the IDM results with
original image features. The results without Sobel on time derivative image features
are consequently better.

We validated the achieved results also on the 2nd split of the LTI-Gesture database.
For these experiments we used only the original image features and their spatial deriva-
tives. Also not all patch sizes for each feature were verified. The results presented
in Table 7.20 and Table 7.21 confirmed the achieved results on the 1st split of the
LTI-Gesture database. Using IDM-Sobel can improve the error rate but not in all
cases. Time derivative image features should be used without IDM-Sobel. The best
achieved error rate on the 2nd split of the LTI-Gesture database is 2.1% using the
vertical Sobel-filtered original image features with a patch size of 13x13. Generally, a
patch size between 7x7 and 15x15 led to the best results for this task.
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Table 7.18. Error rates for IDM distance without IDM-Sobel on the LTI-Gesture 1st split
database in ER[%]

Features Euclid IDM distance with Patch Size

1x1 3x3 5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19

Original 5.7 18.5 3.5 4.2 3.5 2.8 2.8 2.8 2.1 2.1 1.4
vertical Sobel 5.0 3.5 2.8 2.8 2.8 2.8 2.8 3.5 3.5 3.5
magnitude Sobel 7.1 12.1 11.4 2.1 2.1 1.4 1.4 2.1 1.4 1.4 2.8

1st time der. 5.0 7.1 14.2 15.7 4.2 5.0 5.0 2.1 2.1 1.4
vertical Sobel 4.2 20.0 8.5 2.1 1.4 2.1 1.4 3.5 2.1 4.2 7.8
magnitude Sobel 5.0 20.0 15.7 8.5 4.2 1.4 1.4 2.1 1.4 1.4 2.8

Table 7.19. Error rates for IDM distance with IDM-Sobel on the LTI-Gesture 1st split
database in ER[%]

Features Euclid IDM distance with Patch Size

1x1 3x3 5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19

Original 5.7 9.2 6.4 1.4 1.4 3.5 3.5 3.5 2.8 2.8
vertical Sobel 5.0 1.4 2.8 1.4 2.8 2.1 2.8 2.8 2.8 2.8
magnitude Sobel 7.1 5.7 5.7 2.1 1.4 1.4 1.4 2.8 2.1 3.5 2.1

1st time der. 5.0 8.5 19.2 15.0 10.0 7.8 5.0 2.1 1.4
vertical Sobel 4.2 2.8 12.1 1.4 2.1 3.5 2.8 1.4 2.1 3.5 4.2
magnitude Sobel 5.0 11.4 7.1 10.7 2.1 3.5 1.4 3.5 2.1 3.5 4.2

IDM Distance on the DUISBURG-Gesture database

The IDM-distance calculation can be very time consuming and depends mainly on the
chosen warprange and patch size. Additionally the leaving-one-person-out classifica-
tion also is very time consuming that is why we investigated only one IDM setup on
the whole absolute motion features downscaled to 32x32. With a patch size of 5x5 and
IDM-Sobel we could not improve the error rate of 14.2% and achieved only 15.2%. We
expect that choosing different patch sizes will improve this error rate.

Table 7.20. Error rates for IDM distance without IDM-Sobel on the LTI-Gesture 2nd split
database in ER[%]

Features Euclid IDM distance with Patch Size

1x1 3x3 5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19

Original 12.1 15.0 2.8 5.0 2.8 3.5 2.8 3.5
vertical Sobel 6.4 5.7 2.8 2.1 5.7 3.5 4.2
magnitude Sobel 12.1 4.2 4.2 2.8 2.1 3.5 3.5 5.7 5.0
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Table 7.21. Error rates for IDM distance with IDM-Sobel on the LTI-Gesture 2nd split
database in ER[%]

Features Euclid IDM distance with Patch Size

1x1 3x3 5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19

Original 12.1 15.0 8.5 4.2 8.5 2.8 2.8 2.8 6.4 3.5
vertical Sobel 6.4 4.2 3.5 2.8 2.8 5.0 3.5 5.0 6.4 5.0
magnitude Sobel 12.1 10.0 5.0 4.2 5.0 7.1 6.4 5.0 3.5 2.8

Using the MHI feature with IDM distance to calculate the best matching HMM
template we could improve the Euclidian distance error rate from 20.8% to 17.5%
with a patch size of 9x9 and with a patch size of 15x15 to 18.1%.

On the self-defined DUISBURG-Gesture split database we could improve the error
rate from 22.6% to 19.6% with a patch size of 9x9 but even to 14.8% with a patch size
of 15x15.

This proves that using distance measures which consider image transformations
performs also well on history images and template matching classifiers.

IDM Distance on the i6-Gesture database

Due to the longer runtime of the IDM, we did not yet check this distance function
which is expected to be better than the tangent distance for this task, as the fingers
of the gesturing hand can be distorted independently.

7.2.3 Feature Size Results

Scaling is a very important issue when working with appearance-based features as
information is lost when downscaling an image. In all our presented results we used
bilinear interpolation for downscaling the images to a quadratic size of 32x32. Smooth-
ing the images with e.g. a Gaussian filter before downscaling improves the results in
most cases.

We analyzed the effects of downscaling to different feature sizes exemplary on the
original feature and its spatial derivatives. Table 7.22 shows the effects on the results
obtained using Euclidian distance and Table 7.23 the effects on the results obtained
using two-sided tangent distance. Using a smaller feature size, i.e. smoothing the
features and using less information lead to better results for all features and both
distance measures.

The error rate can be improved once again from 2.1% to 1.4% with Sobel of orig-
inal image as feature and using two-sided tangent distance. These are only small
improvements but show the necessity of investigating scaling methods when working
with appearance-based features.
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Table 7.22. Error rates for different feature sizes on the LTI-Gesture database using Euclidian
distance in ER[%]

Feature size Original Magnitude Sobel Vertical Sobel

4x4 25.0 30.0 53.5
8x8 10.7 11.4 15.0

16x16 3.5 5.7 3.5
32x32 5.7 7.1 5.0
64x64 11.4 10.0 7.1

Table 7.23. Error rates for different feature sizes on the LTI-Gesture database using
two-sided tangent distance in ER[%]

Feature size Original Magnitude Sobel Vertical Sobel

4x4 67.8 52.8 77.1
8x8 10.7 20.0 14.2

16x16 2.1 1.4 2.8
32x32 2.8 2.1 4.2
64x64 5.7 3.5 5.7

Even with a feature size of 8x8 and simply downscaling the original images we could
achieve an error rate of 10.7%.

7.3 Tracking

In this section we present the best settings from Section 7.1 in combination with
tracking algorithms. In contradiction to the use of whole image features only an area
of interest (AOI) is extracted from the feature sequences and downscaled to a unique
size.

7.3.1 Bounding-Box Tracking

The Bounding-Box tracking (Section 5.1) was only useful on the LTI-Gesture database,
as the infrared-images can easily be thresholded to segment the hand from the back-
ground. The tracking was then used to crop and scale the hand part of the image
as normalizing function. With this tracking method it was possible to obtain a more
detailed representation of the hand, without having too large feature vectors. Even
with a feature size of 4x4 pixels we can already achieve an error rate of only 15.0%
(see Figure 7.9 for some scaling examples).
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(a) (b) (c) (d)

Figure 7.9. Scaling examples of extracted features: from (a) scaled down to 4x4, (b) scaled
down to 8x8, (c) scaled down to 16x16 and (d) scaled down to 32x32

Table 7.24. Error rates for different HMM features (downscaled to 32x32) and distance

measures on the LTI-Gesture 1st split database with Bounding-Box tracking

Features Distance ER[%]

Original Euclidian 5.0
Tangent 1.4
IDM 1.4

First time derivative Euclidian 0.7
Tangent 0.7
IDM 0.7

For the tests in Table 7.24 we used the 1st split data and the best settings from
Section 7.1. As features we used the bounding box of either the original images or the
1st time derivative images (see Section 3.1.2) downscaled to 32x32. Nearly all basic
results from Section 7.1.1 were confirmed and could be improved with tracking.

Table 7.25 also shows the validation results on 2nd split data, depending on the
different data setups, scalings and difference functions, which proves that the current
settings are good and no overfitting has occurred (Note that the error rates on the
LTI-Gesture 2nd split database are larger on the average for all classifier setups).

7.3.2 Camshift Tracking

In this section we present some results obtained with the camshift tracker on the
LTI-Gesture and i6-Gesture databases. We did not analyze the different camshift
tracker options, instead we used the tracker only to extract more detailed information
of the image sequences. Also we did not analyze tracking on the DUISBURG-Gesture
database as all gestures are performed in a body-centered space.
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Table 7.25. Error rates for the LTI-Gesture database with Bounding-Box tracking and
different difference functions using Euclidian distance in ER[%]

Feature Size 1st time derivative 2nd time derivative

1st split 2nd split 1st split 2nd split

4x4 15.0 17.8 15.0 17.1
8x8 2.1 10.7 2.8 10.7

16x16 2.1 9.2 1.4 9.2
32x32 0.7 10.7 0.7 10.7
64x64 0.7 10.7 0.7 10.7

Tracking on the LTI-Gesture database

To use Camshift tracker on the LTI-Gesture database we had to initialize the tracker
already on the right starting position above the signing hand on the right side of the
image. We achieved an error rate of 0.0% on the 1st split and 12.1% on the 2nd split
with 1st time derivative image features and the Euclidian distance.

Tracking on the i6-Gesture database

Using a camshift tracker on the i6-Gesture database to extract the original images
thresholded by their skin probability we could improve the error from 87.1% to 44.0%.
With the 1st time derivative image feature of original images thresholded by their skin
probability in combination with tracking, the error rate could be improved from 72.1%
to 46.2%. This shows the need of tracking system or a different feature extraction
method to be more position and scale independent.

These two error rates were already achieved with pruning. As the runtime was still
very high, we investigated the use of different pruning thresholds and the impacts on
the error rate. Figure 7.10 shows the error rate versus time graph.

Using a two-sided tangent distance we could improve once again the error rate to
good and currently best result of 35.7% which shows the advantage of using distance
measures being invariant against affine transformations and the possibility of recog-
nizing sign language by simple appearance-based features.

With the same features but scaled to 16x16 we achieved an error rate of 46.0% for
one-sided tangent distance and 42.5% for two-sided which is even better than using
32x32 original image features without tangent-distance.

We could also improve the error rate when using the 1st time derivative image
feature of original images thresholded by their skin probability with two-sided tangent
distance from 46.2% to 44.1%.

Table 7.26 shows the confusion matrix obtained using two-sided tangent distance on
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Figure 7.10. ER[%] with 32x32 original image features thresholded by their skin probability
on the i6-Gesture database against Time[sec]: the biggest runtime was already
achieved with pruning so we do not know the exact improvement factor. The
biggest known runtime can be improved by a factor 2 without any changes in the
error rate

the i6-Gesture database with original images thresholded by their skin probability as
features (see Section 3.1.3). Table 7.27 shows all achieved results on this database up
to now.

7.3.3 Dynamic Tracking

First, we did some experiments concerning the influence of the dynamic tracking pa-
rameters. For these tests we used the 1st split of the LTI-Gesture database with 32x32
1st time derivative features, mixture densities and a Gaussian distribution.

One can see from the results of Figure 7.11 that a high jump penalty or a small
jump width can improve the error rate. This is due to an additional input of motion
information, i.e. the short jump distances generate tracking a delay, as the tracking
window moves slower than the gesturing hand and thus is not always centered in the
tracking window.

Dynamic tracking can improve the error rate on the LTI-Gesture 1st split database
from 5.7% to 0.0% and from 18.5% to 6.4% on 2nd split by using a maximum jump
width of the tracking center of ±5 pixels.
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Table 7.26. Confusion matrix with two-sided tangent distance and camshift tracking on the
i6-Gesture database, error rate 35.7% (C: correct, I: incorrect)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 C/I ER

A 0 8 4 2 1 1 3 1 8/12 60.0%

B 1 11 4 2 1 1 1 11/9 45.0%

C 2 12 3 1 3 1 12/8 40.0%

D 3 1 5 1 3 1 2 1 1 3 1 1 5/15 75.0%

E 4 1 17 1 1 17/3 15.0%

F 5 2 12 1 1 1 2 1 12/8 40.0%

G 6 17 2 1 17/3 15.0%

H 7 3 16 1 16/4 20.0%

I 8 2 1 2 8 5 1 1 8/12 60.0%

J 9 1 1 13 1 2 1 1 13/7 35.0%

K 10 17 1 1 1 17/3 15.0%

L 11 1 1 1 14 1 1 1 14/6 30.0%

M 12 3 10 4 1 1 1 10/10 50.0%

N 13 1 3 1 3 11 1 11/9 45.0%

O 14 2 1 9 1 1 5 1 9/11 55.0%

P 15 1 16 2 1 16/4 20.0%

Q 16 1 1 1 1 16 16/4 20.0%

R 17 1 2 1 5 2 1 2 6 5/15 75.0%

S 18 1 5 6 3 1 3 1 3/17 85.0%

T 19 2 1 2 14 1 14/6 30.0%

U 20 1 3 1 2 5 1 2 4 1 5/15 75.0%

V 21 1 1 17 1 17/3 15.0%

W 22 1 1 1 16 1 16/4 20.0%

X 23 1 1 1 15 1 1 15/5 25.0%

Y 24 0 1 2 1 1 15 15/5 25.0%

Z 25 1 1 1 1 16 16/4 20.0%

AE 26 2 1 1 1 1 14 14/6 30.0%

OE 27 1 2 1 2 14 14/6 30.0%

UE 28 1 1 1 2 2 2 10 1 10/10 50.0%

SCH 29 1 1 18 18/2 10.0%

Eins 30 3 1 1 15 15/5 25.0%

Zwei 31 1 1 1 1 2 14 14/6 30.0%

Drei 32 1 1 1 3 14 14/6 30.0%

Vier 33 2 1 1 1 15 15/5 25.0%

Fuenf 34 1 1 18 18/2 10.0%

C 8 11 12 5 17 12 17 16 8 13 17 14 10 11 9 16 16 5 3 14 5 17 16 15 15 16 14 14 10 18 15 14 14 15 18

I 9 7 9 1 25 0 9 4 3 12 12 1 18 15 4 3 29 5 3 0 8 1 3 7 0 12 4 13 12 2 11 6 1 1 0

I% 4 3 4 0 10 0 4 2 1 5 5 0 7 6 2 1 12 2 1 0 3 0 1 3 0 5 2 5 5 1 4 2 0 0 0

We investigated also the use of different penalty functions (see Section 5.3.1 for
explanations of the penalty functions). Figure 7.12 shows that the absolute penalty
function achieves more constant results than the (squared) Euclidian distance function.
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Table 7.27. Error rates for the i6-Gesture database with camshift tracking and different
distance functions

Feature Feature Size Distance ER[%]

Original thresholded
by skin color prob.

32x32 Euclidan 44.0

32x32 One-sided tangent 39.4
32x32 Two-sided tangent 35.7
16x16 One-sided tangent 46.0
16x16 Two-sided tangent 42.5

1st time derivative
of orig. thresholded
by skin color prob.

32x32 Euclidan 46.2

32x32 Two-sided tangent 44.1
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Figure 7.11. Dynamic tracking error rate on the LTI-Gesture database with Euclidian penalty
function showing error rate vs. jump penalty weight
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Figure 7.12. Dynamic tracking error rate on the LTI-Gesture database with absolute penalty
function showing error rate vs. jump penalty weight
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Figure 7.13. Dynamic tracking error rate on the LTI-Gesture database with squared
Euclidian penalty function showing error rate vs. jump penalty weight
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Chapter 8

Conclusion and Perspective

Conclusion. In this work, we showed that using simple but effective appearance-
based features and appropriate models of image variability, we could obtain excellent
results for various gesture recognition tasks. On the LTI-Gesture database and the
DUISBURG-Gesture database we obtained very competetive results. On the newly
created and much harder i6-Gesture database, we obtained very promising results. We
gave a review of the different appearance-based features and the HMMs used.

Work in the field of gesture recognition usually first segmented parts of the input im-
ages — for example the hand — and then used features calculated from this segmented
input. The obtained results presented in this work suggest that this intermediate seg-
mentation step is not necessary.

The use of tangent distance and image distortion models as appropriate models of
image variability in combination with appearance-based features was investigated and
compared to the Euclidian distance. Using these distance measures, the error rate
could be reduced on all regarded databases and shows the power of integrating these
distance measures into the HMM emission probabilities for recognizing gestures.

Different tracking algorithms were analyzed and we developed a new dynamic pro-
gramming tracking algorithm and showed its potential under noisy circumstances com-
pared to camshift tracking. The use of tracking was investigated on the LTI-Gesture
and i6-Gesture database and could reduce the error rate in both cases. Simple tracking
algorithms like Bounding-Box tracking are very susceptible to noise but nevertheless
they can lead to very good results on appropriate databases like the LTI-Gesture
database.

All the features presented were used for appearance-based gesture recognition on
three completely different databases:

• LTI-Gesture database: infrared images of only the gesturing hand, which can
easily be segmented from the background; a constant environment and a sufficient
resolution; used to control in-car devices

• DUISBURG-Gesture database: full body gestures in a body-centered space, 14
different persons gesturing 24 gestures; gray level images at a low resolution;
used to control a robot
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• i6-Gesture database: two views with full body gestures and gestures where only
a section of the gesturing hand is visible, respectively; color images recorded
under varying lighting conditions with 20 different persons gesturing 35 gestures
of the German fingerspelling alphabet

These differences in the databases are also reflected in the results. We could achieve
error rates between 1.4% and 2.8% without tracking and between 0.0% and 2.8%
with tracking on the LTI-Gesture database comparable to the error rate of 4.5% pre-
sented in [Pelkmann 99]. On the DUISBURG-Gesture database we could achieve er-
ror rates between 13.9% and 22.2% comparable to the error rate of 7.1% presented in
[Rigoll & Kosmala+ 98]. These error rates, which are higher than the results obtained
using COG-features, show that for this task it is sufficient to only consider global
movement. The appearance-based approach here is affected by the high level of noise
and the high intra-person variability. Nevertheless, the error rate is still competitive
with the COG-based approach. The best achieved results up to now on the i6-Gesture
database are ranging between 35.9% and 46.0% error rate and show the high complex-
ity of this database and the need for additional preprocessing methods to normalize
the images, as for example brightness and contrast normalization. Nevertheless, this
result is promising because only a simple webcam without any restriction for the signer
was used and some signs are visually very similar, as for example the signs for “M”,
“N”, “A”, and “S”.

An important part of this work was the creation of the gesture recognition software,
capable of recognizing different kinds of gestures using many different appearance-
based features and distance measures. The options for the HMM architecture used to
recognize the gestures were analyzed. It turned out that using variance thresholding in
combination with fixed transition probabilities, a 0-1-2 model, pooling of the variances,
and a high emission score weight led to the best results. Downscaling the images also
has a high impact on the error rates and applying a Gaussian filter before downscaling
led to the best results.

Also, a significant amount of time was dedicated to the creation of a new Ger-
man fingerspelling alphabet database which will be freely available1. The i6-Gesture
database has been recorded and is published to give all researchers working in the area
of sign language and gesture recognition the possibility to compare the quality of their
algorithms with ours.

Perspective. Many publications using HMM architectures were cited and show the
activity in this research area. The integration of tangent distance and image distortion
models as appropriate models of image variability in combination with appearance-
based features is a new area of research in gesture recognition.

1Our database is freely available at http://www-i6.informatik.rwth-aachen.de/~dreuw/
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At this point, still some questions remain unanswered, e.g. the missing IDM distance
measure results on i6-Gesture database which are expected to improve the error rate.
Also, not all distance measures were completely analyzed in combination with tracking
on all databases. Further, the images of the i6-Gesture database recorded with the
camcorder showing the complete body were not yet used for classification. Combining
the images of the two cameras should also be investigated.

A future goal for the software created in this work is the integration of all distance
measures available in the W2D library2 and the extension to a continuous gesture
recognition system (e.g. to control small desktop applications by simple gestures).

Developing applications for gesture recognition are encouraged by the growing amount
of devices in household and everyday life. Systems like Konami’s“Dance Dance Revolu-
tion” [Konami 02], Microsoft’s investigations on “GWindows” [Wilson & Oliver 03] or
the RespondDesigner’s XBox game “Yourself!Fitness” [respondDesign 04], and Sony’s
EyeToy for Playstation [Sony 04] which has been sold more than 4 million times world-
wide since its release are some examples for the commercial use of gesture recognition
systems which show the interest of major enterprises in this area — and they also
justify the research.

Also, an integration of our developed system in the existing Verbmobil project3 may
be an interesting step. “Verbmobil was a long-term interdisciplinary language technol-
ogy project. The Verbmobil System recognizes spoken input, analyzes and translates
it, and utters the translation. This speaker-independent system processes spontaneous
speech. Verbmobil offers assistance in multilingual dialog situations in certain domains
(e.g. scheduling appointments, travel planning and making hotel reservations). The
project is a joint initiative involving information-technology companies, universities,
and research centers” [Alexandersson & Buschbeck-Wolf+ 98].

However, because of the inherent complexity of the tasks, problems are still far
from being solved (even with the use of stereo-cameras) in sign language recognition
whereas simpler problems in gesture recognition can be solved under accurately defined
environment constraints.

2W2D is a software package for appearance based image recognition supporting different pixel to
pixel deformation models and was developed in [Gollan 03]. It is freely available at http://www-

i6.informatik.rwth-aachen.de/~gollan/w2d.html
3http://verbmobil.dfki.de/verbmobil/
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Appendix A

Software Documentation

In this chapter we give an overview of the software developed in the context of this
work. We used many freely available programs such as Linux as operating system,
gcc1 compilers and XEmacs2 to write programms, xv3 , ImageMagick4, The Gimp5,
GQView6 and Mplayer7 for viewing and manipulating images and videos, and finally
LATEX and xfig8 for typesetting this thesis.

The implementation of the algorithms we used for camshift tracking was taken from
the LTI-Lib9 which is an object oriented library written in C++ with algorithms and
data structures frequently used in image processing and computer vision. The camshift
tracker was implemented as described in [Bradski 98].

The software developed in the context of this work is completely based on this LTI-
Lib which gave us the possibility to build a quite complex software within the period
fixed for this work.

GestureTooli6 (gti6)

The developed GestureToolI6 is the main software used to produce the results pre-
sented in Chapter 7. At the beginning this software was designed to view only the
effects of applying filter or difference operations on image sequences and was then
successively extended to a gesture recognition system.

Invocation of gti6 is done as follows:

gti6 [OPTIONS] <filename1> [<filename2>]

and gti6 --help will show detailed help information.
1http://gcc.gnu.org/
2http://www.xemacs.org/
3http://www.trilon.com/xv/
4http://www.imagemagick.org/
5http://www.gimp.org/
6http://gqview.sourceforge.net/
7http://www.mplayerhq.hu/
8http://www.xfig.org/
9http://ltilib.sourceforge.net/doc/homepage/
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Options for gti6

In the following the [OPTIONS] concerning data handling and manipulation, viewing,
features and tracking are explained.

Data Options

-st --splitTrain <id> will split data into different datasets depending on <id>:

• 0 = train and test

• 1 = test and train

• 2 = Leaving-1-Person-Out

• 3 = NearestNeighbour (this requires a special database file)

-lop --leaveOutPerson <uint> will split the training data into leaving-one-person-
out train- and testset and use the <uint> person as test set (implies --splitTrain(2)).
This makes only sense if each person occurs only once and has the same id in
each class. Can be used with the DUISBURG-Gesture database.

-r --rotation <int> will extend the training data by rotating each image by ±
<int> angle degree (creates virtual data).

-iY --inputScaleSizeY <int> will scale input data to this height, x-dimension will
be scaled symmetric

-ft --fileType <id> specifies the file format of the given filenames:

• 0 = original database file (default)

• 1 = lisp database file

• 2 = binary database file

• 3 = lisp feature file

• 4 = binary feature file

Viewing Options

If you enable the viewer, you can press the left mouse button to get more information
about a pixel, or the right mouse botton to change the visualization options or to save
a single image to file.

With the Left and Right keys you can change the file being displayed, with the up
and down keys you can change the sequence and with the Q or X keys you can exit
the viewer program.
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With the keys “O”, “D”, “F”, “H”, “S” and “T” you can switch directly between the
sequences (O)riginal, (D)iffernce, (F)eauture, (H)istory, (S)kin and (T)racker. Press-
ing “J”will save the whole currently showed sequence as JPEG images into the current
folder. All files will have as prefix “viewer”. If a selected sequence or feature was not
extracted a red warning image will be displayed instead.

To enable the viewer which will show each extracted sequence for a given database
filename one have to select a viewpoint:

-vo --viewOrig will show first the original images

-vd --viewDiff will show first the difference images

-vt --viewTrack will show first the images as in tracking view

-vs --viewSkin will show first the skin-color probability channels

Additionally one can specify to the selected view the following parameters:

-vb --viewBoxes will overlay the tracking boxes on the selected view

-vc --viewCOGs will overlay the COGs on the selected view.

-z --zoom <float> will zoom each sequence by this value when displaying.

-vy --viewOnly is a special option is which will show only the selected features,
no classification will be done. This can be useful when creating a database
file with different images of different sizes only for viewing the effects of image
transformations. The extracted features can still be written to file with -wtrf
option or saved directly as images from the viewer by pressing “J”.

For example the combination [...] -vo -vb -z 3 [...] would display each
sequence frame scaled by a factor 3 on screen, overlaid by the extraction box. The
viewer would display the original images first.

Feature Options

Feature preprocessing options are:

-fd --funcDiff <id> set the difference function to calculate the time derivative
image features:

• -1 = disabled (default)

• 0 = absolute difference |(t + 1)− (t− 1)|
• 1 = first time derivative (t + 1)− (t− 1)

• 2 = (unused)
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• 3 = successor difference (t + 1)− (t)

• 4 = second time derivative (t− 1)− 2 ∗ (t) + (t + 1)

-N --nOfDiffImages <uint> number of differences images to be considered for time
derivative calculation (default=3)

-X --scaleSizeX <double> feature width for downscaled images (default=32)

-Y --scaleSizeY <double> feature height for downscaled images (default=32)

-2ps --2PassScale enables two pass downscaling of the images. This will downscale
the images first to (X*2)*(Y*2) and then to X*Y.

-ts --threshSeg will threshold the original images with the -so values in the begin-
ning!

-hs --historySize <uint> history size used for motion and skin history image
features. Default is 0 which means full sequence history size

-ht --historyTemplate use history and energy image features for template match-
ing with HMM, e.g. only one state will be used. If using template matching,
only the features mhi, mei, sei and shi are supported.

The features are selected by -F --Features <regexp>. All available features can
be combined by a regular expression:

<feature>:[<option>{-<option>}]:[distance]:<weight>
{,<feature>:[<option>{-<option>}]:[distance]:<weight>}.

Possible values for <feature> are:

cog or centerOfGravity to enable centroid features (COG-features)

o or original to enable original images as features

d or difference to enable time derivative images as features

m or motion to enable absolute motion images as features

n or negative to enable negative motion images as features

p or positive to enable positive motion images as features

mhi or motionhistory to enable motion history images as features

mei or motionenergy to enable motion energy images as features
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sc or skincol to enable skin color probabilitiy image features

scd or skincoldiff to enable skin color probabilitiy difference image features

sct or skincolthresh to enable original features thresholded by their skin color
probability

sctd or skincolthreshdiff to enable time derivative image features of original
images thresholded by their skin color probability

shi or skinhistory to enable skin probability history images as features

sei or skinenergy to enable skin probability energy images as features

All features can have multiple options. The specified options will be applied as they
are ordered! Possible values for <option> are:

sh or sobelh will apply a horizontal sobel filter on the image feature

sv or sobelv will apply a vertical sobel filter on the image feature

s or sobel will apply a sobel filter on the image feature (magnitude)

s2 or sobel2 will apply a squared sobel filter on the image feature (squared magni-
tude)

t or threshold will thresholded the image feature by the value specified in -tf or
--threshFeat

e or equalize will apply a histogram equalization on the image feature.

In the future, each feature will have its own distance function to be calculated in an
HMM. Possible values for <distance> will be later the distance modes from the W2D
library10. This parameter is not yet supported and can be left empty.

The parameter <weight> is used to weight each feature when combining and the
default value is 1.0.

Example: combining the original sobel features, thresholded before applying the
Sobel-filter, and the 1st time derivative image features, downscaled to 32x32 with
equal weights [...] -tf 10 -fd 1 -Fo:ts-s::1.0,d:::1.0 -X 32 -Y 32 [...].

Also there exist some special feature selection parameters which have not been
investigated in this work.

-nf --neighborFeat will enable neighbor features after extraction, i.e. the extracted
features of Xt−1, Xt, and Xt+1 will be concatenated to one feature vector.

-spf --speechFeat will enable special combination of original, 1st and 2nd time
derivative image features

10http://www-i6.informatik.rwth-aachen.de/~gollan/w2d.html
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Tracking Options

To extract features of an image sequence an area of interest (“aoiExtract”) has to be
specified. The simplest extraction area is the whole image, i.e. choosing -fb. The
available tracking methods are:

-cn --centroidNorm set aoiExtract box to fixed extract box using centroid normal-
ization of the current image

-bb --boundingBox set aoiExtract box to Bounding-Box rectangle

-eb --ellipseBox set aoiExtract box to motion-ellipse rectangle which depends on
the COG-features then

-fb --fullBox set aoiExtract box to full image size rectangle (default)

-ct --camshiftTracking set aoiExtract box to the camshift tracker skin probability
box

-dt --dynamicTracking enable dynamic tracking with fixed extract box to set aoiEx-
tract box

The Bounding-Box tracking supports some additional options to control the size of
the tracking box:

-bc --borderCor <uint> set border correction of Bounding-Box tracking rectangle,
i.e. the rectangle will be enlarged by <uint> pixels in all directions

-ks --kernelSize <uint> size of the Gaussian filter kernel which will be applied
before searching the Bounding-Box rectangle if greater than zero, otherwise dis-
abled

-tbb --threshBBox <float> set lower threshold for area of interest in Bounding-
Box search (default=1.0, i.e. one white pixel)

To control the behavior of the dynamic tracking one can specify the following op-
tions:

-dmj --dynaMaxJump <uint> maximum relative forward jump (default=5 pixels)

-dms --dynaMaxStep <uint> maximum grow/shrink step size for a tracking rectan-
gle within local score calculation (default=5 pixels)

-di --dynaIterations <uint> number of grow/shrink iterations for a tracking rect-
angle within local score calculation (default=0, only fixed size rectangles)
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-dpt --dynaPrunThresh <float> dynamic tracking pruning threshold for a tracking
window score

-dpc --dynaPenalCenter <float> dynamic tracking penalty weight for tracking
jumps

-dps --dynaPenalSize <float> dynamic tracking penalty weight for tracking grow/shrink

-dpf --dynaPenalFunc <id> dynamic tracking penalty function:

• 0 = euclidian distance (default)

• 1 = squared euclidian distance

• 2 = absolute distance

-dsw --dynaScoreWeight <float> dynamic tracking score weight relative local score
(default=1.0)

-T --dynaTrackSpan <uint> number of sequence images to consider for score cal-
culation (default=0, consider all)

-TB --dynaTraceSpan <uint> dynamic tracking nof images to look in the future
when calling traceback (default=MaxInt, consider all)

The extraction size (in pixels) of the fixed size trackers centroidNorm, camshift-
Tracking and dynamicTracking can be set as follows:

-eX --extractSizeX <uint> set aoiExtract box width for fixed extract Box (de-
fault=70)

-eY --extractSizeY <uint> set aoiExtract box height for fixed extract Box (de-
fault=70)

HMM Options

The main HMM options are:

-tp --transProb <double> set fixed transition probability

-lsp --loopSkipProb <double> fixed loop/skip probability

-esw --emiScoreWeight <double> emission score weight. Use a value >1.0, to em-
phasize the emission or a value <1.0 to put more weight into the transitions
(default=1.0)
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-essw --emiScoreStateWeight <double> emission score state weight. Use a value
between 1.0 and 2.0, to emphasize the emission scores at normalized position
default=1.0 which means equal weights for all states

-esst --emiScoreStateThresh <double> emission score at this normalzed state
will have the maximum weight defined by --emiScoreStateWeight (default=0.5,
the center state)

-S --nOfStates <int> set the number hmm states to <int>. Special values are:

• -1 = average sequence length

• 0 = minimum sequence length (default)

-minj --minJump <uint> minimum relative forward jump within HMM (default=0)

-maxj --maxJump <uint> maximum relative forward jump within HMM (default=2)

-md --maxDens <uint> set maximum number of allowed densities per state (de-
fault=5)

-msf --minScalingFactor <double> set minimum scaling factor (variance) when
calculating variances (default=0.1)

-ls --laplaceScore use Laplacian score function for the emission scores

-gs --gaussScore use Gaussian score function for the emission scores (default)

-eml --estMaxLike select estimator for given score function (default)

-esd --estStdDev use standard deviation (Gaussian maximum-likelihood)

-emd --estMeanDev use mean absolute deviation (Laplacian maximum-likelihood)

-emdr --estMeanDevRoot use root of mean absolute deviation (Laplacian maximum-
likelihood)

-pv --pruneViterbi <double> set viterbi pruning threshold, e.g. 2e+8 (default is
1e+35, disabled)

An online recognition system was also integrated into the system but not described
in this work. The online HMM has the following options:

-pb --pruneBeam <float> additive pruning threshold, e.g. 2e+8. For values lower
than 0 no beam search is performed.
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-ph --pruneHisto <uint> describes the maximum number of active hypotheses
(histogram pruning). For value 0, no histogram pruning is performed (default
1000)

-B --nOfBuckets <uint> defines the number of buckets for the bucket-sort-algorithm
used in histogram pruning

-atb --automaticTraceBack <uint> after the given number of timesteps, a partial
trace back is performed and the calculated values are saved internally. (default
is 0, disabled)

The variance pooling inside the HMM can specified by the following options:

-np --noPool disable pooling in HMM Training

-sp --statePool enable state pooling in HMM Training

-mp --modelPool enable model pooling in HMM Training (default)

-gp --globalPool enable global pooling in HMM Training

Distance options

-sd --scoreDistance use score distance (either Euclidian or L1, depending on the
chosen score function) to calculate viterbi scores in classification (default)

-id --idmDistance use image distortion model distance to calculate viterbi scores
in classification

-iwr --idmWarpRange <uint> set the IDM warprange to <uint> (default=1)

-ips --idmPatchSize <uint> set the IDM patchsize to <uint> (default=2)

-is --idmSobel will apply a Sobel-filter on the image features in IDM to calculate
distance (default=false)

-w2d --w2dDistance <id> use W2D distance model to calculate viterbi scores in
classification. This function is not yet supported but the available distance op-
tions will be as follows:

• 3 = tangentDistance2Sided

• 4 = tangentDistance1Sided

• 5 = p2DHMMDistance

• 6 = p2DHMDMDistance

• 7 = hungarianDMDistance
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• 8 = w2DHMMDistance

• 9 = sA2DHMDMDistance

• 10 = iDMDistance

• 11 = iDM3Distance

-td --tangentDistance use tangent distance to calculate viterbi scores in classifi-
cation

-tc --tangentChoice <string> tangent distance choice string, e.g 111111100 to
enable the first 7 tangents

-TS --tangentSides <1 | 2> calculate (1) one-sided (default) or (2) two-sided tan-
gent distance in classification

-dd --distanceDev <double> set unique variance in score functions (default=0.0,
use estimated)

-ttd --trainTestDist enable the same distance settings for training and classifica-
tion (default)

-dr --distRotation <uint> rotate the images by +-0 <uint> degree when calcu-
lating the distance in classification. The image with the best (shortest) distance
will be used (default=0, no rotation)

-dth --distThreshold <double> use thresholded distance. Generally a good thresh-
old is 5% or 10% of the maximum distance (default=0.0)

Misc

File handling and logging options:

-dl --debuglevel <uint> set the debugging information level to <uint> (default=10).
Setting it to 0 will disable it.

-l --log <file> write std::clog stream to <file>

-e --err <file> write std::cerr stream to <file>

-wtrf --writeTrainFeat <file> write extracted train features in binary format to
<file>

-wtef --writeTestFeat <file> write extracted test features in binary format to
<file>
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-sfj --saveFeatJPEG save all features as JPEG images into the folder ./fea-
ture_images/ – this can be a lot.

-h --help show detailed description on console

Image thresholding options:

-to --threshOrig <float> set lower threshold for thresholding in original image
(default=0.0, disabled)

-tf --threshFeat <float> set lower threshold for thresholding in feature images
(default=0.0, disabled)

-tt --threshTrack <float> set lower threshold for thresholding in tracking (de-
fault=0.0, disabled)

Examples for gti6

Example 1 In the following example original image features with a weight of 1.0 will
be extracted with dynamic tracking on the LTI-Gesture database, using IDM distance
with a patch size of 13x13 and IDM-Sobel-filter. Each feature will be downscaled to
32x32.

The tracker will allow a maximum jump width of the tracking center of 5 pixels in
each frame with a penalty weight set to 0.1. Local grow/shrink will be disabled and
the Euclidian distance between two tracking centers will used to calculate the penalty
score. Pruning will be enabled. The tracking window will have a fixed size of 70x70.

The transition probability and the loop-skip probability of the chosen 0-1-2 model
will be fixed in combination with a high emission score weight. Pruning will be used
in HMM emission score calculation.

A Gaussian distribution will be used in combination with model pooling. Each HMM
may have a different number of states which will depend on the minimum sequence
length seen in training. Each state will have the same weight and the maximum state
weight would be on the central state. Each state will have at most 5 densities.

As only one filename is given, a split option must be set to create a training and
testing set. The first part of the specified database will be used for training, the last
for testing.

gti6 --log logfile.log -dl 10 -fd 1 -F o:-::1.0 -X 32 -Y 32 -eX 70
-eY 70 -2ps -dt -dmj 5 -dpc 0.1 -di 0 -dpt 0.01 -dpf 0
-id -ips 6 -is -iwr 1 -S 0 -maxj 2 -md 5 -msf 0.1 -tp 0.4 -lsp 0.3
-esw 100000.0 -pv 2e+8 -essw 1.0 -esst 0.5 -gs -mp -eml
--splitTrain 0 lti_train.txt
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Example 2 Example usage to obtain a result of 1.4% error rate on the LTI-Gesture
2nd split with one-sided tangent distance with rotation by ±10 degree, full size extrac-
tion of the original image features, two-pass downscaled to 32x32:

gti6 -fd 1 -F o:-::1.0 -X 32 -Y 32 -2ps -fb -td -dr 10
-tc 111111000 -TS 1 -S 0 -maxj 2 -md 5 -msf 0.1 -tp 0.4 -lsp 0.3
-esw 100000.0 -pv 2e+8 -gs -mp -eml --splitTrain 1 lti_train.txt
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