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Abstract LDA for feature combination are presented in Section 4, followed
by a detailed analysis of the results in Section 5, including further
experiments motivated by the analysis. The paper is concluded by
a summary in Section 6.

In this paper, Linear Discriminant Analysis (LDA) is investigated

with respect to the combination of different acoustic features for
automatic speech recognition. It is shown that the combination of
acoustic features using LDA does not consistently lead to improve-

ments in word error rate. A detailed analysis of the recognition 2. LDA-based Feature Combination
results on the VerbmobiMM I1) and on the English portion of |, the following, we describe a straightforward way to use LDA for
the European Parliament Plenary Sessi@#R9 corpusis given.  faatyre combination, and we discuss problems that might arise

This includes an independent analysis of the effect of the dimen-\,hen combining acoustic features using LDA.

sion of the input to LDA, the effect of strongly correlated input 14 combine different acoustic features, for each time frame
features, as well as a detailed numerical analysis of the generalized he feature vectorsz{* of each featuref; with i =

eigenvalue problem underlying LDA. Relative improvements in 1,...,1 are concatenated to build multi-feature vectars —
W.ord.error rate.of up to 5% were observed for LDA-based com- (‘,L.tfl’x{Z’ o 7:5{1). To also take into account the acoustic con-
bination of multiple acoustic features. text, then the multi-feature vectors for a number of successive
time frames are concatenated to build a multi-feature vextor
1. Introduction (Tt—n, Tt—n+1,-..,ZTe+n) Centered around time frante cover-
ing the acoustic input of all combined features within a window

In [1], Linear Discriminant Analysis (LDA) was first applied of 2n + 1 time frames. Finally, a combined feature vecigris
successfully to find an optimal linear combination of successive created by projectings; into a subspace of reduced dimension:
vectors of a feature stream for automatic speech recognition.y, = V7 X,. The transformation matri¥ is determined by
LDA could equally well be used to combine different features. | DA such that it conveys the most relevant classification informa-
In [2], direct combination of different cepstral features was done tion to the transformed feature vectars The resulting acoustic
using LDA, however without significant improvements in word vectors are used both in training and in recognition.
error rate (WER) compared to using the MFCCs alone. LDA also
is used successfully in the RWTH ASR system to take advantage ;
of an additional voicing feature [3]. Nevertheless, further exper- 3. EXpenmental Setup
iments presented here show improvements in word error rate areCharacteristics of the RWTH recognition system are summarized
not guaranteed using LDA to combine different acoustic features. in Table 1 for two large vocabulary speech corpora: \thebMo-
Specifically, we will present cases, in which LDA based feature billl (VM II) and the English partition of the European Parliament
combination leads to degradations. A major difference to using Plenary SessionEEPPS corpus. TheVM Il corpus consists of
LDA on single feature systems is the large increase in the dimen- German conversational speech whereas=sfRBScorpus contains
sion of the input. This might induce numerical problems with plenary session speeches of the European Parliament in British
respect to the estimation problem to be solved within LDA, espe- English. Acoustic modeling for both corpora is summarized in the
cially if the features to be combined are strongly correlated. The following. The optimized LDA output dimensionds. Gender in-
robustness of LDA with respect to increasing the input dimension dependent cross-word triphone sub-word units are used. Triphones
has been addressed in earlier investigations. In [4] a decrease irare clustered using a Classification and Regression Tree (CART).
WER was observed when overly increasing the LDA input window The resulting generalized triphone states are modeled by Gaussian
length. In [5], addition of random coefficients to the feature vec- mixture distributions with a pooled diagonal covariance matrix.
tors for an artificial recognition problem also showed degradations. Further properties differing for both systems are summarized in
The latter experiment was repeated for speech recognition on realTable 1. On thé/M Il corpus, tests have been performed only on
data in this work and could not be confirmed. We review the theevaluationset. On th&ePPScorpus, we present recognition re-
above-mentioned inconsistencies observed w.r.t. the performancesults on both thelevelopmerdnd theevaluationsets. The baseline
of LDA-based feature combination from the point of view of nu- experiments using a single feature apply LDA in the same way as
merical stability of the underlying eigenvalue problem to be solved the feature combination experiments. The only difference is that
within LDA. we use one feature resulting in a smaller LDA input dimension.
The paper is structured as follows. In Section 2, the usage of Nevertheless, the size of the projected feature vectors is kept con-
LDA for feature combination is introduced. An overview of the stant throughout different experiments to ensure comparability of
experimental setup is given in Section 3. Recognition results usingthe corresponding numbers of parameters and recognition results.



Table 1: Settings of the RWTH recognition systems for the Table 3: Degradation in WER obtained by LDA-based combina-
VM Il and theEPPScorpus.

corpora| name VM I EPPS
partition train eval | train dev eval
size speech [h] | 61.5 1.6 408 3.7 35
# speakers | 857 16 154 16 36
lexicon | vocabulary 10,157 54,265
lang. type class-trigram trigram
model | perplexity 62.0 87 99
LDA window 11 frames 9 frames
output dim. 45 45
HMM topology 3 states w/ skip) 6 states
silence 1 state 1 state
# states 3,501 4,501
# densities ~396k ~446k

4. Recognition Results

tion of baseline features MFCC, MF-PLP, and PLP.

corpus | acoustic error rates [%]
feature dev eval
del ins| WER | del ins| WER
VM II MFCC 45 29| 21.0
MF-PLP 52 23| 21.0
PLP 59 23| 214
YILDA 47 33| 216
EPPS | MFCC 43 14| 147 | 3.8 1.7| 15.3
MF-PLP | 42 15| 148 | 3.7 1.7| 15.3
PLP 43 16| 154 | 35 1.8| 15.8
YDA 48 14| 158 |41 16| 16.2

5. Analysis of Results

As mentioned in the introduction, aspects of the application of
LDA in speech recognition have already been addressed before.

The experiments presented in the following are meant to testIn [4], experiments have been presented with increasing LDA win-

the ability of LDA to combine an increasing number of dif-
ferent acoustic features. Table 2 shows results for LDA-based feature vectors.

dow length i.e. with increasing number of successive concatenated
Instead of converging improvements in WER,

feature combination of MFCC, vocal tract length normalized a clear optimum was found dtl concatenated feature vectors.

MFCC (VTLN), voicing (V), and spectrum derivative (SD) fea-
tures [6] compared to the best single-feature result.

In [5], feature vectors of an artificial recognition task have been

On both augmented with an increasing number of white noise components.

corpora, the subsequent combination of the VTLN, voicing, and The classification error rate was doubled when augmenting a two-
spectrum derivative features results in consistent successive im-dimensional feature vectors witt00 white noise components.
provements of WER. Finally, we have added the MFCC feature to Also, a real speech recognition system was used to test the effects
test the robustness of LDA against increasing input size. We haveof an increasing LDA window length. The authors found that in-
not expected any significant change in WER since the MFCC fea- creasing the LDA window length requires an increasing amount of
ture is strongly related to the VTLN one. As shown in Table 2, training data to retain the best recognition result. In the following,
the additional MFCC feature has yielded neither in a significant the problems with LDA-based feature combination presented here

improvement nor degradation in WER.
consistent improvements in WER, we have obtained unexpected binati ith Whi .
degradation when combining the MFCC, MF-PLP, and PLP [7] >-1. Combination with White Noise Components

features. Table 3 summarizes the baseline recognition resultsa possible explanation for the degradation in WER for using
of the individual features and the results obtained by the LDA- | DA with increasing input dimension could be instabilities of

based combination denoted By, p 4. On both corpora, we have

In contrast to the above and in literature are analyzed in more detail.

the underlyinggeneralized eigenvalue problemsulting from the

obtained strong degradation in WER. This observation does notincreased dimension. If we assume that the degradation in WER
comply with the results shown in Table 2. There, the combination is caused by numerical instabilities then additional artificial white

of the VTLN, V, and SD features with the much weaker performing noise components should be able to induce these problems respec-
MFCC feature did not cause any significant degradation in WER. tively cause increasing WER. Corresponding experiments were

A possible explanation can be found if we consider the correlation performed using the MFCC feature and constant LDA window
between the features as discussed in the following section.

Table 2: Consistent improvements in WER obtained by LDA-
based combination of increasing number of acoustic features.

corpus | acoustic error rates [%]
feature dev eval
del ins| WER | del ins | WER
VMII | VTLN 3.8 29| 191
+V 41 27| 18.7
+SD 39 29| 184
+MFCC 3.6 28| 183
EPPS | VTLN 43 13| 142 | 3.7 15| 141
+V 40 15| 138 | 3.3 1.6| 14.0
+SD 36 16| 13.7 | 3.1 1.8| 14.0
+MFCC | 3.7 16| 138 |33 19| 141

length. In order to increase the input dimension of LDA, the
16 baseline MFCC components have been augmented with white
noise components simulating additional features for each time
frame. To rule out singularities resulting from dependent features,
we required the added random features to be independent. Stan-
dard random number generators do not comply with this require-
ment. E.g. for a corpus of 60 hours of training data, using

a 100-dimensional white noise extension for every MFCC vector
requires a random number generator with a periodicity greater than
3.6 x 10°. In our experiments, we have used a random number
generator from [8], which ensured a sufficient minimum period
of 2 x 10'®. Recognition results are summarized in Table 4. We
have extended thies MFCC components with up 0 white noise
coefficients per time frame. The resulting concatenated LDA input
vectors have grown up t854 components per time frame. For
both corpora, the white noise components have not caused any
degradation in WER, i.e., increasing the feature vector size by



Table 4: WER obtained by LDA-based combination of MFCC fea- the corresponding unperturbeﬁj7 ﬂ) and the pertur[:)(:)(b/7 ﬁ’) is
tures and increasing number of randomly generated coefficients. defined as

lap’ — /B
corpus #rnd [#LDA error rates [%0] X((a, B), (e, 8) = . 2
cmp | input dev eval Vil +182V1’]? + 1672
del ins |WER| del ins |WER Now, instead of discussing perturbations to a possibly singular
VM I 0 176 45 291210 eigenvalue, perturbations te and 3 are addressed in relation to
15x11| 341 45 3.0 209 a perturbation of the scatter matrices. Thenaaymptotic upper
30x11| 506 45 3.0 209 boundfor the error between the real and the estimated eigenvalues
38x 11| 594 48 3.0|21.0 is given by:
EPPS| 0 176 | 43 14| 14.7| 3.8 1.7|153 . el(B,W)]|x
30«9 | 414 | 43 1.3|146| 3.8 1.7 | 152 X ((e:8), (o, ) < Sy ®)
60+9 | 684 | 42 1.4|14.6| 3.9 1.7 |15.2 _ _ N _
90+9 | 954 | 43 14| 148! 39 1.7| 154 whereS()\) is called theeciprocal condition numbeof the eigen-

valueX. Small values of (\) indicate ill-conditioned eigenvalues,
since a small perturbation of the matrix p&iB, W) results in a

up to a factor of nearly’ apparently does not introduce numer- large difference between the estimated and the real eigenvalues.
ical problems to LDA when numerically solving the generalized Similar to eigenvalues, the asymptotic error bound and the recip-
eigenvalue problem. rocal condition number can also be derived for eigenvectors. For
In contrast to [5], the experiments on real data presented here havélétails cf. [10]. B _

not led to significant changes in WER. Nevertheless, it should be YW now present speech recognition experiments oReScor-
mentioned that the average number of observations per LDA classPUS t0 investigate the relationship between WER and asymptotic

observed here (4500) differs strongly from [5], where oh(y error bound_s and recipro_cal condition numbers delivered by the
observations were presented per LDA class. dggevxalgorithm, respectively. We present the error bounds and

the reciprocal condition numbers averaged over all eigenvalues
5.2. Sensitivity of Eigenvalues and Vectors respectively eigenvectors. Table 5 summarizes the results for

o P combination of different sets of features. The first line gives the
The application of LDA to feature combination has led to both baseline results applving LDA on the MECC feature only. In
improvements and degradations in WER when combining an in- S applying : - Only.

: . the next experiment, a singularity was introduced artificially by
creasing number of features. In Section 5.1 we have shown thatre eating the first MECC coefficient to simulate a stronglv cor-
augmenting the features with further uncorrelated random features eﬁated gdditional one-dimensional feature. Althouah thgeyinfor-
does not lead to degradations. So what about additional correlated ©'&" . . . : 9

h .~ mation contained in the acoustic features has not changed, WERs
features? A strong correlation between features can lead to SN creased considerably. Simple methods. like exolicitly exclud-
gular scatter matrices. Generally, an indefinite symmetric matrix . Y. P ! plicitly

pair (A, B) may lead to complex eigenvalues and may not have a ing eigenvectors from the proje_ction matrix which belong to I_ow
compléte set of generalized eigenvectors. Note that if bo#imd eigenvaluego, 3) < yu has not improved the results. Increasing

B are (close to) singular, then any complex numbés a valid values ofu, have been tested which lead to excluding an increasing

. : . amount of eigenvalues close to singularity. The best recognition
eigenvalue. In all our experiments, we have used the linear algebra

) - .2
software libraryLAPACK|[9] to solve the generalized eigenvalue result has been obtained py= 3 x 1.0 S The average con(_jltlon
problem. Although the matrices involved are symmetric, we have numbers have dropped rather heavily, indicating weak estimates of

applied the more generdygevsalgorithm ofLAPACKdeveloped the eigenvalues and eigenvectors, which might explain this degra-
for generalized non-symmetric eigenvalue problems, since it is Qatlon. Furthermore, the low average of the condition numbers

designed to cope with indefinite matrix pairs. The algorithm can indicates that a strong singularity effects not only the conditioning

be summarized as follows. Assume the within- and between-classOf the singular eigenvalue but also all the rest of the eigenvalue

scatter matrice3 and W and the left and right eigenvectogs estimates. The th.'rd and fourth Im_es of the table show results
; . LS of experiments using the combination of different features. As
andz;, and corresponding eigenvaliig respectively:

expected from the recognition performance, the experiment com-
Bx; = MWz, yZHB = )\iyZHVV. bining the MFCC, VTLN, V, and SD features has not resulted in
large differences in condition numbers compared to the baseline
experiment. Nevertheless, the conditioning of the eigenvectors
decreased more strongly, which needs to be further investigated.
Finally, we have calculated the average reciprocal condition hum-
bers for the combination of the MFCC, MF-PLP, and PLP features.
Our goal was to find an explanation for the unexpected increase in
WER compared to using the single MFCC feature. Although the
degradation in WER is comparable with the experiment repeating
the first MFCC coefficient, the conditioning has not decreased as
Note that before calculating the eigenvalues, (near) singular caseseavily as in the second line of the table. Further analysis of

Reducing(B, W) to the generalized uppdtessenbergorm, a
generalizedSchur decomposition results in the upper triangular
matrix pair (S, 7). The left and the right eigenvectors are com-
puted from(S,T). The corresponding eigenvalugs are calcu-
lated from the diagonal elements(df, T'):
Sii (673
A = To = 5 )

can be found by checkin@x;, 3;) for values close to zero. this problem is required to verify if the small reduction in the
Assume estimate(’, 3') leading to a real eigenvalug of eigenvalue condition number and the increase in the asymptotic
the perturbed matrix paifB + £, W + F) with |[(E, F)|| = error bounds explain the degradation in WER. Table 6, summarizes

€||(B, W)||1 ande is the64bit machine precision. In perturbation  results obtained by increasing the LDA window length i.e. the
theory, for generalized eigenvalues ttteordal distancebetween number of successive concatenated feature vectors. Firstly, the



Table 5: Average reciprocal condition numbers and asymptotic error bounds of eigenvalues and eigenvect@BPR8dbrous obtained
by LDA-based feature combination tests yielding improvements and degradations in WER.

acoustic WER [%] | #LDA avr. recip. cond. num. avr. asym. error bound
features dev eval| input | eigenvalue eigenvector eigenvalue eigenvector
MFCC 147 15.3| 144 4.0 27x1072 [ 25x107 37x1078
MFCC+Repeated-1st-Coeff 15.6 16.2| 153 | 1.7 x107% 2.0x 107! | 8.3 x 10? >
MFCC+VTLN+V+SD 13.8 14.1| 306 1.0 52x107* | 23x107" 1.0x107%
MFCC+MF-PLP+PLP | 15.8 16.2| 432 | 1.5x107' 6.8x107* | 3.0x 107" 25x%x 1073

Table 6: Average reciprocal condition numbers (CN) and asymp-
totic error bounds (EB) of eigenvalues (EVL) and eigenvectors

(EVC) on theEPPScorpus obtained by using increasing LDA win-

dow lengths.

input WER LDA CN EB

window (%] input | EVL EVC | EVL EVC

length | dev eval dim. [1072] | [107*3] [1078]
5 155 16.8 80 43 34 1.4 0.25
7 15.0 153 112 | 42 3.2 2.0 0.99
9 147 153 144 | 40 2.7 2.5 3.7
11 15.0 155 176 | 4.0 2.1 3.5 12
13 15.1 154 208 | 4.1 2.2 3.9 20
17 154 158 272 | 3.8 2.1 20 1200

(1]

(2]

(3]

condition numbers do not change significantly when increasing
the LDA window length. Although the asymptotic error bounds do 4]
show a tendency to increase, their relation to WER is not obvious.
At hardly changing condition numbers, the increasing error bounds

must be caused by the increasing matrix norf®, W)||1 which

is most probably caused by the increasing dimension. Therefore,

(5]

the increasing size of the scatter matrices seems not to lead to ill-
conditioned eigenvalue problems. For an explanation of the degra-
dation also the relation between the number of input features and
the amount of training data available might have to be considered. [6]

6. Summary

The results presented for LDA-based combination of multiple

acoustic features show improvements in WER of up%orelative

(7]

to the best single-feature system. Yet, in some cases LDA-based
feature combination leads to unexpected degradations in WER.
Experiments with additional random components indicate that [8]
the LDA input dimension is not the bottleneck. Adding about

1000 independent random features did not alter the WER.

On

the other hand, adding strongly correlated acoustic features [9]
lead to degradations in WER due to unstable estimates of the
projection matrix. The stability of the numerical estimation of

LDA was analyzed by means of perturbation theory. Nevertheless,

degradations in WER when increasing the LDA window length
and when combining MFCC, MF-PLP, and PLP features could

(10]

not be explained by this analysis. Therefore, careful preselection

of features to be combined still is necessary. Consequently, (11]
in future work algorithms specifically developed for singular
pencils [11, 12] will be considered to improve the stability of the

eigenvalue and eigenvector estimates.
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