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Abstract. The principle of maximum entropy is a powerful framework
that can be used to estimate class posterior probabilities for pattern
recognition tasks. In this paper, we show how this principle is related
to the discriminative training of Gaussian mixture densities using the
maximum mutual information criterion. This leads to a relaxation of the
constraints on the covariance matrices to be positive (semi-) definite.
Thus, we arrive at a conceptually simple model that allows to estimate
a large number of free parameters reliably. We compare the proposed
method with other state-of-the-art approaches in experiments with the
well known US Postal Service handwritten digits recognition task.

1 Introduction

The maximum entropy framework is based on principles applied in the natural
sciences. Tt has been applied to the estimation of probability distributions [6]
and to classification tasks such as natural language processing [1] and text clas-
sification [8].
The contributions of this paper are
— to show the relation between maximum entropy and Gaussian models,
— to present a framework that allows to estimate a large number of parameters
reliably, e.g. the entries of full class specific covariance matrices, and
— to show the applicability of the maximum entropy framework to image object
recognition.

2 Gaussian Models for Classification
To classify an observation z € IRP, we use the Bayesian decision rule
xr — r(z)= arginax {p(k|x)}
= argmax {p(k) - p(z|k)} .

Here, p(k|z) is the class posterior probability of class k € {1,..., K} given the
observation z, p(k) is the a priori probability, p(z|k) is the class conditional
probability for the observation z given class k and r(z) is the decision of the



classifier. This decision rule is known to be optimal with respect to the number
of decision errors, if the correct distributions are known. This is generally not
the case in practical situations, which means that we need to choose appropri-
ate models for the distributions. In the training phase, the parameters of the
distribution are estimated from a set of training data {(z,,k,)},n=1,... ,N,
kn € 1,... K. If we denote by A the set of free parameters of the distribu-
tion, the maximum likelihood approach consists in choosing the parameters A
maximizing the log-likelihood on the training data:

A= argflnaxz log pa(@n k) (1)
n
Alternatively, we can maximize the log-probability of the class posteriors,

A = argmax lo knlxn) , 2
g Zn: gpa(kn|zn) (2)

which is also called discriminative training, since the information of out-of-class

data is used. This criterion is often referred to as mutual information criterion

in speech recognition, information theory and image object recognition [3,9].
We will regard Gaussian models for the class conditional distributions:

p(xlk) = N (x|, Zy)
= det(2r ;)72 -exp [—3(z — )" (@ - )] (3)

The free parameters of these models are the class means uy and the class specific
covariance matrices X},. The conventional method for estimating these parame-
ters is to maximize the log-likelihood (1) on the training data, which yields the
empirical mean and the empirical covariance matrix as solutions. Problems with
this approach arise if the feature dimensionality is large with respect to the num-
ber of training samples. This is common e.g. in appearance based image object
recognition tasks, where each pixel value is considered a feature. The problems
are that the large number of K - D - (D + 1)/2 parameters of the covariance
matrices often cannot be estimated reliably using the usually small amount of
training data available. Common methods for coping with this problem are to
constrain the covariance matrices, e.g. to use diagonal covariance matrices, or to
use pooling, i.e. to estimate only one covariance matrix X instead of K matrices.

3 Maximum Entropy Modeling

The principle of maximum entropy has origins in statistical thermodynamics, is
related to information theory and has been applied to pattern recognition tasks
such as language modeling and text classification. Applied to classification, the
basic idea is the following: We are given information about a probability distri-
bution by samples from that distribution (training data). Now, we choose the
distribution such that it fulfills all the constraints given by that information, but



otherwise has the highest possible entropy. (This inherently serves as regulariza-
tion to avoid overfitting.) It can be shown that this approach leads to so-called
log-linear models for the distribution to be estimated.

Consider a set of so-called feature functions {f;},i = 1,...,I that are sup-
posed to compute ‘useful’ information for classification:

fi - RPx{1,...,K} —R : (z,k)— fi(z,k)

From the information in the training set, we can compute the numbers
n
Now, the maximum entropy principle consists in maximizing

max { =37 3 pkle,) logp(kl,) |
n k

over all possible distributions with the requirements:

— normalization constraint for each observation z:
> plklz) =1
k
— feature constraint for each feature ¢:

S5 p(klen) fi(wa, k) = F;
n k

It can be shown that the resulting distribution has the following log-linear or
exponential functional form:

palhle) = <R 4= . (@)

Interestingly, it can also be shown that the stated optimization problem is convex
and has a unique global maximum. Furthermore, this unique solution is also the
solution to the following dual problem: Maximize the log probability (2) on the
training data using the model (4). In this formulation of the problem, it is easier
to see that there exists exactly one maximum, because (2) is a sum of convex
functions and therefore also convex. A second desirable property of the discussed
model is that effective algorithms are known that compute the global maximum
of the log probability (2) given a training set. These algorithms fall into two cat-
egories: On the one hand, we have an algorithm known as generalized iterative
scaling [4] and related algorithms that can be proven to converge to the global
maximum. On the other hand, due to the convex nature of the criterion (2),
we can also use general optimization strategies as e.g. conjugate gradient meth-
ods [10, pp. 420ff.]. The crucial problem in maximum entropy modeling is the
choice of the appropriate feature functions {f;}.




4 Maximum Entropy and Discriminative Training for
Gaussian Models

Consider first-order feature functions for maximum entropy classification

fk,i(% k') = 5(
fk(mak'l) 6(

where 6(k, k") := 1 if k¥ = k', and 0 otherwise denotes the Kronecker delta
function. In the context of image recognition, we may call the functions f;
appearance based image features, as they represent the image pixel values. The
duplication of the features for each class is necessary to distinguish the hy-
pothesized classes. The functions fj, allow for a log-linear offset in the posterior
probabilities. Now, using the properties of the Kronecker delta, the structure of
the posterior probabilities becomes

k, kl) Z; ,
k, k'),

exp [ak + Z Ak zxz]
klz) = :
pa(klz) Sopexplar + Y A iz
_exp [ak + )\{x]
Y exp g + ALz

A={pi,ar}, (5)

where ay denotes the coefficient for the feature function fj.
Now, consider a Gaussian model (3) for p(z|k) with pooled covariance matrix
Y, = Y. Using Bayes’ rule, and the relation

log N (x|, Ti) = —% log det(2m L) — 5 (& — )" 2 (z — )

= —Llogdet(2nXy) — 22" X e + pf D e — Lpf X e

we can rewrite the class posterior probability (note that the terms that do not
depend on the class k cancel in the fraction):

k) N(z|pr, X
Pk = S
exp [(logp(k) = sut T ) + (uf £ 1)z]
Y exp [(logp(k') — Spf X ) + (uh 21z
_exp [ak + /\gx]
Y pexp [ap + ALz

(6)

As result, we see that for unknown class priors p(k) the resulting model (6) is
identical to the maximum entropy model (5). We can conclude that the discrim-
inative training criterion (2) for the Gaussian model (3) with pooled covariance
matrices results in exactly the same functional form as the maximum entropy
model for first-order features. This allows to use the well understood algorithms
for maximum entropy estimation to estimate the parameters of a Gaussian model
discriminatively.



If we repeat the same argument as above for the case of Gaussian densities
without pooling of the covariance matrices, we find that we can again establish
a correspondence to a maximum entropy model:

p(k) N (x|, D)
Elz) =
PUIE) = 5 o) Nl S5)
B exp [ak + )\{m + a:TSka:]
B > €XP [ak/ + ALz + a:TSk/a:]

Here, the square matrix Sy corresponds to the negative of the inverse of the
covariance matrix Xj. These parameters can be estimated using a maximum
entropy model with the second-order feature functions

fk,i,j(xak,) = §(kakl) r;rj , i 2.7 )
fk7i(£L', k") = (5(](!, k") T,
frla, k') =8(k, k') .

One interesting consequence of using the corresponding maximum entropy model
and estimation is that we implicitly relax the constraints on the covariance ma-
trices to be positive (semi-) definite. Therefore, the resulting model is not exactly
equivalent to a Gaussian model.

This result is in contrast to the approach taken in [5], where the authors
derive discriminative models for Gaussian densities based on priors of the pa-
rameters and the minimum relative entropy principle. Their solution results in
discriminatively trained weights for the training data and therefore preserves the
mentioned constraints.

5 Experiments and Results

We performed experiments on the well known US Postal Service handwritten
digit recognition task (USPS). It contains normalized greyscale images of hand-
written digits taken from US zip codes of size 16x 16 pixels. The corpus is divided
into a training set of 7,291 images and a test set of 2,007 images. Reported recog-
nition error rates for this database are summarized in Table 1.

In most of the experiments performed we obtained better results using ‘fea-
ture normalization’. This means that we enforced for each observation during
training and testing that the sum of all feature values is equal to one by scaling
the feature values appropriately. Thus, we obtain new feature functions { fz}

v, ki fie k) = (Zf,(x,k))_l - fila, )

In the following, we only report result obtained using feature normalization. The
parameters were trained using generalized iterative scaling [4].

Table 2 shows the main results obtained in comparison to other approaches
along with the number of free parameters of the respective models. The error



Table 1. Summary of results for the USPS corpus (error rates, [%]).
*: training set extended with 2,400 machine-printed digits

|method ER[%]]
[human performance [SIMARD et al. 1993] [14] 2.5]
relevance vector machine [TIPPING et al. 2000] [15] 5.1
neural net (LeNet1) LECUN et al. 1990] [13] 4.2
support vectors SCHOLKOPF 1997] [11] 4.0
invariant support vectors [SCHOLKOPF et al. 1998] [12] 3.0
neural net + boosting DRUCKER et al. 1993] [13] 2.6
tangent distance SIMARD et al. 1993] [14] “2.5
nearest neighbor classifier [7 5.6
mixture densities 2] baseline 7.2

+ LDA + virtual data 3.4
kernel densities [7] baseline 5.5

+ tangent vectors + virtual data 2.4

rates show that we can already gain recognition accuracy by using the maximum
entropy framework to only estimate the pooled covariance matrix of a Gaussian
model, while fixing the mean vectors to their maximum likelihood values. Tak-
ing into account the class information in training using the maximum entropy
framework increases the recognition accuracy for first-order features from 18.6%
to 8.2% error rate using less parameters.

Furthermore, it can be observed that the maximum entropy models perform
better for second-order features than for first-order features. This is in contrast to
the experience gained with maximum likelihood estimation of Gaussian densities,
where best results were obtained using pooled diagonal covariance matrices [2].
Note for example that the maximum likelihood estimation of class specific diag-
onal covariance matrices already imposes problems for the USPS data, because
in some of the classes some of the dimensions have zero variance in the training
data. This can be overcome e.g. by using interpolation with the identity matrix,
but the maximum entropy framework offers an effective way to overcome these
problems.

Using the equivalent of a full class specific covariance matrix, i.e. second-
order features, the error rate of a ‘pseudo Gaussian’ model with 5.7% error rate

Table 2. Overview of the results obtained on the USPS corpus using maximum entropy
modeling in comparison to other models (error rates, [%]). ML: maximum likelihood,
MMI: maximum mutual information, *: with pooled diagonal covariance matrix.

|model |training criterion|# parameters| ER[%]]
Gaussian model” ML 2 816 18.6
Y MMI, p: ML 2 816 14.2

maximum entropy, first-order features |MMI 2 570 8.2
second-order features|MMI 331 530 5.7

nearest neighbor classifier 1 866 496 5.6




0.5

eigenvalue
o

0 50 100 150 200 250
eigenvector number

Fig. 1. Eigenvalue distribution for the ‘covariance matrix’ of the class ‘5’, estimated
using the maximum entropy approach.

approaches that of a nearest neighbor classifier, which has more than five times
as many parameters.

Fig. 1 shows the eigenvalues of the ‘covariance matrix’ of this ‘pseudo Gaus-
sian’ model for the class ‘5" ordered by size. It can be observed that about half
of the eigenvalues are positive, while the other half is negative. The distribution
of the negative eigenvalues seems to match the distribution of the positive eigen-
values. We can conclude that besides the typical important eigenvectors with
large positive eigenvalues there are also important eigenvectors with large neg-
ative eigenvalues in this discriminative context. This means that the relaxation
of the constraint on the covariance matrix to be positive (semi-) definite leads
to discriminative models that are not Gaussian any more.

6 Conclusion

We presented the connection between the following classification models: (a) dis-
criminative training using the maximum mutual information criterion of Gaus-
sian models for the class conditional probability and (b) models for the class
posterior probability based on the principle of maximum entropy. We showed
that these models lead to identical functional forms for the correct choice of
feature functions for the maximum entropy model. One of the main differences
is that the maximum entropy model implicitly relaxes the constraint on the co-
variance matrices to be positive (semi-) definite. This leads to a conceptually
simpler model with well understood estimation algorithms. A further advantage
of the maximum entropy approach is that it is easily possible to include new
feature functions into the classifier.

We evaluated the approach for image object recognition using the US Postal
Service handwritten digits recognition task, obtaining significant improvements
with respect to maximum likelihood based training. The best result of 5.7% er-



ror rate using second-order features is competitive with other results reported
on this dataset, although approaches with significantly better performance ex-
ist. (Note that the latter are highly tuned to the specific task at hand while
the maximum entropy approach is of very general nature.) The accuracy of the
resulting model shows that the maximum entropy approach allows robust esti-
mation of the equivalent of full covariance matrices even on this small training
set, which may be a problem for approaches based on maximum likelihood.
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