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Abstract

We analyze the usage of Speeded Up Robust Features (SURF) as local descriptors
for face recognition. The effect of different feature extraction and viewpoint consistency
constrained matching approaches are analyzed. Furthermore, a RANSAC based outlier
removal for system combination is proposed. The proposed approach allows to match
faces under partial occlusions, and even if they are not perfectly aligned or illuminated.

Current approaches are sensitive to registration errors and usually rely on a very good
initial alignment and illumination of the faces to be recognized.

A grid-based and dense extraction of local features in combination with a block-based
matching accounting for different viewpoint constraints is proposed, as interest-point
based feature extraction approaches for face recognition often fail.

The proposed SURF descriptors are compared to SIFT descriptors. Experimental
results on the AR-Face and CMU-PIE database using manually aligned faces, unaligned
faces, and partially occluded faces show that the proposed approach is robust and can
outperform current generic approaches.

1 Introduction

In the past, a large number of approaches that tackled the problem of face recognition were
based on generic face recognition algorithms such as PCA/LDA/ICA subspace analysis [20],
or local binary pattern histograms (LBP) [19] and its extensions. The discrete cosine trans-
form (DCT) has been used as a feature extraction step in various studies on face recognition,
where the proposed local appearance-based face recognition approach in [4] outperformed
e.g. the holistic approaches. Nowadays, illumination invariance, facial expressions, and par-
tial occlusions are one of the most challenging problems in face recognition [5, 12, 24],
where face images are usually analyzed locally to cope with the corresponding transforma-
tions.
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Local feature descriptors describe a pixel in an image through its local neighborhood
content. They should be distinctive and at the same time robust to changes in viewing con-
ditions. Many different descriptors and interest-point detectors have been proposed in the
literature, and the descriptor performance often depends on the interest point detector [15].
Recently, a comparative study in [3] has shown the superior performance of local features
for face recognition in unconstrained environments.

The SIFT descriptor [10] seems to be the most widely used descriptor nowadays, as
it is distinctive and relatively fast to compute. SIFT has been used successfully for face
authentication [2], SIFT face-specific features have been proposed in [11], and extensions
towards 3D Face recognition have been presented e.g. in [14].

Due to the global integration of Speeded Up Robust Features (SURF) [1], the authors
claim that it stays more robust to various image perturbations than the more locally operating
SIFT descriptor. SURF descriptors have been used in combination with a SVM for face
components [9] only. However, no detailed analysis for a SURF based face recognition has
been presented so far.

We provide a detailed analysis of the SURF descriptors for face recognition, and in-
vestigate whether rotation invariant descriptors are helpful for face recognition. The SURF
descriptors are compared to SIFT descriptors, and different matching and viewpoint consis-
tency constraints are benchmarked on the AR-Face and CMU-PIE databases. Additionally,
a RANSAC based outlier removal and system combination approach is presented.

2 System Overview
Local features such as SIFT or SURF are usually extracted in a sparse way around interest
points. First, we propose our dense and grid-based feature extraction for face recognition.
Second, different matching approaches are presented.

2.1 Feature Extraction
Interest Point Based Feature Extraction. Interest points need to be found at different
scales, where scale spaces are usually implemented as an image pyramid. The pyramid levels
are obtained by Gaussian smoothing and sub-sampling. By iteratively reducing the image
size, SIFT [10] uses a Difference of Gaussians (DoG) and Hessian detector by subtracting
these pyramid layers. Instead, in SURF [1] the scale space is rather analyzed by up-scaling
the integral image [23] based filter sizes in combination with a fast Hessian matrix based
approach. As the processing time of the filters used in SURF is size invariant, it allows
for simultaneous processing and negates the need to subsample the image hence providing
performance increase.

Grid-Based Feature Extraction. Usually, a main drawback of an interest point based fea-
ture extraction is the large number of false positive detections. This drawback can be over-
come by the use of hypothesis rejection methods, such as RANSAC [7] (c.f. subsection 2.4).

However, in face recognition an interest point detection based feature extraction often
fails due to missing texture or ill illuminated faces, so that only a few descriptors per face
are extracted. Instead of extracting descriptors around interest points only, local feature
descriptors are extracted at regular image grid points who give us a dense description of the
image content.
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2.2 Local Feature Descriptors
In general, local feature descriptors describe a pixel (or a position) in an image through its lo-
cal content. They are supposed to be robust to small deformations or localization errors, and
give us the possibility to find the corresponding pixel locations in images which capture the
same amount of information about the spatial intensity patterns under different conditions.

In the following we briefly explain the SIFT [10] and SURF [1] descriptors which offer
scale and rotation invariant properties.

2.2.1 Scale Invariant Feature Transform (SIFT)

The SIFT descriptor is a 128-dimensional vector which stores the gradients of 4 × 4 loca-
tions around a pixel in a histogram of 8 main orientations [10]. The gradients are aligned
to the main direction resulting in a rotation invariant descriptor. Through computation of
the vector in different Gaussian scale spaces (of a specific position) it becomes also scale
invariant. There exists a closed source implementation of the inventor Lowe1 and an open
source implementation2 which is used in our experiments.

In certain applications such as face recognition, rotation invariant descriptors can lead to
false matching correspondences. If invariance w.r.t. rotation is not necessary, the gradients
of the descriptor can be aligned to a fixed direction. The impact of using an upright version
of the SIFT descriptor (i.e. U-SIFT) is investigated in section 3.

2.2.2 Speeded Up Robust Features (SURF)

Conceptually similar to the SIFT descriptor, the 64-dimensional SURF descriptor [1] also
focusses on the spatial distribution of gradient information within the interest point neigh-
borhood, where the interest points itself can be localized as described in subsection 2.1 by
interest point detection approaches or in a regular grid. The SURF descriptor is invariant to
rotation, scale, brightness and, after reduction to unit length, contrast.

For the application of face recognition, invariance w.r.t. rotation is often not necessary.
Therefore, we analyze in section 3 the upright version of the SURF descriptor (i.e. U-SURF).
The upright versions are faster to compute and can increase distinctivity [1], while maintain-
ing a robustness to rotation of about ± 15 ◦, which is typical for most face recognition tasks.

Due to the global integration of SURF descriptors, the authors [1] claim that it stays
more robust to various image perturbations than the more locally operating SIFT descriptor.
In section 3 we analyze if this effect can also be observed if we use SURF descriptors for
face recognition under various illuminations. For the extraction of SURF-64, SURF-128,
U-SURF-64, and U-SURF-128 descriptors, we use the reference implementation3 described
in [1]. Additionally, another detailed overview and implementation4 is provided in [6].

2.3 Recognition by Matching
The matching is carried out by a nearest neighbor matching strategy m(X ,Y ): the descriptor
vectors X := {x1, · · · ,xI} extracted at keypoints {1, · · · , I} in a test image X are compared to
all descriptor vectors Y := {y1, · · · ,yJ} extracted at keypoints {1, · · · ,J} from the reference

1http://www.cs.ubc.ca/~lowe/keypoints/
2http://www.vlfeat.org/~vedaldi/code/siftpp.html
3 http://www.vision.ee.ethz.ch/~surf/
4 http://code.google.com/p/opensurf1/
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images Yn,n = 1, · · · ,N by the Euclidean distance. Additionally, a ratio constraint is applied:
only if the distance from the nearest neighbor descriptor is less than α times the distance
from the second nearest neighbor descriptor, a matching pair is detected. Finally, the classi-
fication is carried out by assigning the class c = 1, · · · ,C of the nearest neighbor image Yn,c
which achieves the highest number of matching correspondences to the test image X . This
is described by the following decision rule:

X → r(X) = argmax
c

{
max

n

{
m(X ,Yn,c)

}}
= argmax

c

{
max

n

{
∑

xi∈X
δ (xi,Yn,c)

}}
(1)

with

δ (xi,Y ) =

{
1 miny j∈Y

{
d(xi,y j)

}
< α ·miny′j∈Y\y j

{
d(xi,y j′)

}
0

(2)

In [10], the nearest neighbor ratio scaling parameter was set to α = 0.7, in [1] it was set to
α = 0.5. In some preliminary experiments we found out that α is not a sensitive parameter
in the system, with α = 0.5 performing slightly better.

The same matching method can be used for all descriptors. However, the SURF descrip-
tor has an additional improvement as it includes the sign of the Laplacian, i.e. the trace of
the Hessian matrix, which can be used for fast indexing. Different viewpoint consistency
constraints can be considered during matching, accounting for different transformation and
registration errors, and resulting in different matching time complexities (c.f. Figure 1).

Maximum Matching. No viewpoint consistency constraints are considered during the
matching, i.e. each keypoint in an image is compared to all keypoints in the target image.
Here, the unconstrained matching allows for large transformation and registration errors,
with the cost of the highest matching time complexity.

Grid-Based Matching. Outliers are removed by enforcing viewpoint consistency con-
straints: due to an overlaid regular grid and a block-wise comparison in Equation 2, only
keypoints from the same grid-cell are compared to corresponding keypoints from the target
image. Here, non-overlapping grid-blocks allow for small transformation and registration
errors only. Furthermore, the matching time complexity is drastically reduced.

Grid-Based Best Matching. Similar to the Grid-Based Matching, we additionally allow
for overlapping blocks. As a keypoint can match now with multiple keypoints from neigh-
boring grid-cells, only the local best match is considered. Here, on the one hand overlapping
grid-blocks allow for larger transformation and registration errors, on the other hand stronger
and maybe unwanted deformations between faces are possible.

2.4 Outlier Removal

The use of the spatial information about matching points can help to reduce the amount
of falsely matched correspondences, i.e. outliers. With the assumption that many parts of
a face nearly lie on a plane, with only small viewpoint changes for frontal faces, a given
homography (transformation) between the test and train images can reject outlier matches
which lie outside a specified inlier radius.

Citation
Citation
{Lowe} 2004

Citation
Citation
{Bay, Ess, Tuytelaars, and Gool} 2008



DREUW ET AL.: SURF-FACE RECOGNITION 5

Feature Maximum Grid Grid-Best Maximum Grid Grid-Best Feature

SIFT SURF

U-SIFT U-SURF
Figure 1: Matching results for the AR-Face (left) and the CMU-PIE database (right): the
columns with Maximum matching show false classification examples, the columns with Grid
matchings show correct classification examples. In all cases, the corresponding upright de-
scriptor versions reduce the number of false matches.

The Random Sample Consensus (RANSAC) [7] algorithm samples randomly from a
small set of matching candidates and estimates a homography between these points by min-
imizing the least squared error. The amount of sample correspondences can vary but have
to be greater or equal than four. In the case of four correspondences the estimation has zero
error, as a homography is well-defined by four correspondences. In practical tasks the use
of five or more sample points smoothes the transformation and often yields to better perfor-
mance. In our experiments in section 3 we empirically optimized it to six sample points.

Once a transformation has been estimated, all points of a test image will be projected
to the train image. If a projected point lies in a given radius to its corresponding point
it is classified as an inlier for that particular homography, otherwise it is declared as an
outlier. After a given number of iterations the maximum amount of inliers of all estimated
homographies will be used as a measurement to determine the likelihood of the similarity
between the test and the train image.

RANSAC-Based System Combination. Opposed to a combination of the descriptors on a
feature-level (i.e. early combination), we introduce a novel RANSAC-based system combi-
nation and outlier removal: by merging all matching candidates (i.e. late fusion) of different
descriptor-based face recognition systems, the homography is estimated now on the merged
matching candidates accounting for different transformations.

3 Experimental Results
In this section, we study whether SURF features are suitable and robust enough for face
recognition. Comparisons to a SIFT based approach are provided for the AR-Face and the
CMU-PIE databases under various conditions. If available, we provide comparative results
from the literature.

3.1 Databases
AR-Face. The AR-Face database has been created by Aleix Martinez and Robert Be-
navente at the Computer Vision Center of the University of Barcelona [13]. It consists of
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frontal view face images of 126 individuals, 70 men and 56 women. The database was gen-
erated in two sessions with a two week time delay. In each session 13 images per individual
were taken with differences in facial expression, illumination and partial face occlusion.
Similar to the work presented in [4, 5], we only use a subset of 110 individuals for the
AR-Face database.

CMU-PIE. The CMU-PIE database contains 41,368 images of 68 people. Each person is
imaged under 13 different poses, 43 different illumination conditions, and with 4 different
expressions [21]. We only use the frontal images from the illumination subset of the CMU-
PIE database.

3.2 Conditions and Results

Manually Aligned Faces. In this experimental setup, the original face images from both
databases have been manually aligned by the eye-center locations [8]. The images are rotated
such that the eye-center locations are in the same row. After that the faces are cropped and
scaled to a 64×64 resolution. An example can be seen in Figure 2.

For the AR-Face database, seven images from the first session are used for training, the
remaining seven images from the second session are used for testing. The results of these
experiments on the AR-Face database are listed in Table 1.

For the CMU-PIE database, we define for each of the 68 individuals from the illumina-
tion subset set a “one-shot” training condition, where we use a single frontally illuminated
image for training, and the remaining 20 images, which are taken under varying illumination
conditions, for testing. This scenario simulates situations where only one reference image,
e.g. a passport image, is available. Since for one individual only 18 images are present in
the database, the total number of training images is 68, and the total number of test images
is 1357. The results for the CMU-PIE database are listed in Table 2.

It can directly be seen from Table 1 and Table 2 that the grid-based extraction as well
as the grid-based matching methods can achieve the best error rates (c.f. also Figure 1).
We empirically optimized the feature extraction grid to 64×64 with a step size of 2 (named
“64x64-2 grid” in the following), resulting in 1024 grid points. For the grid-based matchings
we used 8×8 block sizes, and a 50% block overlap for the Grid-Best matching method.
Both tables show that an interest-point based extraction of the local feature descriptors is
insufficient for face recognition as in average only a few interest-points (IPs) are detected
per image. Even if the SIFT detector can find more IPs than the Hessian Matrix based SURF
detector, the results are worse in both cases.

SURF and SIFT descriptors perform equally well in practically all cases in Table 1,
whereas the SURF cannot outperform the SIFT descriptors in Table 2. Interestingly, the
upright and rotation dependent descriptor versions U-SURF-64, U-SURF-128, and U-SIFT
can improve the results in almost all cases. The visual inspection in Figure 1 furthermore
shows that our approach achieves its recognition performance by robustly solving the prob-
lem, instead of e.g. exploiting accidental low-level regularities present in the test [17].

Unaligned Faces. As most generic face recognition approaches do not explicitly model lo-
cal deformations, face registration errors can have a large impact on the system performance
[18]. In contrast to the manually aligned database setup, a second database setup has been
generated where the faces have been automatically detected using the OpenCV implementa-
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Table 1: Error rates for the AR-Face database with manually aligned faces using different
descriptors, extractors, and matching constraints.

Descriptor Extraction # Features Error Rates [%]

Maximum Grid Grid-Best

SURF-64 IPs 5.6 (avg.) × 64 80.64 84.15 84.15

64x64-2 grid 1024 × 64 0.90 0.51 0.90

U-SURF-64 64x64-2 grid 1024 × 64 0.90 1.03 0.64

SURF-128 64x64-2 grid 1024 × 128 0.90 0.51 0.38

U-SURF-128 64x64-2 grid 1024 × 128 1.55 1.29 1.03

SIFT IPs 633.78 (avg.) × 128 1.03 95.84 95.84

64x64-2 grid 1024 × 128 11.03 0.90 0.64

U-SIFT 64x64-2 grid 1024 × 128 0.25 0.25 0.25

Modular PCA [22] 14.14
Adaptively weighted Sub-Pattern PCA [22] 6.43
DCT [4] 4.70

Table 2: Error rates for the CMU-PIE database with manually aligned faces using different
descriptors, extractors, and matching constraints.

Descriptor Extraction # Features Error Rates [%]

Maximum Grid Grid-Best

SURF-64 IPs 6.80 (avg.) × 128 93.95 95.21 95.21

64x64-2 grid 1024 × 64 13.41 4.12 7.82

U-SURF-64 64x64-2 grid 1024 × 64 3.83 0.51 0.66

SURF-128 64x64-2 grid 1024 × 128 12.45 3.68 3.24

U-SURF-128 64x64-2 grid 1024 × 128 5.67 0.95 0.88

SIFT IPs 723.17 (avg.) × 128 43.47 99.33 99.33

64x64-2 grid 1024 × 128 27.92 7.00 9.80

U-SIFT 64x64-2 grid 1024 × 128 16.28 1.40 6.41

Spherical Harmonics [25] 1.80
Modeling Phase Spectra using GMM [16] 12.83
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Figure 2: Example of a manually aligned image and an unaligned image.

Table 3: Error rates for the AR-Face database with automatically detected and unaligned
faces using different descriptors, grid-based extractors, and grid matching constraints.

Descriptor Error Rates [%]

AR-Face CMU-PIE

SURF-64 5.97 15.32
U-SURF-64 5.32 5.52
SURF-128 5.71 11.42
U-SURF-128 5.71 4.86
SIFT 5.45 8.32
U-SIFT 4.15 8.99

tion of the Viola & Jones [23] face detector. The first-best face detection is used to crop and
scale the images to a common size of 64×64 pixels (c.f. Figure 2).

Here we focus on the robustness of the descriptors w.r.t. face registration errors. Similar
to the aligned databases, we use a dense and grid-based descriptor extraction with a grid-
matching. The results of these experiments on the AR-Face and the CMU-PIE database are
presented in Table 3. For the AR-Face, almost all faces are detected correctly resulting in
similar error rates (c.f. Table 1), whereas due to the extreme variations in illumination in
the CMU-PIE database, the face detector does not always succeed in finding the face in the
image.

Similar to the results presented in Table 1 and Table 2 the results in Table 3 show that
the upright descriptor versions perform better than their corresponding rotation invariant
descriptors. Furthermore, it can be observed that the upright SURF descriptors seem to be
more robust to illumination than the upright SIFT descriptors, as their average error rate is
lower.

Partial Occlusions. The experimental setup with partial occlusions is available only for
face images from the AR-Face database. Similar to the manually aligned condition, we use
the same subset of 110 individuals but with partial occlusions in the train and test set. We
follow the same “one-shot” training experiment protocol as proposed in [5]: one neutral
image per individual is used from the first session for training, five images per individual
are used for testing. Overall, five separate test cases are conducted on this data set with 110
test images each: one neutral test case ARneutral, two test cases AR1sun and AR2sun related
to upper face occlusions, and two test cases AR1scarf and AR2scarf related to lower face
occlusions.

The results of these experiments are listed in Table 4. Again, it can be observed that the
upright versions perform better than their corresponding rotation invariant versions. The best
average result is achieved using the U-SIFT descriptor. The fact that most part of the face
information is located around the eyes and the mouth can especially be observed for the upper
face occlusions. However, the performance drop for partial occlusions is not as significant
as for the baseline system reported in [5], proofing the robustness of our proposed approach.
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Table 4: Error rates for the AR-Face database with partially occluded faces using different
descriptors, 1024 grid-based extractors and grid-based matching constraints.
Descriptor Error Rates [%]

AR1scarf AR1sun ARneutral AR2scarf AR2sun Avg.

SURF-64 2.72 30.00 0.00 4.54 47.27 16.90
U-SURF-64 4.54 23.63 0.00 4.54 47.27 15.99
SURF-128 1.81 23.63 0.00 3.63 40.90 13.99
U-SURF-128 1.81 20.00 0.00 3.63 41.81 13.45
SIFT 1.81 24.54 0.00 2.72 44.54 14.72
U-SIFT 1.81 20.90 0.00 1.81 38.18 12.54

U-SURF-128+R 1.81 19.09 0.00 3.63 43.63 13.63
U-SIFT+R 2.72 14.54 0.00 0.90 35.45 10.72
U-SURF-128+U-SIFT+R 0.90 16.36 0.00 2.72 32.72 10.54

DCT [5], baseline 8.2 61.8 7.3 16.4 62.7 31.28
DCT [5], realigned 2.7 1.8 0.0 6.4 4.5 3.08

The performance for the upper face occlusions (AR1sun and AR2sun) of our system might
be further improved by extracting the local features at larger scales to reduce the number of
false positive matches of the sun glasses with e.g. mustache hairs.

The results in Table 4 furthermore show that the RANSAC post-processing step improves
the system performance even for the already spatially restricted Grid-Based matching (see
subsection 2.3). An outlier removal with an empirically optimized removal-radius set to 3
pixel of the best system (i.e. U-SIFT+R) can further descrease the error rate, and by com-
bining the best two systems (i.e. U-SURF-128+U-SIFT+R), the best average error rate of
10.54% is achieved. A combination of all descriptors did not lead to further improvements.
This is in accordance to experiments in other domains where the combination of different
systems can lead to an improvement over the individual ones.

4 Conclusions
In this work, we investigated the usage of SURF descriptors in comparison to SIFT de-
scriptors for face recognition. We showed that using our proposed grid-based local feature
extraction instead of an interest point detection based extraction, SURF descriptors as well
as SIFT descriptors can be used for face recognition, especially in combination with a grid-
based matching enforcing viewpoint consistency constraints.

In most cases, upright descriptor versions achieved better results than their correspond-
ing rotation invariant versions, and the SURF-128 descriptor achieved better results than
the SURF-64 descriptor. Furthermore, the experiments on the CMU-PIE database showed
that SURF descriptors are more robust to illumination, whereas the results on the AR-Face
database showed that the SIFT descriptors are more robust to changes in viewing conditions
as well as to errors of the detector due to facial expressions. Especially for partially occluded
faces, the proposed RANSAC-based system combination and outlier removal could combine
the advantages of both descriptors.

The different database conditions with manually aligned faces, unaligned faces, and par-
tially occluded faces showed the robustness of our proposed grid-based approach. Addi-
tionally, and to the best of our knowledge, we could outperform many generic approaches
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known from the literature on the same benchmark sets. Interesting for future work will be
the evaluation of the proposed approach on the Labeled Faces in the Wild dataset [24].
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