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Abstract
Today’s speech recognition systems are able to recog-
nize arbitrary sentences over a large but finite vocabu-
lary. However, many important speech recognition tasks
feature an open, constantly changing vocabulary. (E.g.
broadcast news transcription, translation of political de-
bates, etc. Ideally, a system designed for such open
vocabulary tasks would be able to recognize arbitrary,
even previously unseen words. To some extent this can
be achieved by using sub-lexical language models. We
demonstrate that, by using a simple flat hybrid model,
we can significantly improve a well-optimized state-of-
the-art speech recognition system over a wide range of
out-of-vocabulary rates.

1. Introduction

Large vocabulary speech recognition systems operate
with a fixed large but finite vocabulary. Typical vocabu-
lary sizes are of the order of ten to one hundred thousand
word forms. This is suitable for e.g. dictation tasks for a
fixed domain. In open vocabulary settings (e.g. broadcast
news, political debates, etc.) the number of different
words do not appear to be finite. Systems operating
with a fixed vocabulary are bound to encounter so-called
out-of-vocabulary (OOV) words. These are problematic
for a number of reasons: 1) An OOV word will never
be recognized (even if the user repeats it), but will be
substituted by some in-vocabulary word. 2) Neighboring
words are also often misrecognized. 3) Later processing
stages (e.g. translation, understanding, document re-
trieval) cannot recover from OOV errors. 4) OOV words
are often content words. The goal for open vocabulary
scenarios is clear; the transcription system should be able
to handle any spoken word without help from the user.
To see how this could be achieved, let us briefly review
the decision rule and knowledge sources used by a large
vocabulary speech recognition system:

w(x) = argmax
w′

p(w′) max
ϕ

p(x|ϕ)p(ϕ|w′) (1)

with

• acoustic modelp(x|ϕ)
relates acoustic featuresx to phoneme sequencesϕ,
typically an HMM (vocabulary independent)

• pronunciation lexiconp(ϕ|w)
assigns one (or more) phoneme string(s)ϕ to each
wordw ∈ V

• language modelp(w)
assigns probabilities to sentences from a finite set of
wordsw ∈ V ∗

For open vocabulary recognition, we propose to concep-
tually abandon the words in favor of individual letters.
Unlike words, the set of different lettersG in a writing
system is finite. Concerning the link to the acoustic
realization, the set of phonemesΦ can also be considered
finite for a given language. These considerations suggest
the following model:

g(x) = argmax
g′

p(g′)max
ϕ

p(x|ϕ)p(ϕ|g′) (2)

with

• acoustic modelp(x|ϕ)

• pronunciation modelp(ϕ|g)
provides a pronunciationϕ ∈ Φ∗ for any string of
lettersg ∈ G∗

• sub-lexical language modelp(g)
assigns probabilities to character stringsg ∈ G∗

Alternatively the pronunciation model and sub-lexical
language model can be combined into a

• joint “graphonemic” modelp(ϕ, g)

2. Grapheme-to-Phoneme Conversion

Obviously this approach to open-vocabulary recognition
is strongly connected to grapheme-to-phoneme conver-
sion (G2P), where we seek the most likely pronunciation
for a given orthographic form:

ϕ(g) = argmax
ϕ′∈Φ∗

p(ϕ′, g) (3)

In particular “graphonemic” joint sequence models have
been shown to perform very well on G2P tasks [1, 2, 3, 4].
The underlying assumption of this model is that, for each
word, its orthographic form and its pronunciation are
generated by a common sequence of graphonemic units.
Each unit is a pairq = (g,ϕ) ∈ Q ⊆ G∗ ×Φ∗ of a letter
sequence and a phoneme sequence of possibly different



Table 1: Grapheme-to-phoneme conversion performance
as a function of graphone sizeL andM -gram lengthM .
All models were trained on the 20k baseline dictionary.
Results are given as phoneme error rate on a disjoint sub-
set of the 64k lexicon.

M L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1 46.95 34.97 28.16 24.56 25.52 27.96
2 23.36 18.87 18.74 19.80 23.80 25.24
3 17.76 16.56 18.34 19.94 23.82 25.05
4 16.09 16.46 18.25 19.94
5 15.22 16.49 18.01
6 15.01

length. We refer to such a unit as a “graphone”.1 The
joint probability distributionp(ϕ, g) is thus reduced to
a probability distribution over graphone sequencesp(q)
which we model using a standardM -gram:

p(qN
1 ) =

N+1∏
i=1

p(qi|qi−1, . . . , qi−M+1) (4)

The complexity of this model depends on two parame-
ters: the range of theM -gram model and the allowed
size of the graphones. We allow the number of letters
and phonemes to vary between zero and an upper limit
L:

∣∣gq

∣∣ = 0 . . . L,
∣∣ϕq

∣∣ = 0 . . . L. Chen [4] has shown
that excellent results can be obtained when restricting the
segmentation to trivial chunks containing zero or one let-
ter and zero or one phoneme (L = 1). We were able
to verify that shorter units in combination with longer
rangeM -gram modeling yields the best result for the
grapheme-to-phoneme task. This is exemplified in ta-
ble 1. A more comprehensive report on these results is
currently in preparation.

3. Models for Open Vocabulary ASR

The graphone-based model integrates very easily with
the standard speech recognition architecture: Any
graphone can simply be added to the normal pronun-
ciation dictionary. This means we combine the lexical
entries with the (sub-lexical) graphones derived from
grapheme-to-phoneme conversion to form an unified set
of recognition unitsU = V ∪Q. From the perspective of
OOV detection the sub-lexical unitsQ have been called
“fragments” or “fillers” [5, 6, 7] but are typically not
associated with spelling information. By treating words
and fragments uniformly the decision rule becomes

argmax
u∈U∗

p(x|u)p(u) . (5)

The sequence modelp(u) can be characterized as “hy-
brid” because it contains mixedM -grams containing
both words and fragments. It can also be characterized
as “flat”, as opposed to structured approaches that pre-
dict and model OOV words with different models. A

1Various other names have been suggested: grapheme-phoneme
joint multigram, graphoneme, grapheme-to-phoneme correspondence
(GPC), chunk

shortcoming of this model is that it leaves undetermined
were word boundaries (i.e. blanks) should be placed. The
heuristic used in this study is to compose any consecutive
sub-lexical units into a single word and to treat all lexical
units as individual words. Galescu [8] has demonstrated
that this flat hybrid model can in fact be used to perform
recognition of out-of-vocabulary words, but the relative
improvements he reported were rather small.

4. Experiments

We have tested the method discussed on the Wall Street
Journal dictation task, which is a well-studied large vo-
cabulary dictation task. Recognition results were pro-
duced on the ARPA 1993 and 1994 Hub-1 development
test data. The combination of these, containing 812 sen-
tences with 15625 words, will be referred to as “dev
93+94”. We also report results on a subset called “dev
rare” comprising that half of the sentences containing the
rarest words (406 sentences, 8527 words).

The speech recognizer uses features derived from 16
Mel-frequency cepstral coefficients with cepstral mean
normalization, and linear discriminant analysis on seven
consecutive vectors with an output dimension on 32.
Acoustic modeling is based on triphones with across-
word context using 7001 tied states. Gaussian mixtures
with a total of 405k densities were training using MCE
[9]. No speaker adaptation was used.

We have three different established vocabularies with
5, 20 and 64 thousand words, each corresponding to the
most frequent words in the language model training cor-
pus. These constitute our baseline setups (cf. table 3).
For each baseline pronunciation dictionary a grapheme-
to-phoneme model was trained with different length con-
straintsL = 2 . . . 6 using EM training withM -gram
length of 3 (cf. table 1). The recognition vocabulary
was then augmented with all graphones inferred by this
procedure. Next the WSJ language model corpus (10M
sentences, 227M words) was modified by replacing all
OOV words by their most likely (sub-lexical) graphone
sequence. This modified text was used to estimate the re-
spective hybrid language model using absolute discount-
ing with interpolation.

Some recognition examples are shown in table 2. For
quantitative analysis, we evaluated both word error rate
(WER) and letter error rate (LER). Letter error rate is
more favorable with respect to almost-correct words and
corresponds with the correction effort in dictation appli-
cations.

4.1. Bootstrap Analysis of OOV Impact

We are particularly interested in the effect of OOV
words on the recognition error rate. This effect could be
studied by varying the system’s vocabulary. However,
changing the recognition system in this way might



Table 2: Examples of recognized OOV words: The columns show the recognition result of the respective system for the
word shown on the left. Incorrect results are slanted. The vertical lines in the FH result indicate the fragment boundaries
and are not part of the actual system output.

correct baseline 20k baseline 64k FH 20kL=4
opportunistic opportunity stick opportunistic opp|or|tun|ist|ic
cellar seller cellar cell|ar
overblown the reply overblown over|blow|n
convulsed can false convulsed conv|uls
disenfranchised anderson franchise disenfranchise dis|en|fran|chis|ed
Litvack slipped back litvack lit |v|ack
Margulies marti leaves margulies mar|u|li|as
Murtagh murray todd humor tad m|ur|tag
Betty Percival bettypersonal that a person will bettypers|ible
Noriyuki Matsushima or you keep matsushita subsidiary p. matsushita n|ori|y|uk|i|ma|t|su|shi|ma
Du Liban do rebound duly bond du|ly bond

introduce secondary effects such as increased con-
fusability between vocabulary entries. Alternatively
we can alter the test set. By extending the bootstrap
technique proposed in [10], we create an ensemble of
virtual test corpora with a varying number of OOV
words, and respective WER. This distribution allows us
to study the correlation between OOV rate and word
error rate without changing the recognition system. This
procedure is detailed in the following: For each sentence
i = 1 . . . s we record the number of wordsni, the number
of OOV wordsoi and the number of recognition errorsei:

X = (n1, o1, e1), . . . , (ns, os, es) (6)

For b = 1 . . . B (typically B = 103) we randomly select
with replacements tuples fromX to generate a bootstrap
sample

X∗b = (n∗b
1 , o∗b

1 , e∗b
1 ), . . . , (n∗b

s , o∗b
s , e∗b

s ) (7)

Then we calculate the OOV rate and word error rate on
this sample

OOV ∗b :=
s∑

i=1

o∗b
i

/ s∑
i=1

n∗b
i (8)

WER∗b :=
s∑

i=1

e∗b
i

/ s∑
i=1

n∗b
i (9)

The bootstrap replicationsOOV ∗b andWER∗b can be
visualized by a scatter plot (see fig. 1). We quantify the
observed linear relation between OOV rate and WER by
a linear lest squares fit. The slope of the fitted line reflects
the number of word errors per OOV word. For this reason
we call this quantity “OOV impact”.

5. Discussion

The recognition results are listed in table 3. First of all we
note that the flat-hybrid model performs better than the
corresponding baseline in all tested circumstances. Obvi-
ously the improvement in error rate depends strongly on
the OOV rate: For very high OOV rates above 10%, error
rate reductions of over 30% relative are possible. For the
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Figure 1: Word errors vs. out-of-vocabulary rate: Each
data point represents one bootstrap replication of the dev
93+94 test set. The straight lines represent the linear
least-squares fit.

moderate OOV rates of the 20k system (2.6%), the im-
provement is still 15% relative. Even for very low OOV
rates the performance does not deteriorate as one might
have expected, but is still slightly better than baseline.

Is is interesting to compare the OOV impact factor
(word errors per OOV word): The baseline systems have
values between 1.7 and 2, supporting the common wis-
dom that each OOV word causes two word errors. The
flat-hybrid models are superior in this respect by at least
0.5, which means, for each OOV word, they make one
error less.

Concerning the optimal choice of fragment sizeL, we
note that there are two counteracting effects: LargerL
values increase the size of the graphone inventory, which
in turn causes data sparseness problems, leading to worse
grapheme-to-phoneme performance. Smaller values for
L cause the unit inventory to contain many very short
words with high probabilities, leading to spurious inser-
tions in the recognition result. The present experiments
suggest that the best trade-off is atL = 4.



Table 3: Recognition results for different models on both test sets. “FH” stands for flat hybrid model, followed by base
vocabulary and maximum fragment size. Out-of-vocabulary words (OOV) given in number of occurrences and percentage
per running words. Word error rate (WER) and letter error rate (LER) given in percent.

vocabulary dev 93+94 dev rare OOV
model words fragments OOV WER LER OOV WER LER impact
baseline 5k 4986 1743 24.26 11.23 1344 32.12 14.72 1.72
FH 5kL=2 5k + 1090 (11.2%) 17.56 7.69 (15.6%) 22.92 9.96 1.20
FH 5kL=3 5k + 3016 16.67 7.26 21.80 9.42 1.14
FH 5kL=4 5k + 4085 16.54 7.37 21.43 9.59 1.15
FH 5kL=5 5k + 4381 17.36 7.94 22.76 10.34 1.18
FH 5kL=6 5k + 4474 18.41 8.57 24.31 11.31 1.27
baseline 20k 19977 400 11.58 5.06 396 15.58 6.75 1.88
FH 20kL=2 20k + 1721 (2.6%) 10.43 4.45 (4.6%) 13.55 5.74 1.52
FH 20kL=3 20k + 6700 9.95 4.26 12.56 5.31 1.32
FH 20kL=4 20k + 11622 9.79 4.19 12.26 5.19 1.27
FH 20kL=5 20k + 13708 9.88 4.22 12.28 5.18 1.17
FH 20kL=6 20k + 14858 10.09 4.39 12.58 5.43 1.22
baseline 64k 64735 76 8.92 3.81 72 10.62 4.51 1.99
FH 64kL=2 64k + 3175 (0.5%) 8.93 3.84 (0.8%) 10.45 4.48 1.63
FH 64kL=3 64k + 14346 8.87 3.81 10.34 4.43 1.46
FH 64kL=4 64k + 29335 8.90 3.80 10.40 4.40 1.46

6. Conclusion

We have shown that we can significantly improve a well-
optimized state-of-the-art recognition system by using a
simple flat hybrid sub-lexical model. The improvement
was observed on a wide range of out-of-vocabulary rates.
Even for very low OOV rates, no deterioration occurred.
We found that using fragments of up to four letters or
phonemes yielded optimal recognition results, while us-
ing non-trivial chunks is detrimental to grapheme-to-
phoneme conversion.
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