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t. The prin
iple of maximum entropy is a powerful frameworkthat 
an be used to estimate 
lass posterior probabilities for patternre
ognition tasks. In this paper, we show how this prin
iple is relatedto the dis
riminative training of Gaussian mixture densities using themaximum mutual information 
riterion. This leads to a relaxation of the
onstraints on the 
ovarian
e matri
es to be positive (semi-) de�nite.Thus, we arrive at a 
on
eptually simple model that allows to estimatea large number of free parameters reliably. We 
ompare the proposedmethod with other state-of-the-art approa
hes in experiments with thewell known US Postal Servi
e handwritten digits re
ognition task.1 Introdu
tionThe maximum entropy framework is based on prin
iples applied in the naturals
ien
es. It has been applied to the estimation of probability distributions [6℄and to 
lassi�
ation tasks su
h as natural language pro
essing [1℄ and text 
las-si�
ation [8℄.The 
ontributions of this paper are{ to show the relation between maximum entropy and Gaussian models,{ to present a framework that allows to estimate a large number of parametersreliably, e.g. the entries of full 
lass spe
i�
 
ovarian
e matri
es, and{ to show the appli
ability of the maximum entropy framework to image obje
tre
ognition.2 Gaussian Models for Classi�
ationTo 
lassify an observation x 2 IRD, we use the Bayesian de
ision rulex 7�! r(x) = argmaxk fp(kjx)g= argmaxk fp(k) � p(xjk)g :Here, p(kjx) is the 
lass posterior probability of 
lass k 2 f1; : : : ;Kg given theobservation x, p(k) is the a priori probability, p(xjk) is the 
lass 
onditionalprobability for the observation x given 
lass k and r(x) is the de
ision of the




lassi�er. This de
ision rule is known to be optimal with respe
t to the numberof de
ision errors, if the 
orre
t distributions are known. This is generally notthe 
ase in pra
ti
al situations, whi
h means that we need to 
hoose appropri-ate models for the distributions. In the training phase, the parameters of thedistribution are estimated from a set of training data f(xn; kn)g, n = 1; : : : ; N ,kn 2 1; : : : ;K. If we denote by � the set of free parameters of the distribu-tion, the maximum likelihood approa
h 
onsists in 
hoosing the parameters �̂maximizing the log-likelihood on the training data:�̂ = argmax� Xn log p�(xnjkn) (1)Alternatively, we 
an maximize the log-probability of the 
lass posteriors,�̂ = argmax� Xn log p�(knjxn) ; (2)whi
h is also 
alled dis
riminative training, sin
e the information of out-of-
lassdata is used. This 
riterion is often referred to as mutual information 
riterionin spee
h re
ognition, information theory and image obje
t re
ognition [3, 9℄.We will regard Gaussian models for the 
lass 
onditional distributions:p(xjk) = N (xj�k ; �k)= det(2��k)� 12 � exp �� 12 (x� �k)T��1k (x� �k)� (3)The free parameters of these models are the 
lass means �k and the 
lass spe
i�

ovarian
e matri
es �k. The 
onventional method for estimating these parame-ters is to maximize the log-likelihood (1) on the training data, whi
h yields theempiri
al mean and the empiri
al 
ovarian
e matrix as solutions. Problems withthis approa
h arise if the feature dimensionality is large with respe
t to the num-ber of training samples. This is 
ommon e.g. in appearan
e based image obje
tre
ognition tasks, where ea
h pixel value is 
onsidered a feature. The problemsare that the large number of K � D � (D + 1)=2 parameters of the 
ovarian
ematri
es often 
annot be estimated reliably using the usually small amount oftraining data available. Common methods for 
oping with this problem are to
onstrain the 
ovarian
e matri
es, e.g. to use diagonal 
ovarian
e matri
es, or touse pooling, i.e. to estimate only one 
ovarian
e matrix � instead of K matri
es.3 Maximum Entropy ModelingThe prin
iple of maximum entropy has origins in statisti
al thermodynami
s, isrelated to information theory and has been applied to pattern re
ognition taskssu
h as language modeling and text 
lassi�
ation. Applied to 
lassi�
ation, thebasi
 idea is the following: We are given information about a probability distri-bution by samples from that distribution (training data). Now, we 
hoose thedistribution su
h that it ful�lls all the 
onstraints given by that information, but



otherwise has the highest possible entropy. (This inherently serves as regulariza-tion to avoid over�tting.) It 
an be shown that this approa
h leads to so-
alledlog-linear models for the distribution to be estimated.Consider a set of so-
alled feature fun
tions ffig; i = 1; : : : ; I that are sup-posed to 
ompute `useful' information for 
lassi�
ation:fi : IRD � f1; : : : ;Kg �! IR : (x; k) 7�! fi(x; k)From the information in the training set, we 
an 
ompute the numbersFi :=Xn fi(xn; kn) :Now, the maximum entropy prin
iple 
onsists in maximizingmaxp(kjx)n�Xn Xk p(kjxn) log p(kjxn)oover all possible distributions with the requirements:{ normalization 
onstraint for ea
h observation x:Xk p(kjx) = 1{ feature 
onstraint for ea
h feature i:Xn Xk p(kjxn)fi(xn; k) = FiIt 
an be shown that the resulting distribution has the following log-linear orexponential fun
tional form:p�(kjx) = exp [Pi �ifi(x; k)℄Pk0 exp [Pi �ifi(x; k0)℄ ; � = f�ig: (4)Interestingly, it 
an also be shown that the stated optimization problem is 
onvexand has a unique global maximum. Furthermore, this unique solution is also thesolution to the following dual problem: Maximize the log probability (2) on thetraining data using the model (4). In this formulation of the problem, it is easierto see that there exists exa
tly one maximum, be
ause (2) is a sum of 
onvexfun
tions and therefore also 
onvex. A se
ond desirable property of the dis
ussedmodel is that e�e
tive algorithms are known that 
ompute the global maximumof the log probability (2) given a training set. These algorithms fall into two 
at-egories: On the one hand, we have an algorithm known as generalized iteratives
aling [4℄ and related algorithms that 
an be proven to 
onverge to the globalmaximum. On the other hand, due to the 
onvex nature of the 
riterion (2),we 
an also use general optimization strategies as e.g. 
onjugate gradient meth-ods [10, pp. 420�.℄. The 
ru
ial problem in maximum entropy modeling is the
hoi
e of the appropriate feature fun
tions ffig.



4 Maximum Entropy and Dis
riminative Training forGaussian ModelsConsider �rst-order feature fun
tions for maximum entropy 
lassi�
ationfk;i(x; k0) = Æ(k; k0) xi ;fk(x; k0) = Æ(k; k0) ;where Æ(k; k0) := 1 if k = k0, and 0 otherwise denotes the Krone
ker deltafun
tion. In the 
ontext of image re
ognition, we may 
all the fun
tions fk;iappearan
e based image features, as they represent the image pixel values. Thedupli
ation of the features for ea
h 
lass is ne
essary to distinguish the hy-pothesized 
lasses. The fun
tions fk allow for a log-linear o�set in the posteriorprobabilities. Now, using the properties of the Krone
ker delta, the stru
ture ofthe posterior probabilities be
omesp�(kjx) = exp [�k +P�k;ixi℄Pk0 exp [�k0 +P�k0;ixi℄= exp ��k + �Tk x�Pk0 exp ��k0 + �Tk0x� � = f�k;i; �kg ; (5)where �k denotes the 
oeÆ
ient for the feature fun
tion fk.Now, 
onsider a Gaussian model (3) for p(xjk) with pooled 
ovarian
e matrix�k = �. Using Bayes' rule, and the relationlogN (xj�k ; �k) = � 12 log det(2��k)� 12 (x � �k)T��1k (x� �k)= � 12 log det(2��k)� 12xT��1k x+ �Tk��1k x� 12�Tk��1k �k ;we 
an rewrite the 
lass posterior probability (note that the terms that do notdepend on the 
lass k 
an
el in the fra
tion):p(kjx) = p(k) N (xj�k ; �)Pk0 p(k0) N (xj�k0�)= exp �(log p(k)� 12�Tk��1�k) + (�Tk��1)x�Pk0 exp �(log p(k0)� 12�Tk0��1�k0) + (�Tk0��1)x�= exp ��k + �Tk x�Pk0 exp ��k0 + �Tk0x� (6)As result, we see that for unknown 
lass priors p(k) the resulting model (6) isidenti
al to the maximum entropy model (5). We 
an 
on
lude that the dis
rim-inative training 
riterion (2) for the Gaussian model (3) with pooled 
ovarian
ematri
es results in exa
tly the same fun
tional form as the maximum entropymodel for �rst-order features. This allows to use the well understood algorithmsfor maximum entropy estimation to estimate the parameters of a Gaussian modeldis
riminatively.



If we repeat the same argument as above for the 
ase of Gaussian densitieswithout pooling of the 
ovarian
e matri
es, we �nd that we 
an again establisha 
orresponden
e to a maximum entropy model:p(kjx) = p(k) N (xj�k ; �k)Pk0 p(k0) N (xj�k0�k)= exp ��k + �Tk x+ xTSkx�Pk0 exp ��k0 + �Tk0x+ xTSk0x�Here, the square matrix Sk 
orresponds to the negative of the inverse of the
ovarian
e matrix �k. These parameters 
an be estimated using a maximumentropy model with the se
ond-order feature fun
tionsfk;i;j(x; k0) = Æ(k; k0) xixj ; i � j ;fk;i(x; k0) = Æ(k; k0) xi ;fk(x; k0) = Æ(k; k0) :One interesting 
onsequen
e of using the 
orresponding maximum entropy modeland estimation is that we impli
itly relax the 
onstraints on the 
ovarian
e ma-tri
es to be positive (semi-) de�nite. Therefore, the resulting model is not exa
tlyequivalent to a Gaussian model.This result is in 
ontrast to the approa
h taken in [5℄, where the authorsderive dis
riminative models for Gaussian densities based on priors of the pa-rameters and the minimum relative entropy prin
iple. Their solution results indis
riminatively trained weights for the training data and therefore preserves thementioned 
onstraints.5 Experiments and ResultsWe performed experiments on the well known US Postal Servi
e handwrittendigit re
ognition task (USPS). It 
ontains normalized greys
ale images of hand-written digits taken from US zip 
odes of size 16�16 pixels. The 
orpus is dividedinto a training set of 7,291 images and a test set of 2,007 images. Reported re
og-nition error rates for this database are summarized in Table 1.In most of the experiments performed we obtained better results using `fea-ture normalization'. This means that we enfor
ed for ea
h observation duringtraining and testing that the sum of all feature values is equal to one by s
alingthe feature values appropriately. Thus, we obtain new feature fun
tions f ~fig:8x; k; i : ~fi(x; k) = �Xi0 fi0(x; k)��1 � fi(x; k)In the following, we only report result obtained using feature normalization. Theparameters were trained using generalized iterative s
aling [4℄.Table 2 shows the main results obtained in 
omparison to other approa
hesalong with the number of free parameters of the respe
tive models. The error



Table 1. Summary of results for the USPS 
orpus (error rates, [%℄).�: training set extended with 2,400 ma
hine-printed digitsmethod ER[%℄human performan
e [Simard et al. 1993℄ [14℄ 2.5relevan
e ve
tor ma
hine [Tipping et al. 2000℄ [15℄ 5.1neural net (LeNet1) [LeCun et al. 1990℄ [13℄ 4.2support ve
tors [S
h�olkopf 1997℄ [11℄ 4.0invariant support ve
tors [S
h�olkopf et al. 1998℄ [12℄ 3.0neural net + boosting [Dru
ker et al. 1993℄ [13℄ �2.6tangent distan
e [Simard et al. 1993℄ [14℄ �2.5nearest neighbor 
lassi�er [7℄ 5.6mixture densities [2℄ baseline 7.2+ LDA + virtual data 3.4kernel densities [7℄ baseline 5.5+ tangent ve
tors + virtual data 2.4rates show that we 
an already gain re
ognition a

ura
y by using the maximumentropy framework to only estimate the pooled 
ovarian
e matrix of a Gaussianmodel, while �xing the mean ve
tors to their maximum likelihood values. Tak-ing into a

ount the 
lass information in training using the maximum entropyframework in
reases the re
ognition a

ura
y for �rst-order features from 18.6%to 8.2% error rate using less parameters.Furthermore, it 
an be observed that the maximum entropy models performbetter for se
ond-order features than for �rst-order features. This is in 
ontrast tothe experien
e gained with maximum likelihood estimation of Gaussian densities,where best results were obtained using pooled diagonal 
ovarian
e matri
es [2℄.Note for example that the maximum likelihood estimation of 
lass spe
i�
 diag-onal 
ovarian
e matri
es already imposes problems for the USPS data, be
ausein some of the 
lasses some of the dimensions have zero varian
e in the trainingdata. This 
an be over
ome e.g. by using interpolation with the identity matrix,but the maximum entropy framework o�ers an e�e
tive way to over
ome theseproblems.Using the equivalent of a full 
lass spe
i�
 
ovarian
e matrix, i.e. se
ond-order features, the error rate of a `pseudo Gaussian' model with 5.7% error rateTable 2. Overview of the results obtained on the USPS 
orpus using maximum entropymodeling in 
omparison to other models (error rates, [%℄). ML: maximum likelihood,MMI: maximum mutual information, �: with pooled diagonal 
ovarian
e matrix.model training 
riterion # parameters ER[%℄Gaussian model� ML 2 816 18.6�: MMI, �k: ML 2 816 14.2maximum entropy, �rst-order features MMI 2 570 8.2se
ond-order features MMI 331 530 5.7nearest neighbor 
lassi�er 1 866 496 5.6
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ovarian
e matrix' of the 
lass `5', estimatedusing the maximum entropy approa
h.approa
hes that of a nearest neighbor 
lassi�er, whi
h has more than �ve timesas many parameters.Fig. 1 shows the eigenvalues of the `
ovarian
e matrix' of this `pseudo Gaus-sian' model for the 
lass `5' ordered by size. It 
an be observed that about halfof the eigenvalues are positive, while the other half is negative. The distributionof the negative eigenvalues seems to mat
h the distribution of the positive eigen-values. We 
an 
on
lude that besides the typi
al important eigenve
tors withlarge positive eigenvalues there are also important eigenve
tors with large neg-ative eigenvalues in this dis
riminative 
ontext. This means that the relaxationof the 
onstraint on the 
ovarian
e matrix to be positive (semi-) de�nite leadsto dis
riminative models that are not Gaussian any more.6 Con
lusionWe presented the 
onne
tion between the following 
lassi�
ation models: (a) dis-
riminative training using the maximum mutual information 
riterion of Gaus-sian models for the 
lass 
onditional probability and (b) models for the 
lassposterior probability based on the prin
iple of maximum entropy. We showedthat these models lead to identi
al fun
tional forms for the 
orre
t 
hoi
e offeature fun
tions for the maximum entropy model. One of the main di�eren
esis that the maximum entropy model impli
itly relaxes the 
onstraint on the 
o-varian
e matri
es to be positive (semi-) de�nite. This leads to a 
on
eptuallysimpler model with well understood estimation algorithms. A further advantageof the maximum entropy approa
h is that it is easily possible to in
lude newfeature fun
tions into the 
lassi�er.We evaluated the approa
h for image obje
t re
ognition using the US PostalServi
e handwritten digits re
ognition task, obtaining signi�
ant improvementswith respe
t to maximum likelihood based training. The best result of 5.7% er-



ror rate using se
ond-order features is 
ompetitive with other results reportedon this dataset, although approa
hes with signi�
antly better performan
e ex-ist. (Note that the latter are highly tuned to the spe
i�
 task at hand whilethe maximum entropy approa
h is of very general nature.) The a

ura
y of theresulting model shows that the maximum entropy approa
h allows robust esti-mation of the equivalent of full 
ovarian
e matri
es even on this small trainingset, whi
h may be a problem for approa
hes based on maximum likelihood.Referen
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