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2 EÆ
ient integration of maximum entropymodels within a maximum likelihood trainingsqueme of statisti
al ma
hine translation modelsIsmael Gar
��a Varea1, Franz J. O
h2, Hermann Ney2, and Fran
is
oCasa
uberta31 Dpto. de Inf., Univ. of Castilla-La Man
ha, 02071 Alba
ete, Spainivarea�info-ab.u
lm.es2 Lehrstuhl f�ur Inf. VI, RWTH Aa
hen, Ahornstr., 55 D-52056 Aa
hen, Germany3 Inst. Te
nol�ogi
o de Inf., Univ. Polit�e
ni
a de Valen
ia, 46071 Valen
ia, SpainAbstra
t. Maximum entropy (ME) models has been su

essfully ap-plied to many natural language problems. In this paper we present howto integrate eÆ
iently ME models within a maximum likelihood trainigs
heme of statisti
al ma
hine translation models. Spe
i�
ally, we de�nea set of 
ontext-dependent ME lexi
on models and we present how toperform an eÆ
ient training of these ME models within the 
onven-tional expe
tation-maximization (EM) training of statisti
al translationmodels. Experimental results are also presented in order to demonstratehow these ME improve the results obtained with the traditional trans-lation models. The results are presente by means of alignment quality
omparing the resulting alignments with a manually annotated referen
ealignments.1 Introdu
tionThe ME approa
h has been applied in natural language pro
essing and ma
hinetranslation to a variety of tasks. [1℄ applies this approa
h to the so-
alled IBMCandide system to build 
ontext-dependent models, to 
ompute automati
 sen-ten
e splitting and to improve word reordering in translation. Similar te
hniquesare used in [2℄ for so-
alled dire
t translation models instead of those proposedin [3℄. [4℄ use ME models to redu
e translation test perplexities and transla-tion errors using a res
oring algorithm, whi
h is applied to n-best translationhypotheses. [5℄ des
ribes two methods for in
orporating information about therelative position of bilingual word pairs into a ME translation model. Otherauthors have applied this approa
h to language modeling [6℄.In this paper we present how to integrate eÆ
iently ME models within amaximum likelihood trainig s
heme of statisti
al ma
hine translation models.Spe
i�
ally, we de�ne a set of 
ontext-dependent ME lexi
on models and wepresent how to perform an eÆ
ient training of these ME models within the
onventional EM training of statisti
al translation models [3℄. In ea
h iterationof the training pro
ess, the set of ME models is automati
ally generated by



using the set of possible word-alignments between ea
h pair of senten
es. TheME models are trained with the GIS algorithm, then used in the next iterationof the EM training pro
ess in order to re
ompute a new set of parameters of thealignment and lexi
on models.Experimental results are presented for the Fren
h-English Canadian Parlia-ment Hansards 
orpus and the Verbmobil task. The evaluation is performed by
omparing the Viterbi alignments obtained after the training of the 
onventionaland the integrated approa
hes with manually annotated referen
e alignment.2 Statisti
al Ma
hine TranslationThe goal of the translation pro
ess in statisti
al ma
hine translation 
an beformulated as follows: A sour
e language string f = fJ1 = f1 : : : fJ is to betranslated into a target language string e = eI1 = e1 : : : eI . Every target string is
onsidered as a possible translation for the sour
e language string with maximuma-posteriori probability Pr(ejf). A

ording to Bayes' de
ision rule, we have to
hoose the target string that maximizes the produ
t of both the target languagemodel Pr(e) and the string translation model Pr(f je). Alignment models tostru
ture the translation model are introdu
ed in [3℄. These alignment models aresimilar to the 
on
ept of Hidden Markov models (HMM) in spee
h re
ognition.The alignment mapping is j ! i = aj from sour
e position j to target positioni = aj . In statisti
al alignment models, Pr(f ; aje), the alignment a is introdu
edas a hidden variable.The translation probability Pr(f ; aje) 
an be rewritten as follows:Pr(f ; aje) = JYj=1Pr(fj ; aj jf j�11 ; aj�11 ; eI1)= JYj=1�Pr(aj jf j�11 ; aj�11 ; eI1) � Pr(fj jf j�11 ; aj1; eI1)� : (1)3 Conventional EM Training (review)In this se
tion, we des
ribe the training of the model parameters. Every modelhas a spe
i�
 set of free parameters. For example, the parameters � for Model4[3℄ 
onsist of lexi
on, alignment and fertility parameters:� = � fp(f je)g ; fp=1(�j)g ; fp>1(�j)g ; fp(�je)g ; p1	 : (2)To train the model parameters �, we pursue a maximum likelihood approa
husing a parallel training 
orpus 
onsisting of S senten
e pairs f(fs; es) : s =1; : : : ; Sg: �̂ = argmax� SYs=1Xa p�(fs; ajes) : (3)



We do this by applying the EM algorithm. The di�erent models are trained insu

ession on the same data, where the �nal parameter values of a simpler modelserve as the starting point for a more 
omplex model.In the E-step, the lexi
on parameter 
ounts for one senten
e pair (e; f) are
al
ulated:
(f je; e; f) =Xe;f N(e; f) �Xa Pr(aje; f)Xj Æ(f; fj)Æ(e; eaj ) : (4)Here, N(e; f) is the training 
orpus 
ount of the senten
e pair (f ; e).In the M-step, we want to 
ompute the lexi
on parameters p̂(f je) that max-imize the likelihood on the training 
orpus. This results in the following re-estimation [3℄: p(f je) = Ps 
(f je; f (s); e(s))Ps;f 
(f je; f (s); e(s)) : (5)Similarly, the alignment and fertility probabilities 
an be estimated for all otheralignmnent models [3℄. When bootstrapping from a simpler model to a more
omplex model, the simpler model is used to weigh the alignments and the
ounts are a

umulated for the parameters of the more 
omplex model.4 Maximum Entropy Modeling4.1 MotivationTypi
ally, the probability Pr(fj jf j�11 ; aj1; eI1) in Equation 1 is approximated bya lexi
on model p(fj jeaj ) by dropping the dependen
ies on f j�11 , aj�11 , and eI1.Obviously, this simpli�
ation is not true for many natural language phenomena.The straightforward approa
h to in
lude more dependen
ies in the lexi
on modelwould be to add additional dependen
ies (e.g. p(fj jeaj ; eaj�1)). This approa
hwould yield a signi�
ant data sparseness problem. For this reason, we de�ne aset of 
ontext-dependent ME lexi
on models, whi
h is dire
tly integrated into a
onventional EM training of the statisti
al translation models.In this 
ase, the role of ME is to build a sto
hasti
 model that eÆ
iently takesa larger 
ontext into a

ount. In the remainder of the paper, we shall use pe(f jx)to denote the probability that the ME model (whi
h is asso
iated to e) assignsto f in the 
ontext x. Please note that the ME model must be distinguished bythe basi
 lexi
on model p(f je).4.2 Maximum Entropy Prin
ipleIn the ME approa
h, we des
ribe all properties that we deem to be useful by so-
alled feature fun
tions �e;k(x; f); k = 1; : : : ;Ke. For example, let us suppose wewant to model the existen
e or absen
e of a spe
i�
 word e0k in the 
ontext of an



English word e, whi
h 
an be translated by f 0k. We 
an express this dependen
eusing the following feature fun
tion:�e;k(x; f) = �1 if f = f 0k and e0k 2 x0 otherwise : (6)The ME prin
iple suggests that the optimal parametri
 form of a model pe(f jx)taking into a

ount the feature fun
tions �e;k ; k = 1; : : : ;Ke is given by:pe(f jx) = 1Z�e(x) exp� KeXk=1 �e;k�e;k(x; f)� : (7)Here, Z�e(x) is a normalization fa
tor. The resulting model has an exponen-tial form with free parameters �e � f�e;k; k = 1; : : : ;Keg. The parameter valuesthat maximize the likelihood for a given training 
orpus 
an be 
omputed usingthe so-
alled GIS algorithm (general iterative s
aling) or its improved versionIIS [7, 1℄.It is important to stress that, in prin
iple, we obtain one ME model for ea
htarget language word e. To avoid data sparseness problems for rarely seen words,we use only words that have been seen a 
ertain number of times.4.3 Contextual Information and Feature De�nitionAs in [1℄ we use as a window of 3 words to the left and 3 words to the right of thetarget word as 
ontextual information. As in [4℄, in addition to a dependen
e onthe words themselves, we also use, a dependen
e on the word 
lasses. Thereby,we improve the generalization of the models and in
lude some semanti
 andsynta
ti
 information.Table 1 summarizes the feature fun
tions that we use for a spe
i�
 pair ofaligned words (ei; fj): Category 1 features depend only on the sour
e word fjand the target word ei. Categories 2 and 3 des
ribe features that also dependon an additional word e0 that appears one position to the left or to the right ofei, respe
tively. The features of 
ategory 4 and 5 depend on an additional targetword e0 that appears in any position of the 
ontext x. Analogous features arede�ned using the word 
lass asso
iated to ea
h word instead of the word identity.To redu
e the number of features, we perform a threshold-based feature se-le
tion. Every feature that o

urs less than T times is not used. The aim of thefeature sele
tion is two-fold. Firstly, we obtain smaller models by using less fea-tures. Se
ondly, we hope to avoid over�tting on the training data. In addition,we use ME modeling for target words that are seen at least 150 times.5 Integrated EM-ME Training5.1 Training IntegrationUsing a ME lexi
on model for a target word e, we have to train the modelparameters �e � f�e;k : k = 1; : : : ;Keg instead of the parameters fp(f je)g.



Table 1. Meaning of di�erent feature 
ategories where � represents a spe
i�
 targetword (to be pla
ed in �) and � represents a spe
i�
 sour
e word.Category �ei (x; fj) = 1 if and only if ...1 fj = �2 fj = � and �2 � ei3 fj = � and �2 ei �4 fj = � and �2 � � � ei5 fj = � and �2 ei � � �We pursue the following approa
h. In the E-step, we perform a re�ned 
ount
olle
tion for the lexi
on parameters:
(f je; x; e; f) =Xe;f N(e; f) �Xa Pr(aje; f)Xj Æ(f; fj)Æ(e; eaj )Æ(x; xj;aj ) : (8)Here, xj;aj should denote the ME 
ontext that surrounds fj and eaj .In the M-step, we want to 
ompute the lexi
on parameters that maximizethe likelihood: �̂e = argmax�e Yf;x 
(f je; x; e; f) � log p(f je; x) : (9)Hen
e, the re�ned lexi
on 
ounts 
(f je; x; e; f) are the weights of the set oftraining samples (f; e; x) whi
h are used to train the ME models. In Equation 9p(f je; x) � pe(f jx).The re-estimation of the alignment and fertility probabilities does not 
hangeif we use a ME lexi
on model.Thus, we obtain the following steps of ea
h iteration for the EM algorithm:1. E-step:{ Colle
t 
ounts for alignment and fertility parameters.{ Colle
t re�ned lexi
on 
ounts.2. M-step:{ Re-estimate alignment and fertility parameters.{ Perform GIS training for lexi
on parameters.5.2 EÆ
ient TrainingIn a normal iteration of the EM algorithm, in the E-step, a 
ount event 
olle
tionis performed for the set of 
onsidered parameters. Spe
i�
ally, for the 
ase of thelexi
on probabilities the Equations 4 and 8 (for the ME 
ase) are 
omputedsumming up the number of times that the word f is translated by e a

ording tothe set of possible alignments of ea
h senten
e pair of the training 
orpus. This
ounts are then used in the M-step to obtain a new re�ned set of parametersa

ording to the maximum likelihood 
riterion by using Equations 5 and 9 forthe 
onventional lexi
on model and the ME lexi
on model respe
tively.



The problem we are fa
ed in the 
ase of the ME training is that the 
ontextx on where the 
orresponding words e and f appear within the 
orpus have tobe used be
ause the translation probability depends on it. Obviously the E-stephas to be performed for every senten
e pair in the 
orpus, and after that in theM-step update the estimation of the parameters for every (e; f) word pair in theinput and output vo
abularies.To make this eÆ
iently, a matrix of lexi
on probabilities is pre
omputedfor ea
h senten
e pair. This matrix 
ontains the probability of every possible
onne
tion/translation for ea
h pair of words (ei; fj) within a pair of senten
es(e; f), that is, the lexi
on probabilities re-estimated in a previous iteration of thetraining pro
ess. In this way we 
an perfe
tly distingish between the di�erent
ontext on where ea
h pair of words (e; f) appears for ea
h senten
e pair in the
orpus. Then we are able to perform exa
tly the sophisti
ated 
ount 
olle
tionfor the ME models.One the E-step is 
arried out for ea
h senten
e pair in the 
orpus we haveall possible ME events (f; e; x) for ea
h word e. Then with these su
h events we
an perform a GIS training for every e word we 
onsidered (a priori) relevant toour problem and them obtain the set of �e parameters that de�ne our spe
i�
ME model.In the next iteration of the EM training we will be able to 
ompute thepe(f jx) by using the ME parameters obtained in the previous iteration. In this
ase we will also make use of the translation matrix probability whi
h bring usthe eÆ
ient and easily extra
tion of the 
ontext needed for 
omputing the MElexi
on probability of the spe
i�
 word pair (e; f).Another problem with ME modelling is the eÆ
ient 
omputation of the nor-malization fa
tor Z�e(x) of Equation 7. The easy identi�
ation of the 
ontextx also help us to eÆ
iently 
ompute this fa
tor. We only need to sum up theprobability of every possible translation of the word e observed in the events(f; e; x) used in the 
ount 
olle
tion step.The overload on 
omputation that this approa
h in
ludes three terms:1. The identi�
ation of the 
ontext x for ea
h word translation pair (e; f), whi
h
an be 
omputed in a linear 
omputing time due to the use of the translationprobability matri
es.2. The additional time due to the ME events generation. This time is despre
ia-ble with respe
t the 
onventional E-step be
ause only overload on a 
onstanttime needed to store ea
h event 
ount to be used a posteriori for the GIStrainig algorithm.3. The overload in
luded for the GIS training. In this 
ase we will need toperform a GIS training for ea
h word e to be modeled by ME. In the worst
ase, when all words e 2 Ve (vo
abulary of e) are used, the 
omputationaltime of ea
h iteration of the EM algorithm is in
reased by the fa
tor O(GIS�jVej).In the experiments we have 
arried out the 
omputation time of the GIS al-gorithm it is in the order of very few se
ond (5 se
. on average). Hen
e, the
omputation overload will depend on the number of words e to be modelled by



ME. As we 
ommented at the end of Se
tion 4.3 we develop a ME model forthose words that appear (within the training 
orpus) more than a �xed numberof times. This word sele
tion yields on a 10% of words over the vo
abulary size.Taking that into a

ount the overall overload will aproximatelly in the order ofO(GIS � jVej � 0:1).A simpli�
ation of the approa
h des
ribed above 
an be obtained in thefollowing way: First, perform a normal training of the EM algorithm. Then,after the �nal iteration, perform the ME training of the ME lexi
on parametersbut using only the Viterbi alignment of ea
h senten
e pair instead of the set of allpossible alignments. Finally, a new EM training is performed where the lexi
onparameters are �xed to the ME lexi
on models obtained previously. In this 
asethe more informative 
ontextual information is also used but in a de
oupledway from the point of view of the EM training. It is important to stress thatin this approximation only one ME training is needed, then the overloading
omputation required from the fully integrated approa
h is avoided.6 Experimental ResultsWe present results on the Verbmobil task and the Hansards task. The Verbmobiltask is a spee
h translation task in the domain of appointment s
heduling, travelplanning, and hotel reservation. The task is diÆ
ult be
ause it 
onsists of spon-taneous spee
h and the synta
ti
 stru
tures of the senten
es are less restri
tedand highly variable. The Fren
h-English Hansards task 
onsists of the debatesin the Canadian Parliament. This task has a very large vo
abulary of more than100,000 Fren
h words.The 
orpus statisti
s are shown in Table 2. The number of running words andthe vo
abularies are based on full-form words in
luding the pun
tuation marks.We produ
ed smaller training 
orpora by randomly 
hoosing 500, 8000 and 34000senten
es from the Verbmobil task and 500, 8000 and 128000 senten
es from theHansards task.To train the 
ontext-dependent statisti
al alignment models, we extendedthe publi
ly available toolkit GIZA++ [8℄. The training of the ME models was
arried out using the YASMET toolkit [8℄.6.1 Evaluation MethodologyWe use the same annotation s
heme for single-word based alignments and a
orresponding evaluation 
riterion as des
ribed in [9℄. The annotation s
hemeexpli
itly allows for ambiguous alignments. The people performing the annota-tion are asked to spe
ify two di�erent kinds of alignments: a S (sure) alignment,whi
h is used for alignments that are unambiguous and a P (possible) alignment,whi
h is used for ambiguous alignments. The P label is used parti
ularly to alignwords within idiomati
 expressions, free translations, and missing fun
tion words(S � P ).
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Fig. 1. Two examples of a manual alignment with S(ure) (�) and P(ossible) (�) 
on-ne
tions.The referen
e alignment thus obtained may 
ontain many-to-one and one-to-many relationships. Figure 1 shows an example of a manually aligned senten
ewith S and P labels.The quality of an alignment A = f(j; aj)jaj > 0g is then 
omputed byappropriately rede�ned pre
ision and re
all measures and the alignment errorrate, whi
h is derived from the well known F-measure:re
all = jA \ SjjSj ; pre
ision = jA \ P jjAj ; AER(S; P ;A) = 1� jA \ Sj+ jA \ P jjAj+ jSjThus, a re
all error 
an only o

ur if a S(ure) alignment is not found. Apre
ision error 
an only o

ur if the alignment found is not even P(ossible).The set of senten
e pairs, for whi
h the manual alignment is produ
ed, israndomly sele
ted from the training 
orpus. It should be emphasized that all thetraining is done in a 
ompletely unsupervised way, i.e. no manual alignments areused. From this point of view, there is no need to have a separate test 
orpus.Table 2. Corpus 
hara
teristi
s.Verbmobil HansardsGerman English Fren
h EnglishTrain Senten
es 34446 1470KWords 329625 343076 24.33M 22.16MVo
abulary 5936 3505 100269 78332



Table 3. AER [%℄ on Hansards (left) and Verbmobil (right) tasks.Size of training 
orpusTrain. s
heme Model 0.5K 8K 128K 0.5K 8K 34K15 1
Handsards

48.0 35.1 29.2
Verbmobil

27.7 19.2 17.61+ME 47.7 32.7 22.5 24.6 16.6 13.71525 2 46.0 29.2 21.9 26.8 15.7 13.52+ME 44.7 28.0 19.0 25.3 14.1 10.8152533 3 43.2 27.3 20.8 25.6 13.7 10.83+ME 42.5 26.4 17.2 24.1 11.6 8.815253343 4 41.8 24.9 17.4 23.6 10.0 7.74+ME 41.3 24.3 14.1 22.8 9.3 7.01525334353 5 41.5 24.8 16.2 22.6 9.9 7.25+ME 41.2 24.3 14.3 22.3 9.6 6.86.2 Alignment Quality ResultsTable 3 shows the alignment quality for di�erent training sample sizes of theHansards and Verbmobil tasks. This table shows the baseline AER for di�erenttraining s
hemes and the 
orresponding values when the integration of the ME isdone. The training s
heme is de�ned in a

ordan
e with the number of iterationsperformed for ea
h model (43 means 3 iterations of Model 4).The re
all and pre
ision results for the Hansards task with and without MEtraining are shown in Figure 2.We observe that the alignment error rate improves when using the 
ontext-dependent lexi
on models. For the Verbmobil task, the improvements were smallerthan for the Hansards task, whi
h might be due to the fa
t that the baselinealignment quality was already very good. It 
an be seen that larger improvementswere obtained for the simpler models.As expe
ted, the ME training takes a more important role when larger sizesof the 
orpus are used. For the smallest 
orpora, the number of training eventsfor the ME models is very low, so it is not possible to disambiguate some trans-lations/alignments for di�erent 
ontexts. For larger sizes of the 
orpora, greaterimprovements are obtained. Therefore, we expe
t to obtain better improvementswhen using even larger 
orpora.7 Con
lusionsIn this paper, we present an eÆ
ient and straightforward integration of ME
ontext-dependent models within a maximum likelihood training of statisti
altranslation models.We evaluate the quality of the alignments obtained with this new trainings
heme 
omparing the results with the baseline results. As 
an be seen in Se
-tion 6, we obtain better alignment quality using the 
ontext-dependent lexi
onmodel.
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all and Pre
ision [%℄ results for Hansards task for di�erent 
orpus sizes, forevery iteration of the translation squeme.In the future, we plan to in
lude more features in the ME model, su
h usdependen
ies with other sour
e and target words, POS tags and synta
ti
 
on-stituents. We also plan to design ME alignment and fertility models. This willallow for an easy integration of more dependen
ies, su
h as se
ond-order align-ment models without running into the problem of an unmanageable number ofalignment parameters. We have just started to perform experiments for a verydistant pair of languages like Chinese-English with very promising results.Referen
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