
Maximum Entropy and Gaussian Models forImage Objet ReognitionDaniel Keysers, Franz Josef Oh, and Hermann NeyLehrstuhl f�ur Informatik VI, Computer Siene DepartmentRWTH Aahen { University of Tehnology, D-52056 Aahen, Germanyfkeysers,oh,neyg�informatik.rwth-aahen.deAbstrat. The priniple of maximum entropy is a powerful frameworkthat an be used to estimate lass posterior probabilities for patternreognition tasks. In this paper, we show how this priniple is relatedto the disriminative training of Gaussian mixture densities using themaximum mutual information riterion. This leads to a relaxation of theonstraints on the ovariane matries to be positive (semi-) de�nite.Thus, we arrive at a oneptually simple model that allows to estimatea large number of free parameters reliably. We ompare the proposedmethod with other state-of-the-art approahes in experiments with thewell known US Postal Servie handwritten digits reognition task.1 IntrodutionThe maximum entropy framework is based on priniples applied in the naturalsienes. It has been applied to the estimation of probability distributions [6℄and to lassi�ation tasks suh as natural language proessing [1℄ and text las-si�ation [8℄.The ontributions of this paper are{ to show the relation between maximum entropy and Gaussian models,{ to present a framework that allows to estimate a large number of parametersreliably, e.g. the entries of full lass spei� ovariane matries, and{ to show the appliability of the maximum entropy framework to image objetreognition.2 Gaussian Models for Classi�ationTo lassify an observation x 2 IRD, we use the Bayesian deision rulex 7�! r(x) = argmaxk fp(kjx)g= argmaxk fp(k) � p(xjk)g :Here, p(kjx) is the lass posterior probability of lass k 2 f1; : : : ;Kg given theobservation x, p(k) is the a priori probability, p(xjk) is the lass onditionalprobability for the observation x given lass k and r(x) is the deision of the



lassi�er. This deision rule is known to be optimal with respet to the numberof deision errors, if the orret distributions are known. This is generally notthe ase in pratial situations, whih means that we need to hoose appropri-ate models for the distributions. In the training phase, the parameters of thedistribution are estimated from a set of training data f(xn; kn)g, n = 1; : : : ; N ,kn 2 1; : : : ;K. If we denote by � the set of free parameters of the distribu-tion, the maximum likelihood approah onsists in hoosing the parameters �̂maximizing the log-likelihood on the training data:�̂ = argmax� Xn log p�(xnjkn) (1)Alternatively, we an maximize the log-probability of the lass posteriors,�̂ = argmax� Xn log p�(knjxn) ; (2)whih is also alled disriminative training, sine the information of out-of-lassdata is used. This riterion is often referred to as mutual information riterionin speeh reognition, information theory and image objet reognition [3, 9℄.We will regard Gaussian models for the lass onditional distributions:p(xjk) = N (xj�k ; �k)= det(2��k)� 12 � exp �� 12 (x� �k)T��1k (x� �k)� (3)The free parameters of these models are the lass means �k and the lass spei�ovariane matries �k. The onventional method for estimating these parame-ters is to maximize the log-likelihood (1) on the training data, whih yields theempirial mean and the empirial ovariane matrix as solutions. Problems withthis approah arise if the feature dimensionality is large with respet to the num-ber of training samples. This is ommon e.g. in appearane based image objetreognition tasks, where eah pixel value is onsidered a feature. The problemsare that the large number of K � D � (D + 1)=2 parameters of the ovarianematries often annot be estimated reliably using the usually small amount oftraining data available. Common methods for oping with this problem are toonstrain the ovariane matries, e.g. to use diagonal ovariane matries, or touse pooling, i.e. to estimate only one ovariane matrix � instead of K matries.3 Maximum Entropy ModelingThe priniple of maximum entropy has origins in statistial thermodynamis, isrelated to information theory and has been applied to pattern reognition taskssuh as language modeling and text lassi�ation. Applied to lassi�ation, thebasi idea is the following: We are given information about a probability distri-bution by samples from that distribution (training data). Now, we hoose thedistribution suh that it ful�lls all the onstraints given by that information, but



otherwise has the highest possible entropy. (This inherently serves as regulariza-tion to avoid over�tting.) It an be shown that this approah leads to so-alledlog-linear models for the distribution to be estimated.Consider a set of so-alled feature funtions ffig; i = 1; : : : ; I that are sup-posed to ompute `useful' information for lassi�ation:fi : IRD � f1; : : : ;Kg �! IR : (x; k) 7�! fi(x; k)From the information in the training set, we an ompute the numbersFi :=Xn fi(xn; kn) :Now, the maximum entropy priniple onsists in maximizingmaxp(kjx)n�Xn Xk p(kjxn) log p(kjxn)oover all possible distributions with the requirements:{ normalization onstraint for eah observation x:Xk p(kjx) = 1{ feature onstraint for eah feature i:Xn Xk p(kjxn)fi(xn; k) = FiIt an be shown that the resulting distribution has the following log-linear orexponential funtional form:p�(kjx) = exp [Pi �ifi(x; k)℄Pk0 exp [Pi �ifi(x; k0)℄ ; � = f�ig: (4)Interestingly, it an also be shown that the stated optimization problem is onvexand has a unique global maximum. Furthermore, this unique solution is also thesolution to the following dual problem: Maximize the log probability (2) on thetraining data using the model (4). In this formulation of the problem, it is easierto see that there exists exatly one maximum, beause (2) is a sum of onvexfuntions and therefore also onvex. A seond desirable property of the disussedmodel is that e�etive algorithms are known that ompute the global maximumof the log probability (2) given a training set. These algorithms fall into two at-egories: On the one hand, we have an algorithm known as generalized iterativesaling [4℄ and related algorithms that an be proven to onverge to the globalmaximum. On the other hand, due to the onvex nature of the riterion (2),we an also use general optimization strategies as e.g. onjugate gradient meth-ods [10, pp. 420�.℄. The ruial problem in maximum entropy modeling is thehoie of the appropriate feature funtions ffig.



4 Maximum Entropy and Disriminative Training forGaussian ModelsConsider �rst-order feature funtions for maximum entropy lassi�ationfk;i(x; k0) = Æ(k; k0) xi ;fk(x; k0) = Æ(k; k0) ;where Æ(k; k0) := 1 if k = k0, and 0 otherwise denotes the Kroneker deltafuntion. In the ontext of image reognition, we may all the funtions fk;iappearane based image features, as they represent the image pixel values. Thedupliation of the features for eah lass is neessary to distinguish the hy-pothesized lasses. The funtions fk allow for a log-linear o�set in the posteriorprobabilities. Now, using the properties of the Kroneker delta, the struture ofthe posterior probabilities beomesp�(kjx) = exp [�k +P�k;ixi℄Pk0 exp [�k0 +P�k0;ixi℄= exp ��k + �Tk x�Pk0 exp ��k0 + �Tk0x� � = f�k;i; �kg ; (5)where �k denotes the oeÆient for the feature funtion fk.Now, onsider a Gaussian model (3) for p(xjk) with pooled ovariane matrix�k = �. Using Bayes' rule, and the relationlogN (xj�k ; �k) = � 12 log det(2��k)� 12 (x � �k)T��1k (x� �k)= � 12 log det(2��k)� 12xT��1k x+ �Tk��1k x� 12�Tk��1k �k ;we an rewrite the lass posterior probability (note that the terms that do notdepend on the lass k anel in the fration):p(kjx) = p(k) N (xj�k ; �)Pk0 p(k0) N (xj�k0�)= exp �(log p(k)� 12�Tk��1�k) + (�Tk��1)x�Pk0 exp �(log p(k0)� 12�Tk0��1�k0) + (�Tk0��1)x�= exp ��k + �Tk x�Pk0 exp ��k0 + �Tk0x� (6)As result, we see that for unknown lass priors p(k) the resulting model (6) isidential to the maximum entropy model (5). We an onlude that the disrim-inative training riterion (2) for the Gaussian model (3) with pooled ovarianematries results in exatly the same funtional form as the maximum entropymodel for �rst-order features. This allows to use the well understood algorithmsfor maximum entropy estimation to estimate the parameters of a Gaussian modeldisriminatively.



If we repeat the same argument as above for the ase of Gaussian densitieswithout pooling of the ovariane matries, we �nd that we an again establisha orrespondene to a maximum entropy model:p(kjx) = p(k) N (xj�k ; �k)Pk0 p(k0) N (xj�k0�k)= exp ��k + �Tk x+ xTSkx�Pk0 exp ��k0 + �Tk0x+ xTSk0x�Here, the square matrix Sk orresponds to the negative of the inverse of theovariane matrix �k. These parameters an be estimated using a maximumentropy model with the seond-order feature funtionsfk;i;j(x; k0) = Æ(k; k0) xixj ; i � j ;fk;i(x; k0) = Æ(k; k0) xi ;fk(x; k0) = Æ(k; k0) :One interesting onsequene of using the orresponding maximum entropy modeland estimation is that we impliitly relax the onstraints on the ovariane ma-tries to be positive (semi-) de�nite. Therefore, the resulting model is not exatlyequivalent to a Gaussian model.This result is in ontrast to the approah taken in [5℄, where the authorsderive disriminative models for Gaussian densities based on priors of the pa-rameters and the minimum relative entropy priniple. Their solution results indisriminatively trained weights for the training data and therefore preserves thementioned onstraints.5 Experiments and ResultsWe performed experiments on the well known US Postal Servie handwrittendigit reognition task (USPS). It ontains normalized greysale images of hand-written digits taken from US zip odes of size 16�16 pixels. The orpus is dividedinto a training set of 7,291 images and a test set of 2,007 images. Reported reog-nition error rates for this database are summarized in Table 1.In most of the experiments performed we obtained better results using `fea-ture normalization'. This means that we enfored for eah observation duringtraining and testing that the sum of all feature values is equal to one by salingthe feature values appropriately. Thus, we obtain new feature funtions f ~fig:8x; k; i : ~fi(x; k) = �Xi0 fi0(x; k)��1 � fi(x; k)In the following, we only report result obtained using feature normalization. Theparameters were trained using generalized iterative saling [4℄.Table 2 shows the main results obtained in omparison to other approahesalong with the number of free parameters of the respetive models. The error



Table 1. Summary of results for the USPS orpus (error rates, [%℄).�: training set extended with 2,400 mahine-printed digitsmethod ER[%℄human performane [Simard et al. 1993℄ [14℄ 2.5relevane vetor mahine [Tipping et al. 2000℄ [15℄ 5.1neural net (LeNet1) [LeCun et al. 1990℄ [13℄ 4.2support vetors [Sh�olkopf 1997℄ [11℄ 4.0invariant support vetors [Sh�olkopf et al. 1998℄ [12℄ 3.0neural net + boosting [Druker et al. 1993℄ [13℄ �2.6tangent distane [Simard et al. 1993℄ [14℄ �2.5nearest neighbor lassi�er [7℄ 5.6mixture densities [2℄ baseline 7.2+ LDA + virtual data 3.4kernel densities [7℄ baseline 5.5+ tangent vetors + virtual data 2.4rates show that we an already gain reognition auray by using the maximumentropy framework to only estimate the pooled ovariane matrix of a Gaussianmodel, while �xing the mean vetors to their maximum likelihood values. Tak-ing into aount the lass information in training using the maximum entropyframework inreases the reognition auray for �rst-order features from 18.6%to 8.2% error rate using less parameters.Furthermore, it an be observed that the maximum entropy models performbetter for seond-order features than for �rst-order features. This is in ontrast tothe experiene gained with maximum likelihood estimation of Gaussian densities,where best results were obtained using pooled diagonal ovariane matries [2℄.Note for example that the maximum likelihood estimation of lass spei� diag-onal ovariane matries already imposes problems for the USPS data, beausein some of the lasses some of the dimensions have zero variane in the trainingdata. This an be overome e.g. by using interpolation with the identity matrix,but the maximum entropy framework o�ers an e�etive way to overome theseproblems.Using the equivalent of a full lass spei� ovariane matrix, i.e. seond-order features, the error rate of a `pseudo Gaussian' model with 5.7% error rateTable 2. Overview of the results obtained on the USPS orpus using maximum entropymodeling in omparison to other models (error rates, [%℄). ML: maximum likelihood,MMI: maximum mutual information, �: with pooled diagonal ovariane matrix.model training riterion # parameters ER[%℄Gaussian model� ML 2 816 18.6�: MMI, �k: ML 2 816 14.2maximum entropy, �rst-order features MMI 2 570 8.2seond-order features MMI 331 530 5.7nearest neighbor lassi�er 1 866 496 5.6



-1

-0.5

0

0.5

1

0 50 100 150 200 250

ei
ge

nv
al

ue

eigenvector  numberFig. 1. Eigenvalue distribution for the `ovariane matrix' of the lass `5', estimatedusing the maximum entropy approah.approahes that of a nearest neighbor lassi�er, whih has more than �ve timesas many parameters.Fig. 1 shows the eigenvalues of the `ovariane matrix' of this `pseudo Gaus-sian' model for the lass `5' ordered by size. It an be observed that about halfof the eigenvalues are positive, while the other half is negative. The distributionof the negative eigenvalues seems to math the distribution of the positive eigen-values. We an onlude that besides the typial important eigenvetors withlarge positive eigenvalues there are also important eigenvetors with large neg-ative eigenvalues in this disriminative ontext. This means that the relaxationof the onstraint on the ovariane matrix to be positive (semi-) de�nite leadsto disriminative models that are not Gaussian any more.6 ConlusionWe presented the onnetion between the following lassi�ation models: (a) dis-riminative training using the maximum mutual information riterion of Gaus-sian models for the lass onditional probability and (b) models for the lassposterior probability based on the priniple of maximum entropy. We showedthat these models lead to idential funtional forms for the orret hoie offeature funtions for the maximum entropy model. One of the main di�erenesis that the maximum entropy model impliitly relaxes the onstraint on the o-variane matries to be positive (semi-) de�nite. This leads to a oneptuallysimpler model with well understood estimation algorithms. A further advantageof the maximum entropy approah is that it is easily possible to inlude newfeature funtions into the lassi�er.We evaluated the approah for image objet reognition using the US PostalServie handwritten digits reognition task, obtaining signi�ant improvementswith respet to maximum likelihood based training. The best result of 5.7% er-
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