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Abstract. Maximum entropy (ME) models has been successfully ap-
plied to many natural language problems. In this paper we present how
to integrate efficiently ME models within a maximum likelihood trainig
scheme of statistical machine translation models. Specifically, we define
a set of context-dependent ME lexicon models and we present how to
perform an efficient training of these ME models within the conven-
tional expectation-maximization (EM) training of statistical translation
models. Experimental results are also presented in order to demonstrate
how these ME improve the results obtained with the traditional trans-
lation models. The results are presente by means of alignment quality
comparing the resulting alignments with a manually annotated reference
alignments.

1 Introduction

The ME approach has been applied in natural language processing and machine
translation to a variety of tasks. [1] applies this approach to the so-called IBM
Candide system to build context-dependent models, to compute automatic sen-
tence splitting and to improve word reordering in translation. Similar techniques
are used in [2] for so-called direct translation models instead of those proposed
in [3]. [4] use ME models to reduce translation test perplexities and transla-
tion errors using a rescoring algorithm, which is applied to n-best translation
hypotheses. [5] describes two methods for incorporating information about the
relative position of bilingual word pairs into a ME translation model. Other
authors have applied this approach to language modeling [6].

In this paper we present how to integrate efficiently ME models within a
maximum likelihood trainig scheme of statistical machine translation models.
Specifically, we define a set of context-dependent ME lexicon models and we
present how to perform an efficient training of these ME models within the
conventional EM training of statistical translation models [3]. In each iteration
of the training process, the set of ME models is automatically generated by



using the set of possible word-alignments between each pair of sentences. The
ME models are trained with the GIS algorithm, then used in the next iteration
of the EM training process in order to recompute a new set of parameters of the
alignment and lexicon models.

Experimental results are presented for the French-English Canadian Parlia-
ment Hansards corpus and the Verbmobil task. The evaluation is performed by
comparing the Viterbi alignments obtained after the training of the conventional
and the integrated approaches with manually annotated reference alignment.

2 Statistical Machine Translation

The goal of the translation process in statistical machine translation can be
formulated as follows: A source language string £ = f/ = fi...fr is to be
translated into a target language string e = el = e, ...e;. Every target string is
considered as a possible translation for the source language string with maximum
a-posteriori probability Pr(e|f). According to Bayes’ decision rule, we have to
choose the target string that maximizes the product of both the target language
model Pr(e) and the string translation model Pr(f|e). Alignment models to
structure the translation model are introduced in [3]. These alignment models are
similar to the concept of Hidden Markov models (HMM) in speech recognition.
The alignment mapping is j — ¢ = a; from source position j to target position
i = a;. In statistical alignment models, Pr(f, ale), the alignment a is introduced
as a hidden variable.
The translation probability Pr(f,ale) can be rewritten as follows:

J
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3 Conventional EM Training (review)

In this section, we describe the training of the model parameters. Every model
has a specific set of free parameters. For example, the parameters 6 for Model
4[3] consist of lexicon, alignment and fertility parameters:

0= {{p(fle)}, {p=1(A7)} {p>1(A7)}, {p(gle)} . p1} . (2)

To train the model parameters 6, we pursue a maximum likelihood approach
using a parallel training corpus consisting of S sentence pairs {(fs,es) : s =
.S}

s
0= arg max H Zpg(fs, aleg) . (3)

s=1 a



We do this by applying the EM algorithm. The different models are trained in
succession on the same data, where the final parameter values of a simpler model
serve as the starting point for a more complex model.

In the E-step, the lexicon parameter counts for one sentence pair (e, f) are
calculated:

c(fle;e,f) = " N(e,f)- > Pr(ale,f) > d(f,f;)d(e,eq;) - (4)
e,f a J

Here, N(e,f) is the training corpus count of the sentence pair (f,e).

In the M-step, we want to compute the lexicon parameters p(f|e) that max-
imize the likelihood on the training corpus. This results in the following re-
estimation [3]:

>, el fle; £, e))
Y pc(fle ) el®)

Similarly, the alignment and fertility probabilities can be estimated for all other
alignmnent models [3]. When bootstrapping from a simpler model to a more
complex model, the simpler model is used to weigh the alignments and the
counts are accumulated for the parameters of the more complex model.

p(fle) = (5)

4 Maximum Entropy Modeling

4.1 Motivation

Typically, the probability Pr(fj|f1j71, a{, el) in Equation 1 is approximated by
a lexicon model p(f;j|eq;) by dropping the dependencies on flj_l, a{_l, and e].
Obviously, this simplification is not true for many natural language phenomena.
The straightforward approach to include more dependencies in the lexicon model
would be to add additional dependencies (e.g. p(fj|ea;,€q;_,)). This approach
would yield a significant data sparseness problem. For this reason, we define a
set of context-dependent ME lexicon models, which is directly integrated into a
conventional EM training of the statistical translation models.

In this case, the role of ME is to build a stochastic model that efficiently takes
a larger context into account. In the remainder of the paper, we shall use p.(f|z)
to denote the probability that the ME model (which is associated to e) assigns
to f in the context x. Please note that the ME model must be distinguished by
the basic lexicon model p(f|e).

4.2 Maximum Entropy Principle

In the ME approach, we describe all properties that we deem to be useful by so-
called feature functions ¢ i (2, f),k =1,..., K.. For example, let us suppose we
want to model the existence or absence of a specific word ej, in the context of an



English word e, which can be translated by f;. We can express this dependence
using the following feature function:

1if f =f, and e}, € x
0 otherwise

sl ) = { 6)

The ME principle suggests that the optimal parametric form of a model p.(f|x)
taking into account the feature functions ¢, x,k =1,..., K, is given by:

K.
pfle) = s e (er,me,k(x,f)) . (7)

k=1

Here, Z4,(z) is a normalization factor. The resulting model has an exponen-
tial form with free parameters A, = {A¢ 1,k = 1,..., K. }. The parameter values
that maximize the likelihood for a given training corpus can be computed using
the so-called GIS algorithm (general iterative scaling) or its improved version
IS [7, 1].

It is important to stress that, in principle, we obtain one ME model for each
target language word e. To avoid data sparseness problems for rarely seen words,
we use only words that have been seen a certain number of times.

4.3 Contextual Information and Feature Definition

As in [1] we use as a window of 3 words to the left and 3 words to the right of the
target word as contextual information. As in [4], in addition to a dependence on
the words themselves, we also use, a dependence on the word classes. Thereby,
we improve the generalization of the models and include some semantic and
syntactic information.

Table 1 summarizes the feature functions that we use for a specific pair of
aligned words (e;, f;): Category 1 features depend only on the source word f;
and the target word e;. Categories 2 and 3 describe features that also depend
on an additional word e’ that appears one position to the left or to the right of
e;, respectively. The features of category 4 and 5 depend on an additional target
word e’ that appears in any position of the context z. Analogous features are
defined using the word class associated to each word instead of the word identity.

To reduce the number of features, we perform a threshold-based feature se-
lection. Every feature that occurs less than 7' times is not used. The aim of the
feature selection is two-fold. Firstly, we obtain smaller models by using less fea-
tures. Secondly, we hope to avoid overfitting on the training data. In addition,
we use ME modeling for target words that are seen at least 150 times.

5 Integrated EM-ME Training

5.1 Training Integration

Using a ME lexicon model for a target word e, we have to train the model
parameters A, = {Aer : £ = 1,..., K.} instead of the parameters {p(fle)}.



Table 1. Meaning of different feature categories where orepresents a specific target
word (to be placed in ) and o represents a specific source word.

Category|de; (z, f;) = 1 if and only if ...
1 j =9
2 fi=o¢ and o€ ® le;
3 fi=¢ and o€ eil®
4 fi=9¢ and o€ e |e |o |e;
5 fi=¢ and o€ eilo |o |o

We pursue the following approach. In the E-step, we perform a refined count
collection for the lexicon parameters:

c(fle,zie,£) = N(e,f) > Pr(ale,£)> 5(f, f;)d(e,eq;)0(x,7j0;) - (8)
e,f a J

Here, x; 4, should denote the ME context that surrounds f; and e,;.
In the M-step, we want to compute the lexicon parameters that maximize
the likelihood:

A= argmﬁxp c(fle, ;e f) -logp(fle,z) . 9)

Hence, the refined lexicon counts c¢(fle,z;e,f) are the weights of the set of
training samples (f, e, z) which are used to train the ME models. In Equation 9
p(fle,;x) = pe(flz).

The re-estimation of the alignment and fertility probabilities does not change
if we use a ME lexicon model.

Thus, we obtain the following steps of each iteration for the EM algorithm:

1. E-step:
— Collect counts for alignment and fertility parameters.
— Collect refined lexicon counts.
2. M-step:
— Re-estimate alignment and fertility parameters.
— Perform GIS training for lexicon parameters.

5.2 Efficient Training

In a normal iteration of the EM algorithm, in the E-step, a count event collection
is performed for the set of considered parameters. Specifically, for the case of the
lexicon probabilities the Equations 4 and 8 (for the ME case) are computed
summing up the number of times that the word f is translated by e according to
the set of possible alignments of each sentence pair of the training corpus. This
counts are then used in the M-step to obtain a new refined set of parameters
according to the maximum likelihood criterion by using Equations 5 and 9 for
the conventional lexicon model and the ME lexicon model respectively.



The problem we are faced in the case of the ME training is that the context
x on where the corresponding words e and f appear within the corpus have to
be used because the translation probability depends on it. Obviously the E-step
has to be performed for every sentence pair in the corpus, and after that in the
M-step update the estimation of the parameters for every (e, f) word pair in the
input and output vocabularies.

To make this efficiently, a matrix of lexicon probabilities is precomputed
for each sentence pair. This matrix contains the probability of every possible
connection/translation for each pair of words (e;, f;) within a pair of sentences
(e, f), that is, the lexicon probabilities re-estimated in a previous iteration of the
training process. In this way we can perfectly distingish between the different
context on where each pair of words (e, f) appears for each sentence pair in the
corpus. Then we are able to perform exactly the sophisticated count collection
for the ME models.

One the E-step is carried out for each sentence pair in the corpus we have
all possible ME events (f, e, z) for each word e. Then with these such events we
can perform a GIS training for every e word we considered (a priori) relevant to
our problem and them obtain the set of A, parameters that define our specific
ME model.

In the next iteration of the EM training we will be able to compute the
pe(f|x) by using the ME parameters obtained in the previous iteration. In this
case we will also make use of the translation matrix probability which bring us
the efficient and easily extraction of the context needed for computing the ME
lexicon probability of the specific word pair (e, f).

Another problem with ME modelling is the efficient computation of the nor-
malization factor Z,_(z) of Equation 7. The easy identification of the context
x also help us to efficiently compute this factor. We only need to sum up the
probability of every possible translation of the word e observed in the events
(f,e,z) used in the count collection step.

The overload on computation that this approach includes three terms:

1. The identification of the context x for each word translation pair (e, f), which
can be computed in a linear computing time due to the use of the translation
probability matrices.

2. The additional time due to the ME events generation. This time is desprecia-
ble with respect the conventional E-step because only overload on a constant
time needed to store each event count to be used a posteriori for the GIS
trainig algorithm.

3. The overload included for the GIS training. In this case we will need to
perform a GIS training for each word e to be modeled by ME. In the worst
case, when all words e € V, (vocabulary of e) are used, the computational
time of each iteration of the EM algorithm is increased by the factor O(GIS*
Vel).

In the experiments we have carried out the computation time of the GIS al-
gorithm it is in the order of very few second (5 sec. on average). Hence, the
computation overload will depend on the number of words e to be modelled by



ME. As we commented at the end of Section 4.3 we develop a ME model for
those words that appear (within the training corpus) more than a fixed number
of times. This word selection yields on a 10% of words over the vocabulary size.
Taking that into account the overall overload will aproximatelly in the order of
O(GIS % |V,| x0.1).

A simplification of the approach described above can be obtained in the
following way: First, perform a normal training of the EM algorithm. Then,
after the final iteration, perform the ME training of the ME lexicon parameters
but using only the Viterbi alignment of each sentence pair instead of the set of all
possible alignments. Finally, a new EM training is performed where the lexicon
parameters are fixed to the ME lexicon models obtained previously. In this case
the more informative contextual information is also used but in a decoupled
way from the point of view of the EM training. It is important to stress that
in this approximation only one ME training is needed, then the overloading
computation required from the fully integrated approach is avoided.

6 Experimental Results

We present results on the Verbmobil task and the Hansards task. The Verbmobil
task is a speech translation task in the domain of appointment scheduling, travel
planning, and hotel reservation. The task is difficult because it consists of spon-
taneous speech and the syntactic structures of the sentences are less restricted
and highly variable. The French-English Hansards task consists of the debates
in the Canadian Parliament. This task has a very large vocabulary of more than
100,000 French words.

The corpus statistics are shown in Table 2. The number of running words and
the vocabularies are based on full-form words including the punctuation marks.
We produced smaller training corpora by randomly choosing 500, 8000 and 34000
sentences from the Verbmobil task and 500, 8000 and 128000 sentences from the
Hansards task.

To train the context-dependent statistical alignment models, we extended
the publicly available toolkit GIZA++ [8]. The training of the ME models was
carried out using the YASMET toolkit [8].

6.1 Evaluation Methodology

We use the same annotation scheme for single-word based alignments and a
corresponding evaluation criterion as described in [9]. The annotation scheme
explicitly allows for ambiguous alignments. The people performing the annota-
tion are asked to specify two different kinds of alignments: a S (sure) alignment,
which is used for alignments that are unambiguous and a P (possible) alignment,
which is used for ambiguous alignments. The P label is used particularly to align
words within idiomatic expressions, free translations, and missing function words
(SCP).
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Fig. 1. Two examples of a manual alignment with S(ure) (W) and P(ossible) (O0) con-
nections.

The reference alignment thus obtained may contain many-to-one and one-to-
many relationships. Figure 1 shows an example of a manually aligned sentence
with S and P labels.

The quality of an alignment A = {(j,a;j)|a; > 0} is then computed by
appropriately redefined precision and recall measures and the alignment error
rate, which is derived from the well known F-measure:

|ANS]|
|S]

|AnP|
4]

|[ANS|+ AN P|
Al +15]

recall = , precision = , AER(S,P;A) =1—
Thus, a recall error can only occur if a S(ure) alignment is not found. A
precision error can only occur if the alignment found is not even P (ossible).
The set of sentence pairs, for which the manual alignment is produced, is
randomly selected from the training corpus. It should be emphasized that all the
training is done in a completely unsupervised way, i.e. no manual alignments are
used. From this point of view, there is no need to have a separate test corpus.

Table 2. Corpus characteristics.

Verbmobil Hansards
German|English|| French|English
Train Sentences 34446 1470K
Words 329625| 343076([24.33M[22.16 M
Vocabulary 5936| 3505|| 100269 78332




Table 3. AER [%] on Hansards (left) and Verbmobil (right) tasks.

Size of training corpus
Train. scheme|Model|  [J0.5K] 8K [128K]  [J0.5K] 8K [34K
15 1 48.0(35.1| 29.2 27.7|19.2|17.6
1+ME 47.7132.7| 22.5 24.6 |16.6|13.7
1595 2 " 46.0129.2| 21.9 _ 26.8|15.7|13.5
2+ME|T |/44.7(28.0/ 19.0 |5 || 25.3|14.1|10.8
159530 3 % |[432]27.3[208|3 |25.6]13.7[10.8
3+ME| & |142.5]26.4| 17.2 'é 24.1|11.6| 8.8
15953343 4 T |[41.8(24.9] 174 |= |23.6(10.0| 7.7
4+ME 41.3(24.3| 14.1 22.819.3| 7.0
oigigiss D 415|248 16.2 22.6] 9.9] 7.2
5+ME 41.2(24.3| 14.3 22.3| 9.6| 6.8

6.2 Alignment Quality Results

Table 3 shows the alignment quality for different training sample sizes of the
Hansards and Verbmobil tasks. This table shows the baseline AER for different
training schemes and the corresponding values when the integration of the ME is
done. The training scheme is defined in accordance with the number of iterations
performed for each model (4* means 3 iterations of Model 4).

The recall and precision results for the Hansards task with and without ME
training are shown in Figure 2.

We observe that the alignment error rate improves when using the context-
dependent lexicon models. For the Verbmobil task, the improvements were smaller
than for the Hansards task, which might be due to the fact that the baseline
alignment quality was already very good. It can be seen that larger improvements
were obtained for the simpler models.

As expected, the ME training takes a more important role when larger sizes
of the corpus are used. For the smallest corpora, the number of training events
for the ME models is very low, so it is not possible to disambiguate some trans-
lations/alignments for different contexts. For larger sizes of the corpora, greater
improvements are obtained. Therefore, we expect to obtain better improvements
when using even larger corpora.

7 Conclusions

In this paper, we present an efficient and straightforward integration of ME
context-dependent models within a maximum likelihood training of statistical
translation models.

We evaluate the quality of the alignments obtained with this new training
scheme comparing the results with the baseline results. As can be seen in Sec-
tion 6, we obtain better alignment quality using the context-dependent lexicon
model.
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Fig. 2. Recall and Precision [%] results for Hansards task for different corpus sizes, for
every iteration of the translation squeme.

In the future, we plan to include more features in the ME model, such us
dependencies with other source and target words, POS tags and syntactic con-
stituents. We also plan to design ME alignment and fertility models. This will
allow for an easy integration of more dependencies, such as second-order align-
ment models without running into the problem of an unmanageable number of
alignment parameters. We have just started to perform experiments for a very
distant pair of languages like Chinese-English with very promising results.
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