Bayes Risk Minimization using Metric L oss Functions

R. Schiiter, T. Scharrenbach, V. Steinbiss, H. Ney

Lehrstuhl fur Informatik 6 -

Computer Science Dept.

RWTH Aachen University, Aachen, Germany

{schl ueter, stei nbi ss, ney}@s. rwt h-aachen. de

Abstract

In this work, fundamental properties Bayesdecision rule us-
ing general loss functions are derived analytically andvare
ified experimentally for automatic speech recognition. slt i
shown that, for maximum posterior probabilities largerntha
1/2, Bayesdecision rule with a metric loss function always
decides on the posterior maximizing class independentef th
specific choice of (metric) loss function. Also for maximum
posterior probabilities less thadn'2, a condition is derived un-
der which theBayesrisk using a general metric loss function is
still minimized by the posterior maximizing class. For aegte
recognition task with low initial word error rate, it is show
that nearly 2/3 of the test utterances fulfil these conditiand
need not be considered fBayesrisk minimization withLev-
enshteinloss, which reduces the computational complexity of
Bayesrisk minimization. In addition, bounds for the difference
between theBayesrisk for the posterior maximizing class and
minimum Bayesrisk are derived, which can serve as cost esti-
mates forBayesrisk minimization approaches.

1. Introduction

In speech recognition, the standard evaluation measurerid w
error rate (WER). On the other hand, the standard decisien ru
for speech recognition (maximization of the sentence pioste
probability) is realized by using a sentence error basedQor

1) cost function foBayesdecision rule. Due to the complexity

of the Levenshteirmlignment needed to compute the number of
word errors, it was prohibitive to use the number of word exro
as cost function foBayesdecision rule for a long time. Nev-
ertheless, with the constant increase in computing power an
with algorithmic improvements, word error minimizing deci
sion rules became more realistic. Consequently, a numizgr-of
proaches were presented in literature which investigditgesit
approximate realizations of word error minimiziBgyesdeci-

sion rules. In these approaches, approximations were done a
different levels: search space, summation space for exgect
loss calculation, and the loss function itself. In [5], tleach
space as well as the expected loss calculation were reduced
to N-best lists. In [1, 2], the search space is represented by
word graphs and the expected loss calculations are perfbrme
on the tree of partial hypotheses which define the stack of'an A
search with a specific choice of cost estimates. In [4], thecte
space/summation space for expected risk calculation ioapp
imated by consensus lattices, for which the expected ldsg-ca
lation as well as the search become much more efficient. Ifinal
in [6], the cost function itself is modified, i.e. the word@rcost

is replaced by a frame-wise word error based on forced align-
ments. In [6], it can be observed that the relative improvemse
obtained with a word error minimizing decision rule increas
with the baseline error rates.

Of all these approaches, the word graph basé&dséarch
for word error minimization presented in [1, 2] is closestte
correctBayesdecision rule. In fact, the method presented in [1,
2] would be exact if it was not for the necessity of pruning,
which, in this case, does not only reduce the search space as
usual, but also has an effect on the decision within the neimgi
search space, as will be shown in this work (cf. Section 3.5).

In literature, word error minimizind@ayesdecision rules
are often called “MinimumBayesRisk”. This is somewhat
misleading, since the standard approach also minimizes the
Bayesrisk - but by using a sentence error or 0-1 loss func-
tion. The important difference lies in the cost function dise
which usually counts word errors or sentence errors.

In this work, Bayesdecision rule is analyzed on a more
fundamental level. We present a number of properties of the
Bayeddecision rule, mainly concerning the relation between us-
ing a 0-1 loss function (e.g. sentence errors) and a general
loss function, such as phoneme/character/word errorssiectp
recognition and machine translation, or position indepaid
word error in machine translation, to name but a few. We
present analytic results, simulations, as well as speeabgre
nition results for a small and large vocabulary.

The remainder of this work is organized as follows. After
a general introduction tBayesdecision rule in Sec. 2, we de-
rive bounds for the difference Bayesrisk between a 0-1 and
a general loss function in Sec. 3. In Sec. 3 we also show that,
under certain conditions, the decisions with 0-1 and with-ge
eral loss function are identical, for one of the conditionsre
independent of the explicit choice of general (metric) losg-
tion. It is shown that, in some cases, the class posteritri-dis
bution dominates the decision, and in other cases, thetsteuc
of losses dominates the decision. In Sec. 4, we provide exper
imental evidence of the analytic results derived for theeaafs
automatic speech recognition.

2. BayesDecision Theory

Consider the class posterior distributipiic|x) for classesc
given an observation. Since the derivations given in this work
do not depend directly on the specific choice of class and ob-
servation, for simplicity all considerations and derivas are
given using abstract classes and observations unlessvigker
specified. All derivations are valid for complex class d¢ifoms
like word sequences in speech recognition and machindarans
tion.

In its general form, i.e. using a general loss function
L(c, '), Bayesdecision rule results in the class minimizing the
expected loss:

rz(x) = argmin Zp(c’|x)£(c/, c)
c ’

= argmin R (c),



with the expected loss, @ayesrisk R 2 (c) for classc:

Re(c) =Y _p(c[x)L(c,c).

In particular using the 0-1 loss functioBayesdecision rule
can be reduced to finding the class which maximizes the class
posterior probability:

ro—1(x) = argmax p(c|z).

Due to complexity reasons, in speech recognition and machin
translation théBayesdecision rule based on the 0-1 loss func-
tion is usually applied, i.e. the sentence error rate is liysua
minimized. Therefore in the following, a number of general
properties ofBayesdecision rule using a general loss function
in contrast to using a 0-1 loss function are derived.

For simplicity, in the following, we will drop the
observation- orz-dependence of the posterior probability and
usecmax for the class which maximizes the class posterior prob-
ability, andc,. for the class which minimizes tHgayesrisk for
loss functionZ.

3. Analysisof Bayes Decision Rule
with General Loss Functions

In the following, general properties &ayesdecision rule will
be presented for the case of general loss functions whieh ful
fil the properties of a metric. A metric loss function is pos-
itive, symmetric, and fulfils the triangle inequality. A miet
loss function is zero if and only if both arguments are equal.

3.1. Loss-Independence of the Bayes Decision Rule for
Large Posterior Probabilities

Assume a maximum posterior probabilitycn.) > 1 and a
metric lossL(c,¢’). Then the posterior maximizing clags.x
also minimizes th&ayesrisk.

Proof: Consider the difference between Bayesisk for class
cmex @nd theBayesrisk for any class’:

Relena) = Re () = 3 pOL(escrar) = D p(O)L(e,€)

= — P(cna) Lcmax )+ _p(e) [£(e, cma) — L(e, )]

23> ¥ a0 7 emes
c7#cmax
<= 3 p(e) [Llend) + L enm) — L£(Cs o]
o >0  (triangle inequality)
<o.

@)

It can be shown that theevenshteirdistance function fulfils

the properties required for a metric. Therefore the abowefpr
among others, is valid for e.g. phoneme, character, and word
error loss functions. The same applies to the position iedep
dent word error rate, provided that classes are word setsaitis

of sequences and that the posterior probabilities for p&rmu

tions of a given word sequence are summed up to produce the

posterior probability of a word set.

Using the above derivation for large posterior probaleiifi
a broad estimate can be calculated, which shows where word
error minimization can be expected to result in differentide
sions than sentence error minimization or posterior pritihab
maximization respectively. Assume a task has an expected wo
error rate ofr. In addition assume the words in a sentence to be

statistically independent. Then the average posteridoaiit-

ity p for a sentence of length/ would bep = (1 —r)*. From

Eq. (1), we know that only for maximum posterior probalelti
p(emax) < 1/2 we can expect a difference between sentence and
word error minimization. Therefore, if word error minimtazn

is to make any difference, the expected word error rateeds

to fulfil the following approximate inequality > 1 — (1/2) a7

For example, if a sentence is 18 words long, the word error
rate needs to be larger than 4% so that word error minimizatio
makes some difference.

3.2. Dominance of Maximum Posterior Probability

Now we assume the maximum posterior probability is less
than1/2 and the loss functiorf(c, ¢') is a metric. Then the
class maximizing the posterior probability also minimizks
Bayesrisk if a setC of classes can be found for which the fol-
lowing requirements are met:

cmax ¢ C
d_p(e) = 1= 2p(cna) +maxp(c) @)
ceC
L(c,ema) < L(e,d) ¥V cel,d #ec 3)

Proof: Consider again the difference betweenBayegisk for
classcnax and theBayesrisk for any class’:

Re (cnar) = Re(¢)) = 3 pe) (e, enm) = 3 p(AL(e,)

[(¢') — plcnas)] L(cmas ')
+ 3 p(O) [Llemn) — £(¢0)]

c#cmax,c’

)

< _

P(¢) L (Crax, ')
c¢CU{cmax,c’}
+ Z p(c) [ﬁ(cmax, c) — E(c',c)}
c#Cmax, ¢’

p(C) [[’(07 C/) + L(C/7 Cmax) -

>0

L(c, cmax)}
(triangle inequality)

+ 3 pO) [Llmmed) — £, 0)]

c¢CU{cmax,c'}

ceC\{c’}
)
< Z p(c) [ﬁ(cmax, c)— L(c ,c)] < 0.
ceC\{c'}

(4)

As a special case, condition (3) is fulfilléat discrete loss func-
tions if the following inequality is fulfilled:

Llc,em) <1V ceC. (5)

Ineq. (5) can be checked much more efficiently than Ineq. (3).
Therefore, the efficiency oBayesrisk minimization using a
general, non- 0-1 loss function can be improved by using
Ineq. (1), and Ineq. (4) together with Ineq. (5) to shortlisise

test samples, for which a difference to using a 0-1 loss func-
tion can be expected. All remaining samples can be classified
using the more efficient 0-1 loss function.

3.3. Upper Bounds of Risk Difference
1

In the case of a maximum posterior probabifiy:m..) < 5 and
a metric los(c, ¢'), the following upper bound can be derived



for the difference between tHgayesrisk for classcn.x and the
Bayegisk for any class’:

Re(Cmax) — Re(c)
=" 0(0) [£(e. em) — L(e. )]

=p(c')L(c, cma)

+ > plo)

c#cmax,¢’

— p(Coma) £ (Cras €'

[L(c, cmax) — L(c, )]
< L(Cmaxs )
<1 — 2p(cma)] £y ).

(6)

(triangle ineq.)

Replacingc’ by the class:; which minimizes theBayesrisk,
then Ineq. (6) leads to the following upper bound:

Re(ma) = Re(er) < [1 = 2p(cma)] L(Cmax c2).  (7)

For the following specific choice, Ineq. (7) can be shown to be
tight:

Llc,er) = 1 vV cel, (8)
L(c,emx) = L(cmaxsce)+1 vV cecC. 9)
L(e,c) Llcmayce) +1 ¥ ¢,d €C, (10)

Note that the special choice made in Egs. (8-10) in gen-
eral are not realizable for all combinations of vocabulary
size, string length, loss function, and maximum posterior
probability p(cma). In the case off < plcma) < 3, @
single element € C is sufficient to show the tightness of
the derived upper bound. The upper bound can be reached
with the choicep(c.) = p(cma), p(c) = 1 — 2p(cmax) and

L(c, cmax) — L(c,cc) = L(cmax, cc). There are also examples
for the upper bound not being tight. For strings of length

and a loss function only allowing substitutions, the lossnd
exceedN. For L(cma, cc) = N, condition 9 cannot be fulfilled
since it would requireC(c, cmax) = N + 1, which cannot occur

in the case of such a loss function.

Another upper bound can be found using the following def-
inition of the set of classeg.:
Ce :={c|L(c, cmax) < €} (11)
with 1
€= min{)\‘ p(c) > 5}

¢ L(emax,c’ ) <A

For the case’ ¢ C. the following inequality can be derived:

Re(cmx) — Re(c) = Zp(c) [L(c, cmax) — L(c, )]

(12)

D) £ (e, )
3 p(e) [£(es enm) — L(e. )]

c€Ce\ cmax . .
~  (triangle ineq.)
< 2~ Lleman €)M gng Eq. (11)
+ D> p(e) [£(e; ma) — L(c, )]
c¢Ce
< L(cmax, ¢')  (triangle ineq.)
<[1=2 " p(e)] Llemaoc) +2¢[ D ple) — pleml)]
ceCe — ceCe
<o -

<1 — 2p(cmax)] € vV o ¢cC..

For the case of’ € C. we can apply Ineq. (6) to obtain the
same inequality. Therefore we obtain:

Re(cma) — Re(c) <1 — 2p(cma)] € v . (13)

Note thatL(cma, c2) is needed for Ineq. (6), for which word
error minimization would have to be performed. In contrast t
this, e can be found efficiently, i.e. with complexity linear in
the number of classes. Ineq. (13) can be used to delimit over-
estimates as they are used if-BasedBayesisk minimization
approaches as presented in [1, 2].

3.4. Minimum Risk with Zero Posterior Probability

Consider the example shown in Fig. 1, where four character
strings are shown at the nodes of the graph. Téeenshtein
loss is given at the arcs of the graph, and the posterior pibba
ities of the sequences are shown at the nodes. BEyesrisk

for the four strings then gives:

R (ded = 1 R (aded=2(1 — p2)
R (dgd) =2(1 — p1) R (dedh=2(1 — p3).

Provided all posterior probabilities are less that2, i.e. p; <
1/2 V i = 1,2,3, the loss for string ded” will be minimal
even though its posterior probability is zérérom the example
it becomes clear thaded” wins since it is the mostonsistent
hypotheses.

3.5. Pruningand General Loss Functions

In [1, 2] an approach to word error minimization is presented
which uses A search and cost estimates using partial hypothe-
ses to find the sentence hypotheses minimizing the expected
word error rate. In this approach, the search space and the
summation space for the expected loss calculation are the.sa
Without pruning this approach still is exact. In the follogi

we will show that pruning not only reduces the search spate bu
also alters the decision for the remaining search space- Con
sider the example from Section 3.4 with the following paster
probabilities: p1 = 2, p» = £, andps = 3. If we apply

the algorithm presented in [1, 2] to the example, then withou
pruning, we obtain the correct clasded” which minimizes

the Bayesrisk using theLevenshteirioss. But if we prune the
worst hypothesis (with respect ®ayesrisk) “dgd” at some
stage of the word error minimizing search, then the resultld/o

be “dedb” instead, which would be correct for the remaining
subspace as indicated in [1, 2], but it would be incorrechwit
respect to the complete space.

Figure 1: Example for the case of a string with zero posterior
probability (“ded”) resulting in minimumBayesrisk. The arcs

of the graph show the Levenshtein distances between a8 pair
of strings

LIn practice a zero posterior probability fodéd” could mean that
it has been pruned before applying word error minimization.



3.6. Simulations

Bayesrisk minimization using stochastic simulations of fully
dependent posterior distributions for the cases of word se-
quences with_evenshteirbased word error loss function and
for word sets with position independent word error loss were
performed. Due to the exponential complexity of the simu-
lations, only low sequence lengths/set cardinalities a$ age
small vocabulary sizes were considered. All results obtiin
were consistent with the analytic results presented.

4. Experiments

To verify the analytic results derived in Sec. 3, we perfaime
speech recognition experiments using the WSJO corpus with a
vocabulary of 5k words. The baseline recognition system [3]
uses 1500 generalized triphone states plus one silenag stat
Gaussianmixture distributions with a total of about 147k den-
sities with a single pooled variance vector. 33-dimendioba
servation vectors are obtained by Linear Discriminant fsial
(LDA) based on 5 consecutive vectors consisting of 12 MFCCs,
their first derivatives and the second derivative of the gper
which are extracted at a 10ms frame shift. The system was
trained on the WSJO0 training corpus (15h speech) and arnigra
language model was used. The baseline word error rate (WER)
is 3.97% on the ARPA WSJ0 No{92 corpus using the standard
decision rule maximizing the sentence posterior probigbili

The experiments for word error minimization were per-
formed usingN-best lists [5] with V 10,000 to ensure
proper normalization of the posterior probabilities. Tlearsh
for the minimumBayegisk using the_evenshteifoss function
was always started of by calculating the risk for the posteri
maximizing word sequence first, which served as an init&H ri
pruning threshold. Note that pruning here is only performed
on the search space to stop the summation for a hypotheses
once the risk exceeds the risk for an already existing hygoth
sis. In Table 1 the recognition results usiBgyesdecision rule
with 0-1 loss (sentence error minimization) and wliteven-
shteinloss (word error minimization) are summarized. In 54%
of the utterances the maximum posterior probability is gnea
or equal tol /2, i.e. the decision is the same for 0-1 drelen-
shteinloss function, as shown in Sec. 3.1. Thisis also the case in
another 8% of the utterances where the Inegs. (2) and (5) hold
Hence, for nearly 2/3 of the utteranc8syesisk minimization
is proven to result in the posterior maximizing class! Tifene
word error minimization here would have to be performed for
only about 1/3 of the utterances, which reduces the computa-
tional complexity. Here, it can also be observed that wordrer
minimization only gives a marginal improvement in word &rro
rate from 3.97% for sentence error minimization down to 388
for word error minimization.

Table 1: Analysis of word error minimization on the ARPA
WSJO0 Nov.92 corpus. Results are presented for sub-corpora
based on the following conditions: &)(cma) > 1/2 (cf.
Sec. 3.1), b) Inegs. (2) and (5) are fulfilled (cf. Sec. 3.2), ¢
cmax = ¢ but neither a) nor b) hold, max # cc.

corpus | # sentences | # spoken| WER[%)], loss:
subset (fraction) words | sent.| words
[ all [740 (100%)] 12137]3.97] 3.88 ]
a) | 401 (54%) 6189 1.16
b) 57 (8%) 990 3.64
c) 229  (31%) 4023 6.56
d) 53 (7%) 935 [ 11.8 [ 106

Nevertheless, it is interesting that this small improvehien
obtained only from those 7% of the utterances, for which word
error minimization gives a result different from sentencee
minimization. For this fraction of the test utterances atieé
improvement of about 7% in word error rate is obtained, cf.
condition d) in Table 1. It is also interesting to notice the i
dividual error rates calculated for the different condiScpre-
sented in Table 1. Particularly utterances which have vigly h
posterior probability > 1/2) also have a very low error rate.

The average sentence length here is nearly 18 words, and
the baseline word error rate for this task is 3.97%. From the
rough estimate presented at the end of Sec. 3.1, we wouldexpe
a word error rate of more than 4% to see significant difference
in the decisions made by word and sentence error minimizatio
Therefore, the marginal improvement obtained here usingl wo
error minimization can be expected.

Finally, the average difference between tlewenshteiwmlis-
tance between the posterior maximizing word sequence @&nd th
Bayesrisk minimizing word sequence, and the parametee-
rived in Eq.(12) is only 0.455, i.e. about one word in every-se
ond sentence. Therefoeecan be used to find a close bound to
the difference between ttBayegisk for the posterior maximiz-
ing word sequence and the minimBayesrisk and therefore
allows for finding a good initial over-estimate of tBayesrisk
via Ineq. (13). In addition¢ seems to be well suited in giv-
ing an efficiently calculable estimate of the potential gjgm
word error rate when doing word error minimization inste&d o
sentence error minimization.
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