
Using a Bilingual Context
in Word-Based Statistical Machine Translation

Christoph Schmidt, David Vilar and Hermann Ney

Chair of Computer Science 6
RWTH Aachen University

{schmidt,vilar,ney}@cs.rwth-aachen.de

Abstract. In statistical machine translation, phrase-based translation (PBT) mod-
els lead to a significantly better translation quality over single-word-based (SWB)
models. PBT models translate whole phrases, thus considering the context in
which a word occurs. In this work, we propose a model which further extends
this context beyond phrase boundaries. The model is compared to a PBT model
on the IWSLT 2007 corpus. To profit from the respective advantages of both mod-
els, we use a model combination, which results in an improvement in translation
quality on the examined corpus.

1 Introduction

The goal of machine translation is to translate a text from one natural language into
another using a computer. In statistical machine translation, the process of translating is
modelled as a statistical decision process.

The IBM-models proposed in the early 1990s were single-word-based models [1]. A
characteristic of the single-word-based approach is that lexicon probabilities are mod-
elled for single words. Consequently, the context in which a word is used does not
influence its translation probability.

The phrase-based approach tries to overcome this disadvantage by learning the
translation of whole phrases instead of single words. Here, “phrase” is not used in the
linguistic sense but simply refers to a sequence of words. (A more detailed descrip-
tion of the phrase-based approach can be found in [2].) As the phrase-based approach
translates phrases independently, words outside the phrase are not considered for its
translation. Moreover, the PBT model makes some independence assumptions which
seem to be arbitrary, e.g. the assumption that all segmentations of the source sentence
into phrases are equally likely.

To overcome these deficiencies, the model proposed in this work considers a bilin-
gual context beyond phrase boundaries. This approach is similar to the N -gram model
presented in [3]. However, the model presented here remains at the target word level.
As the model conditions its translation on both the words of the source and the target
sentence, we will refer to it simply as the “conditional model”.

The remaining part of this work is organized as follows: in the next section, we will
briefly sketch the basics of statistical machine translation and describe the log-linear
approach. In Section 3, the conditional model is introduced. Section 4 and Section 5
describe the search process and the feature functions used in the log-linear approach.



In Section 6, we propose a model combination of the PBT model and the conditional
model. Section 7 discusses the experimental results obtained on the IWSLT 2007 cor-
pus. The last section gives a conclusion and an outlook for possible future research.

2 Statistical Machine Translation

In statistical machine translation, a given source language sentence fJ
1 = f1 . . . fJ has

to be translated into a target language sentence eI
1 = e1 . . . eI . According to Bayes’

decision rule, to minimize the sentence error rate we have to choose the sentence êI
1

which maximizes the posterior probability1:

êI
1 = argmax

eI
1

{Pr(eI
1|fJ

1 )} . (1)

The posterior probability Pr(eI
1|fJ

1 ) is modelled directly using a log-linear model [4]:

p(eI
1|fJ

1 ) =
exp(

∑M
m=1 λmhm(eI

1, f
J
1 ))∑

ẽ exp(
∑M

m=1 λmhm(ẽ, fJ
1 ))

. (2)

Inserting Equation (2) into Bayes’ decision rule (1) and simplifying, we obtain:

êI
1 = argmax

eI
1

{Pr(eI
1|fJ

1 )} (3)

= argmax
eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )} . (4)

In the log-linear model, different knowledge sources can be easily combined using fea-
ture functions hm(eI

1, f
J
1 ). Statistical translation systems typically use bilingual fea-

tures such as translation probabilities and monolingual features such as the target lan-
guage model. The conditional model which models the posterior probability Pr(eI

1|fJ
1 )

can also be used as one feature function in the log-linear approach.
The model scaling factors λm are estimated on a development corpus to optimize

some performance measure, usually BLEU.

3 The Conditional Model

3.1 Motivation

The main improvement of the phrase-based translation (PBT) model over the single-
word-based (SWB) translation model is the extension of the context taken into account
when translating a word: While the SWB model translates words individually and uses
context information only in the target language model, the PBT model translates whole
sequences of words. Nonetheless, the PBT model does not take into account words out-
side the phrase to be translated. In the following, the conditional model which considers
a context beyond phrase boundaries is developed.

1 Note that in this work, Pr is used to indicate true probabilities, while p denotes probability
models.
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Relations between i,j and k in the figure:

- k = 7
- Ak = (5, 6)
- i(k) = 6
- j(k) = 5
- ki=6 = 8
- kj=2 = 4

Fig. 1. Relations between the alignment indices i,j and k

3.2 The Conditional Model

A word alignment A is a relation A ⊆ J × I such that (j, i) ∈ A if word fj in the
source sentence corresponds to word ei in the target sentence. In general, alignments
allow for many-to-many relations between source and target words.

The conditional model is monotone: it translates words in the same order in which
they appear in the source sentence. However, the word order of the source language of-
ten differs from that of the target language. To overcome this problem, the source sen-
tence is first reordered in such a way that the reordered sentence can then be translated
monotonously. In this section, a reordered source sentence and a monotone alignment
are presumed. Section 3.3 will explain how to obtain such a reordering during training.

Alignment points (j, i) are numbered by an index k:

A : {1, . . . ,K} → {1, . . . , J} × {1, . . . , I} (5)
Ak = (j(k), i(k)) (6)

This indexing is done consecutively from A1 = (1, 1) to AK = (J, I) (see Fig. 1).
A source word can be aligned to several target words and vice versa. The functions

ki and kj obtain the alignment point with the highest index for a given source/target
word:

ki = max
k :∃j :Ak=(j,i)∈A

k , kj = max
k :∃i :Ak=(j,i)∈A

k

Starting from the posterior probability Pr(eI
1|fJ

1 ), the alignment is introduced as a
hidden variable A:

Pr(eI
1|fJ

1 ) =
∑
A

Pr(eI
1,A|fJ

1 ) (7)

=
∑
A

I∏
i=1

Pr(ei|ei−1
1 , fJ

1 ,A)Pr(Aki |A
ki−1
1 , fJ

1 ) (8)



In Equation (8), the probabilities are decomposed using the chain rule Pr(xN
1 ) =∏

n Pr(xn|xn−1
1 ). Furthermore, the joint probability of target words and alignment is

separated.
The conditional model restricts the dependency of a target word to the source and

target words which are aligned by the last m alignment points:

Pr(ei|ei−1
1 , fJ

1 ,A) = p(ei|ei−1
i(ki−m), f

j(ki)
j(ki−m),A) . (9)

This Markov assumption of order m is similar to that of n-gram models in language
modelling: n-gram models restrict the dependency of a word to its n− 1 predecessors.
m is called model order.

Additionally, the dependency of the alignment probability Pr(Aki |A
ki−1
1 , fJ

1 ) is
restricted to the previous alignment point Aki−1 and the current source word fj(ki). As
only the differences between j(ki) and j(ki−1) are considered, Aki

= (j(ki), i) can be
simplified to j(ki):

Pr(Aki |A
ki−1
1 , fJ

1 ) = p(j(ki)|j(ki−1), fj(ki)) . (10)

In a second step, the conditional probability p(j(ki)|j(ki−1)) is replaced by the
Bakis model known from speech recognition [5]:

δ =


0 if j(ki) = j(ki−1)
1 if j(ki) = j(ki−1) + 1
2 if j(ki) > j(ki−1) + 1

(11)

Fig. 2 shows the different values δ can take. In this example, the target word to be
translated is e6. Consequently, k6 is 8. For a model order of m = 5, the gray alignment
points are the considered context, which corresponds to the words e5

3 and f6
2 .

Applying the assumptions of Equations (9) and (10) leads to:

Pr(eI
1|fJ

1 ) =
∑
A

I∏
i=1

p(ei|ei−1
i(ki−m), f

j(ki)
j(ki−m),A) · p(j(ki)|j(ki−1), fj(ki)) (12)

=
∑
A

I∏
i=1

p(ei|δ, ei−1
i(ki−m), f

j(ki)
j(ki−m)) · p(δ|fj(ki)) (13)

The alignment information is contained in the function ki, and consequently A is
omitted in (13).

Instead of summing over all possible alignments, the maximum-approximation which
considers only the alignment leading to the highest value is used. This assumption re-
duces the complexity of the search procedure.

Pr(eI
1|fJ

1 ) ≈ max
A

I∏
i=1

p(ei|δ, ei−1
i(ki−m), f

j(ki)
j(ki−m)) · p(δ|fj(ki)) (14)
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Fig. 2. Delta-notation, alignment points taken into account for m=5

The probabilities of the model are estimated from the training corpus via relative
frequencies. With high model orders, the probabilities cannot be estimated reliably. To
solve this data sparseness problem, the probabilities are smoothed using linear discount-
ing [6]. Whenever a context of order m is encountered which has not been seen during
training, shorter contexts are considered instead.

3.3 Monotonization of Alignments

Since the conditional model is defined to be monotone, the training data has to be trans-
formed to obtain reordered source sentences and monotone alignments. Given an un-
aligned parallel training corpus, first general alignments are computed under the fol-
lowing restrictions:

1. Each source and target word has to be aligned to at least one word. The resulting
alignments are therefore called full-coverage alignments.

2. If a source word is aligned to several target words, these words have to be consec-
utive.

3. If a source word is aligned to several target words, these target words cannot be
aligned to other source words.

Alignments which fulfill the above conditions can then be transformed into mono-
tonic alignments by reordering the source words appropriately. It is sufficient to sort
the alignment columns according to the smallest row index of the alignment points they
contain. For a detailed description cf. [7]. Fig. 3 gives an example of such a reordering.
f̆J
1 indicates the reordered source sentence, Ă the monotone alignment.

4 The Search Process

The goal of the translation process is to obtain the target sentence which maximizes the
translation probability Pr(eI

1|fJ
1 ). A beam-search algorithm is used.

To allow for a difference in word order, the source sentence is reordered using re-
ordering graphs. These generate a restricted subset of permuted source sentences [2].
A simple cost function reorder(fJ

1 , f̆J
1 ) which applies higher costs to non-monotonic

translations is used as a feature function. In the experiments, reordering graphs with
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Fig. 3. A monotone alignment obtained by reordering the source sentence f

local constraints yielded best results. With these constraints, only neighboring words
within a certain window are permuted.

5 Feature Functions

In the log-linear approach, six feature functions were used:

h1(eI
1, f

J
1 ) = log

(
Pr(eI

1|fJ
1 )

)
posterior probability

h2(eI
1, f

J
1 ) = log

(
Pr(fJ

1 |eI
1)

)
inverse posterior probability

h3(eI
1, f

J
1 ) = I word penalty

h4(eI
1, f

J
1 ) = log

(
Pr(eI

1)
)

target language model

h5(eI
1, f

J
1 ) = log

(
Pr(f̆J

1 )
)

language model for reordered source

h6(eI
1, f

J
1 ) = reorder(fJ

1 , f̆J
1 ) reordering cost

Often, the translation system produces very short sentences eI
1, because for each ad-

ditional word, the translation probability gets smaller. The word penalty feature function
can counterbalance this tendency. With a negative weight λ3, a bonus is added for each
additional word. The language model for Pr(f̆J

1 ) is trained on the reordered source
sentences of the training corpus. It is able to learn reordered word sequences which
occur in the training corpus and complements the simple reordering cost h6.

6 Combining the PBT Model and the Conditional Model

Additionally, the PBT model and the conditional model can be combined to take advan-
tage of their respective benefits:

– The PBT model is able to reorder whole phrases instead of single words. It can rule
out many reorderings in which related words are separated.

– The conditional model considers a context beyond phrase boundaries.



A standard method for combining different models is N -best list rescoring: First, one
model is used to translate the source text. For each sentence, the N best translations are
stored along with their model costs. In a second step, the other model is used to score
the translated sentences of the first model. Given a translation made by the first model,
the cost of this translation with respect to the second model is calculated. In the end, a
log-linear combination of both costs is calculated. The weights of this combination are
optimized on the development corpus.

In the model combination, the reordering which was computed by the PBT model
when translating a sentence is also used by the conditional model. The conditional
model performs a monotone translation of the reordered source sentence produced by
the PBT model. Thus, the model combination takes advantage of the better reordering
capabilities of the PBT model. The model combination led to an improvement over the
PBT model, as can be seen in the following section.

7 Translation Results

7.1 Evaluation Criteria

Evaluating the quality of a translation is in itself a difficult task. In the experiments
presented here, we rely on two criteria, TER and BLEU.

- TER (translation edit rate) [8] : The TER criterion is a recent refinement of the
WER criterion. The WER criterion is defined as the edit distance (minimum num-
ber of insertions, deletions and substitutions) between the translation and a refer-
ence translation. In addition to this, the TER allows for a sequence of contiguous
words to be moved to another place. This enhancement is natural, as often phrases
can be placed at different position of the sentence without altering its meaning.

- BLEU (bi-lingual evaluation understudy) [9] : BLEU is the current de facto stan-
dard in machine translation evaluation. When using several translation references,
BLEU can capture the variability translations can have. It evaluates the translated
sentence by calculating an n-gram precision for n ∈ {1, 2, 3, 4}. In addition, a
brevity penalty is calculated to penalise translations which are too short. Note that
a good translation is indicated by a high BLEU score. BLEU is said to have a high
correlation with human evaluation. The parameter of the model presented in this
work were optimized with respect to BLEU.

7.2 Corpus Statistics

For the following experiments, the two language pairs Chinese-English and Italian-
English were chosen from the corpus used in the “International Workshop on Spoken
Language Translation” IWSLT 2007 [11]. The corpus is a further development of the the
multilingual BTEC (“Basic Travel Expression Corpus”) corpus which contains typical
phrases and sentences from the travelling domain. In Table 1, some corpus statistics
are summarized. In the Chinese case, six reference translations were given for each
sentence in the test set, in the Italian case, four reference translations were given.



Table 1. Corpus Statistics IWSLT 2007 Chinese-English and Italian-English
Chinese English Italian English

Training data: Sentences 42,942 22,995
Running Words 390,335 420,431 164,715 222,005

Vocabulary 10,385 9,933 10,329 7,794
Singletons 3,696 3,937 4,729 3,355

Test data: Sentences 489 6 · 489 724 4 · 724
Running Words 3,256 22,574 6,540 36,725

Vocabulary 885 1,527 735 940
OOVs (running words) 70 4,377 449 6,799
OOVs (in vocabulary) 69 394 110 288

To see whether the extension of the context beyond phrase boundaries leads to an
improvement in translation quality, the conditional model is compared to the PBT sys-
tem which was implemented at the Chair of Computer Science 6, RWTH Aachen Uni-
versity [12]. Moreover, a model combination of the PBT model and the conditional
model is evaluated.

7.3 Chinese-English

To obtain the optimal window length of the reordering graph, we performed exper-
iments on the development corpus with different window lengths. Fig. 4 shows the
influence of the window length on the translation quality. It points out the importance
of reordering for the Chinese-English language pair: a non-monotone translation leads
to significantly better results than a monotone translation (l = 1). For window lengths
higher than l = 7, the search space becomes too large to be processed. Heavy pruning
had to be applied, which led to a decrease in translation quality.

The results obtained on the Chinese-English test data are summarized in Table 2. A
model order of m = 8 was used.

The conditional model does not achieve the same translation quality as the PBT
model. One reason is the cost function of reordering graphs. The assumption that a
monotonic translation is more probable than a translation in which many words are
reordered does not hold for the Chinese-English language pair, because the sentence
structure between the two languages is often very different. The model combination of
the PBT model and the conditional translation model led to an improvement on the test
corpus of 0.5 BLEU and 0.7 TER absolute.

7.4 Italian-English

For the Italian-English language pair, the reordering problem is not as pronounced as
for the Chinese-English case. Optimal results on the development corpus were obtained
for local reorderings with a window length of l = 3 and a model order of m = 4.
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Table 2. Chinese-English results on the test set
BLEU [%] TER [%]

PBT model 39.0 45.1
Monotone translation 21.9 61.1
Conditional model (l = 7) 30.6 57.0
Model combination 39.5 44.4

Again, the model combination of the PBT model and the conditional model leads
to an improvement in translation quality, though it is not as pronounced as in the case
of the Chinese-English corpus.

Table 3. Italian-English results on the test set
BLEU [%] TER [%]

PBT model 34.6 50.6
Conditional model (l = 3) 31.8 56.5
Model combination 34.9 50.4

8 Conclusion and Outlook

We presented a translation model which takes into account a context beyond phrase
boundaries. The conditional model uses a bilingual context to overcome the deficiencies



of the phrase-based translation model. In the Chinese-English case, a complex reorder-
ing has to be considered to account for the different sentence structure. Here, reordering
phrases is more promising than reordering single words. A model combination which
takes advantage of phrase reordering as well as the extension of the context beyond
phrase boundaries led to an improvement in performance on both the Chinese-English
and the Italian-English corpus.

In the future, advanced smoothing methods should be applied to the conditional
model. Moreover, a better reordering model should be developed to take into account
differences in word order.
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