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Abstract
Discriminative methods are an important technique to refine the
acoustic model in speech recognition. Conventional discrimi-
native training is initialized with some baseline model and the
parameters are re-estimated in a separate step. This approach
has proven to be successful, but it includes many heuristics, ap-
proximations, and parameters to be tuned. This tuning involves
much engineering and makes it difficult to reproduce and com-
pare experiments. In contrast to the conventional training, con-
vex optimization techniques provide a sound approach to esti-
mate all model parameters from scratch. Such a straight ap-
proach hopefully dispense with additional heuristics, e.g. scal-
ing of posteriors. This paper addresses the question how well
this concept using log-linear models carries over to practice.
Experimental results are reported for a digit string recognition
task, which allows for the investigation of this issue without ap-
proximations.
Index Terms: convex optimization, conditional random fields,
acoustic modeling, digit string recognition

1. Introduction
Discriminative training has been successfully employed for
speech recognition. A shortcoming of the conventional discrim-
inative training criteria is that these do not guarantee to converge
to the global optimum (e.g. non-convex training criteria) but
can get stuck in local optima. Hence, the outcome depends on
the initialization of the discriminative training and the choice of
the optimization algorithm. This situation is unsatisfactory be-
cause the parameter optimization in speech recognition requires
much engineering and involves many heuristics (e.g. splitting
of densities) and approximations (e.g. word lattices) to make it
work well in practice. This circumstance does not only make it
hard to reproduce experiments but strictly speaking, also makes
the fair comparison of different algorithms questionable due to
spurious local optima. For these reasons, a fool-proof training
criterion without any parameters to be tuned manually would be
attractive in this context.

Convex optimization appears to be a promising concept to
avoid the above described problems with conventional discrim-
inative training. This concept has been used successfully in
many fields of pattern recognition, e.g. Support Vector Ma-
chines (SVMs). In speech recognition, however, the construc-
tion of convex training criteria is more tricky mainly because of
the hidden variables. In conventional speech recognition sys-
tems, hidden variables occur on two different levels: the HMM
state sequences accounting for time distortions and the densities
in the Gaussian mixtures. In this work, Conditional Random

Fields (CRFs) [1] with HMM structure [2, 3] and log-linear pa-
rameterization are used. In this approach, the density indices
are hidden, and are eliminated by using single densities in com-
bination with an increased number of features. The motivation
for this design decision is the fact that it is hard to initialize the
density indices without a reasonable generative model. Note
that this is an important difference to the work in [4, 3, 5]. The
initialization of some log-linear models by generative models
is possible due to the equivalence relation of Gaussian and log-
linear models [6]. For instance, such a log-linear model using
first and second order features (i.e., features of the type xd and
xd xd′ ) is equivalent to a Gaussian HMM (GHMM) with density-
specific full covariance matrices. Due to the parameter con-
straints of the GHMM, the optimization of the GHMM is much
more complex [5] than for the corresponding log-linear model.
Assuming that the HMM state sequence is known and kept fixed
during training in addition to using single densities, a convex
training criterion can then be derived for HMMs, cf. [2, 3, 5].

This leads us to the main question of this paper. Using a
convex and parameter-free training criterion, can the log-linear
model parameters be reliably (i.e., competitive error rates) esti-
mated from scratch? Similar work can be found in [2, 3, 5] but
with slightly different focus.

As suggested above, the definition of a convex training cri-
terion is not unique. The standard entropy-based (MMI) train-
ing criterion is employed in [2] and [3]. The first work is based
on Maximum Entropy Markov Models (MEMMs) while the lat-
ter uses CRFs. In contrast, the GHMM parameters in [5] are op-
timized using a margin-based training criterion. This approach
is motivated by the SVM for HMMs proposed in [7] for non-
speech applications. Here, the training criterion is based on
modified MMI [8]. This training criterion incorporates a mar-
gin term into the existing MMI criterion, approximating multi-
class SVMs [7]. This allows us to re-use our transducer-based
discriminative framework [8]. In addition, we did not use the
approach from [5] because for separable data for instance, the
margin can be made arbitrarily large by suitably scaling the
model parameters. Modified MMI uses regularization to avoid
this effect and is probably safer for the estimation from scratch.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses several practical issues with convex optimiza-
tion in speech recognition and defines the objectives of this
work. Section 3 introduces the log-linear model under con-
sideration and discusses different MMI-based training criteria.
Experimental results are presented in Section 4. The paper con-
cludes with the summary of the experimental findings.
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2. Practical Issues & Objectives
The definition of a convex training criterion for speech recog-
nition leaves open several issues in practice. First, the key as-
sumption is that the initial alignment is known and kept fixed
during training. So, how sensitive is the performance on this
initial alignment? In general, the model used to generate the
initial alignment is not related with the log-linear model to be
estimated. This is the case if the log-linear model cannot be
initialized with a corresponding GHMM as e.g. in [3, 5]. Sec-
ond, it is often observed in conventional lattice-based training
that the error rate goes up again if training is not stopped early
enough. This can indicate that the optimum of the training cri-
terion is not sufficiently correlated with the error rate, or that the
optimization is not numerically stable. Does the convex training
criterion define a reasonable optimum? This issue appears in-
teresting particularly if model parameters of different type (e.g.
emission and transition parameters) are optimized in the unified
framework of log-linear models. We also require that except for
the regularization constant, the optimization problem does not
involve any additional parameters to be tuned manually. The
scaling factor used for lattice-based conventional discriminative
training [4] is a typical example of such a parameter. Third,
conventional discriminative training is initialized with a reason-
able acoustic model, e.g. a GHMM baseline model. Does the
convex training criterion estimate the parameters reliably and
robustly, independently of the initialization as expected from
theory? Finally, the convex training criterion under considera-
tion does not discriminate different word sequences but rather
different HMM state sequences, which can represent the same
word sequence. Does this mismatch in training and recognition
reduce the performance of the convex training criterion? The
goal of this work is not so much to find a log-linear model that
outperforms conventional GHMMs as e.g. in [3, 2]. We rather
focus on the investigation of the utility and feasibility of convex
training criteria using log-linear models in speech recognition.
The experiments are performed on a simple, yet competitive
log-linear model, which allows for a thorough experimental in-
vestigation of the above issues.

3. Log-Linear Models & Training Criteria
Here, a simple log-linear CRF is considered. The model in-
cludes emission features and transition features, leading to a
CRF with HMM structure [4, 3]. Features to represent the lan-
guage model are not used because the focus is on the recogni-
tion of digit strings. For this reason and assuming that the HMM
state sequences sT

1 uniquely define the word sequences, the ex-
plicit dependence on the word sequence can be dropped. This
considerably simplifies the notation. In addition, the model pa-
rameters associated with the emission features depend on the
gender g. The transition features are shared by the two gender-
dependent models. For first order features xT

1 , the posterior
probability then reads

pΛ(sT
1 , g|x

T
1 ) =

1
Z

exp

 T∑
t=1

α(st−1, st) + α(st, g) + λ(st, g)†xt

 (1)

where Z denotes the normalization constant over all HMM
state sequences sT

1 . To avoid confusion with the number of
frames T , the dagger † is used to denote the transpose of a vec-
tor. The set of log-linear parameters to be estimated is Λ =

{α(σ, s), α(s, g), λ(s, g)}. The transition and emission features
are associated with the parameters α(σ, s) and α(s, g), λ(s, g),

respectively. This choice of features is motivated by the Gaus-
sian models [6]. More sophisticated emission features (e.g. sec-
ond order features) can be incorporated by augmenting the first
order features. Keep in mind, however, that it is beyond the
scope of this paper to find more refined features. The posterior
probabilities as defined in Equation (1) lead to the decision rule

ŝT
1 = argmax

sT
1

max
g

 T∑
t=1

α(st−1, st) + α(st, g) + λ(st, g)†xt)


 (2)

Again, the best state sequence ŝT
1 uniquely defines the recog-

nized word sequence.
Before discussing different training criteria to estimate Λ,

the problem of estimating gender-dependent models in the dis-
criminative framework is addressed.

3.1. General Issues for Training
The decision rule in Equation (2) requires that the scores of ei-
ther gender are comparable. For ML, this is not an issue be-
cause the optimization problem decouples into the two gender-
dependent optimization problems, i.e., the gender-dependent
models can be optimized separately. If the models are optimized
in the discriminative framework independently, the scores are
no longer guaranteed to be comparable. This is because the nu-
merator and denominator (i.e., normalization constant Z) of the
posterior in Equation (1) can be multiplied by the same con-
stant factor without changing the posterior [6]. For this reason,
the two gender-dependent models need to be jointly optimized,
i.e., the normalization in Equation (1) is also over the hypothe-
ses of the competing gender. This is in contrast to our previ-
ous work [8] where this issue is not considered critical because
the discriminative training was initialized with ML optimized
GHMMs. The complexity of the combined training is approxi-
mately four times larger than for the isolated training. This in-
crease in complexity arises from the increased amount of train-
ing data (factor of two) and from the augmented summation
space (another factor of two).

For simplicity, the training criteria below are formulated
without regularization. However, I-smoothing (GHMMs) or
L2-norm regularization (CRFs) was used for all discriminative
systems below.

3.2. Frame-Based MMI
A simple convex training criterion is the frame-based MMI
training criterion. This criterion is inspired by the training strat-
egy usually employed for the hybrid approach, e.g. [9]. As-
suming that the state alignment is known and kept fixed during
training, the resulting training criterion for log-linear models is
convex

F (Λ) =
∑

g

∑
t

log
(

exp(α(st, g) + λ(st, g)†xt)∑
g,s exp(α(s, g) + λ(s, g)†xt)

)
. (3)

This criterion discards all context information, i.e., any state se-
quence is allowed and the transition features do not enter the
criterion. Hence, it is not possible to estimate the transition pa-
rameters, which need to be tuned manually. The normalization
is on frame level over all HMM states. For recognition, the log
state prior is subtracted from the parameters α(σ, s, g) [9]. Fur-
thermore, it is essential to accumulate the silence frames with
lower weight, probably due to the high silence portion. In prac-
tice, setting the total silence weight to the average weight of all
other states turned out to be a good choice. Our experience is
that the scaling factors badly need to be re-tuned after training.

Next, two sentence-based MMI criteria are discussed.



3.3. Lattice-Based MMI
The conventional MMI criterion is based on the posterior in
Equation (1)

F (Λ) =
∑

r

log

 ∑
sTr
1 ∈Nr

pΛ(sTr
1 , gr |x

Tr
1 )

 (4)

where the first sum is over all training sentences, r. The word
lattice approximates the set of competing sequences. The nu-
merator latticeN is defined to be the subset of correct sequences
from the word lattice. The posterior is normalized over all hy-
potheses in the denominator lattice and all g. The lattice-based
approach is approximate not only because only a pruned sum-
mation space is considered but also because the maximum ap-
proximation within the word boundaries is employed. The tran-
sition parameters can be estimated in this framework. This,
however, was not done in this work but the transition param-
eters were tuned manually.

Importantly, this lattice-based MMI criterion is not convex.
In the next subsection, this training criterion is modified such as
to make it convex. Similar approaches can be found in [3, 5].

3.4. MMI (Convex Formulation)
Assuming the maximum approximation and realignment, the
convexity of the training criterion in Equation (4) is broken for
two reasons: the sum within the logarithm in Equation (4), and
the incomplete sum to approximate the normalization constant.
As in [3, 5], the first issue is resolved by limiting the set of cor-
rect hypotheses to the best state sequence and keeping it fixed
during training. The second problem is avoided by using the
complete summation space (feasible for simple tasks).

This training criterion was implemented in our transducer-
based discriminative framework. A weighted finite-state trans-
ducer represents the complete set of valid state sequences,
which can be of different length. The arc weights are set to
the transition scores. The emission scores are stored in another
transducer, having a state for each time frame and having an arc
for each state and HMM state. The denominator lattice is then
obtained by composition of these two transducers. The margin
transducer is treated in the same way, if necessary. The resulting
transducer is similar to the network used for transducer-based
search. For training, however, it must be made sure that no du-
plicate hypotheses are contained (log vs. tropical semiring). An
essential difference to lattice-based MMI is that the convex for-
mulation of MMI discriminates between HMM state sequences
even if they represent the same word sequence.

The transducer-based framework is a convenient tool to
quickly implement new algorithms. The implementations are
harder to optimize than a naive implementation. The complex-
ity, however, is the same. In our implementation, convex MMI
is roughly a factor of five slower than lattice-based MMI. In ad-
dition, the experiments suggest that convex MMI is slower in
convergence than lattice-based MMI.

3.5. Modified Training Criteria
A margin term can be incorporated into the training criteria
above by using the margin-posterior instead of the posterior de-
fined in Equation (1). Compared with the original posterior, the
margin-posterior includes some margin term in addition. For
the state-based Hamming accuracy, the term −ρδ(st, ŝt) is added
to the argument of the exponential function in Equation (1),
see [8] for further details. Here, the scaling factor ρ is kept
fixed, and only the regularization constant is tuned. This modi-

Table 1: Corpus statistics for SieTill.
SieTill

training test
male female male female

Acoustic data [h] 6.0 5.3 6.0 5.3
#running words [k] 21 20 23 20

Table 2: Different MMI-based training criteria for a simple
setup (single densities, first order features, transition parame-
ters tuned manually, initialization with corresponding ML opti-
mized GHMM).

Model Criterion Convex WER [%]
GHMM ML no 3.8

Lattice-based mod. MMI no 2.7
CRF Frame-based MMI yes 3.0

Lattice-based MMI no 2.9
Lattice-based mod. MMI no 2.7
MMI yes 3.1
Modified MMI yes 2.5

fication results in the corresponding modified training criterion:
MMI vs. modified MMI etc.

4. Experimental Results
The presented approach was evaluated on a digit string recog-
nition task. This task allows for a thorough experimental eval-
uation due to its small size. All discriminative systems were
optimized using Rprop [10]. In past experiments, Rprop proved
to be a flexible optimization algorithm with good convergence
behavior in practice.

4.1. Digit String Recognition Task

The German digit string recognition task SieTill is used for
the experiments. The recognition system is based on gender-
dependent whole-word HMMs. For each gender, 214 distinct
HMM states plus one for silence are used. The vocabulary con-
sists of the 11 German digits (including the pronunciation vari-
ant ’zwo’). The observation vectors consist of 12 cepstral fea-
tures without derivatives. The gender-independent Linear Dis-
criminant Analysis (LDA) is applied to 5 consecutive frames
and projects the resulting feature vector to 25 dimensions [8].
The corpus statistics is summarized in Table 1. The silence por-
tion on all data is rather large, ≈ 55%. The ML baseline sys-
tem uses Gaussian mixtures with globally pooled variances. It
serves as baseline system for comparison and initialization of
the log-linear models, if not estimated from scratch.

4.2. Preliminary Studies

Preliminary studies were performed on a very simple setup to
check several basic issues, e.g. the choice of the convex train-
ing criterion. We used single densities with first order features
only. The transition parameters were kept fixed, unless other-
wise stated. The log-linear model was initialized with the asso-
ciated GHMM to speed up training. The results are summarized
in Table 2. Internal tests to incorporate the margin term into the
frame-based training criterion were not successful, i.e., the mar-
gin term did not help significantly. In contrast to lattice-based
modified MMI, modified MMI does not require a scaling factor
for the posteriors. To check the estimation of the transition fea-
tures, the transition features were estimated from scratch, using
the system optimized with modified MMI. The resulting error



Table 3: Full model training from scratch (single densities, first
and second order features, transition features), compared with
the other training criteria and GHMMs with 64 dns/mix.

Model Criterion Convex WER [%]
GHMM ML no 1.8

Lattice-based mod. MMI no 1.6
CRF Frame-based MMI yes 2.3

Lattice-based mod. MMI no 1.8
Modified MMI yes 1.8

rate does not differ significantly from that in Table 2, i.e., the
optimization works but the manually tuned values are already
pretty close to the optimum.

These preliminary results suggest that convex optimization
may help. It is essential to define a suitable training criterion to
achieve good results. Here, the convex training criterion defined
on sentence level and including a margin term performs best.

4.3. Full Model Training from Scratch

Now, we are in the position to run an experiment meeting the
requirements from Section 2. At this end, consider a log-linear
model which includes the first and second order features, and
the (global) transition features, again in combination with sin-
gle densities. The initial alignment is generated using a GHMM
with a single globally pooled diagonal covariance matrix and 16
densities/mixture. This setup was then used to estimate the log-
linear model from scratch, using the same settings for modified
MMI as in Section 4.2. The convergence of the convex MMI
training criterion is shown in Figure 1. The training criterion
and the error rate are well correlated. No significant increase of
the error rate is observed, if not stopped early enough. In paral-
lel to the training shown in this figure, a realignment was done
after 150 iterations on the model from iteration 150 to refine the
acoustic model training. The realignment had only little effect
(less than 0.1% WER reduction), i.e., the initial alignment ap-
pears to be good enough. Table 3 compares this error rate with
the best GHMM (64 densities/mixture, notably having over four
times more parameters) and the other training criteria. Here, the
ML optimized GHMM baseline with globally pooled variances
(i.e., first order features only) served as initialization for frame-
based MMI, and MMI refines frame-based MMI in turn. The
results in Figure 1 and in Table 3 imply that convex modified
MMI defines a reasonable optimum that can be estimated effec-
tively.

5. Conclusions
Convex optimization using log-linear HMMs was investigated
for a digit string recognition task. A convex optimization prob-
lem was defined that showed good performance and stable con-
vergence at the same time. Assuming a good initial state align-
ment, this convex training criterion was used to successfully
estimate all model parameters from scratch. Similar to SVMs,
the regularization constant is the only parameter that needs to
be tuned. Our observation is that a carefully optimized but rela-
tively simple setup can achieve good performance, comparable
with conventional training criteria and state-of-the-art GHMMs.
This might be a good starting point for adding more sophis-
ticated features (e.g. higher order features, posterior features)
to refine the acoustic model. Of course, this is only the first
step towards convex and parameter-free optimization in speech
recognition. More effort needs to be spent on the incorporation
of similar ideas into large vocabulary speech recognition.
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Figure 1: Progress of objective function (training) and Word
Error Rate (WER, test) vs. training iteration index for SieTill.
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